Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > toptopon | Structured version Visualization version GIF version |
Description: Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
toptopon.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
toptopon | ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toptopon.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | istopon 21969 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
3 | 1, 2 | mpbiran2 706 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ Top) |
4 | 3 | bicomi 223 | 1 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∪ cuni 4836 ‘cfv 6418 Topctop 21950 TopOnctopon 21967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-topon 21968 |
This theorem is referenced by: toptopon2 21975 eltpsi 22002 restuni 22221 stoig 22222 restlp 22242 restperf 22243 perfopn 22244 iscn2 22297 iscnp2 22298 cncnpi 22337 cncnp2 22340 cnnei 22341 cnrest 22344 cnpresti 22347 cnprest 22348 cnprest2 22349 paste 22353 t1sep2 22428 sshauslem 22431 1stcelcls 22520 kgenuni 22598 iskgen3 22608 txuni 22651 ptuniconst 22657 txcnmpt 22683 txcn 22685 txindis 22693 ptrescn 22698 txcmpb 22703 xkoptsub 22713 xkofvcn 22743 imasnopn 22749 imasncld 22750 imasncls 22751 qtopcmplem 22766 qtopkgen 22769 hmeof1o 22823 hmeores 22830 hmphindis 22856 cmphaushmeo 22859 txhmeo 22862 ptunhmeo 22867 hausflim 23040 flfneii 23051 hausflf 23056 flimfnfcls 23087 flfcntr 23102 cnextfun 23123 cnextfvval 23124 cnextf 23125 cnextcn 23126 cnextfres1 23127 retopon 23833 evth 24028 evth2 24029 qtophaus 31688 rrhre 31871 pconnconn 33093 connpconn 33097 pconnpi1 33099 sconnpi1 33101 txsconnlem 33102 txsconn 33103 cvxsconn 33105 cvmsf1o 33134 cvmliftmolem1 33143 cvmliftlem8 33154 cvmlift2lem9a 33165 cvmlift2lem9 33173 cvmlift2lem11 33175 cvmlift2lem12 33176 cvmliftphtlem 33179 cvmlift3lem6 33186 cvmlift3lem8 33188 cvmlift3lem9 33189 cnres2 35848 cnresima 35849 hausgraph 40953 ntrf2 41623 fcnre 42457 |
Copyright terms: Public domain | W3C validator |