Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > toptopon | Structured version Visualization version GIF version |
Description: Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
toptopon.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
toptopon | ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toptopon.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | istopon 22061 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
3 | 1, 2 | mpbiran2 707 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ Top) |
4 | 3 | bicomi 223 | 1 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∪ cuni 4839 ‘cfv 6433 Topctop 22042 TopOnctopon 22059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-topon 22060 |
This theorem is referenced by: toptopon2 22067 eltpsi 22094 restuni 22313 stoig 22314 restlp 22334 restperf 22335 perfopn 22336 iscn2 22389 iscnp2 22390 cncnpi 22429 cncnp2 22432 cnnei 22433 cnrest 22436 cnpresti 22439 cnprest 22440 cnprest2 22441 paste 22445 t1sep2 22520 sshauslem 22523 1stcelcls 22612 kgenuni 22690 iskgen3 22700 txuni 22743 ptuniconst 22749 txcnmpt 22775 txcn 22777 txindis 22785 ptrescn 22790 txcmpb 22795 xkoptsub 22805 xkofvcn 22835 imasnopn 22841 imasncld 22842 imasncls 22843 qtopcmplem 22858 qtopkgen 22861 hmeof1o 22915 hmeores 22922 hmphindis 22948 cmphaushmeo 22951 txhmeo 22954 ptunhmeo 22959 hausflim 23132 flfneii 23143 hausflf 23148 flimfnfcls 23179 flfcntr 23194 cnextfun 23215 cnextfvval 23216 cnextf 23217 cnextcn 23218 cnextfres1 23219 retopon 23927 evth 24122 evth2 24123 qtophaus 31786 rrhre 31971 pconnconn 33193 connpconn 33197 pconnpi1 33199 sconnpi1 33201 txsconnlem 33202 txsconn 33203 cvxsconn 33205 cvmsf1o 33234 cvmliftmolem1 33243 cvmliftlem8 33254 cvmlift2lem9a 33265 cvmlift2lem9 33273 cvmlift2lem11 33275 cvmlift2lem12 33276 cvmliftphtlem 33279 cvmlift3lem6 33286 cvmlift3lem8 33288 cvmlift3lem9 33289 cnres2 35921 cnresima 35922 hausgraph 41037 ntrf2 41734 fcnre 42568 |
Copyright terms: Public domain | W3C validator |