| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toptopon | Structured version Visualization version GIF version | ||
| Description: Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| toptopon.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| toptopon | ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toptopon.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | istopon 22797 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
| 3 | 1, 2 | mpbiran2 710 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ Top) |
| 4 | 3 | bicomi 224 | 1 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∪ cuni 4858 ‘cfv 6482 Topctop 22778 TopOnctopon 22795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-topon 22796 |
| This theorem is referenced by: toptopon2 22803 eltpsi 22829 restuni 23047 stoig 23048 restlp 23068 restperf 23069 perfopn 23070 iscn2 23123 iscnp2 23124 cncnpi 23163 cncnp2 23166 cnnei 23167 cnrest 23170 cnpresti 23173 cnprest 23174 cnprest2 23175 paste 23179 t1sep2 23254 sshauslem 23257 1stcelcls 23346 kgenuni 23424 iskgen3 23434 txuni 23477 ptuniconst 23483 txcnmpt 23509 txcn 23511 txindis 23519 ptrescn 23524 txcmpb 23529 xkoptsub 23539 xkofvcn 23569 imasnopn 23575 imasncld 23576 imasncls 23577 qtopcmplem 23592 qtopkgen 23595 hmeof1o 23649 hmeores 23656 hmphindis 23682 cmphaushmeo 23685 txhmeo 23688 ptunhmeo 23693 hausflim 23866 flfneii 23877 hausflf 23882 flimfnfcls 23913 flfcntr 23928 cnextfun 23949 cnextfvval 23950 cnextf 23951 cnextcn 23952 cnextfres1 23953 retopon 24649 evth 24856 evth2 24857 qtophaus 33803 rrhre 33988 pconnconn 35204 connpconn 35208 pconnpi1 35210 sconnpi1 35212 txsconnlem 35213 txsconn 35214 cvmsf1o 35245 cvmliftmolem1 35254 cvmliftlem8 35265 cvmlift2lem9a 35276 cvmlift2lem9 35284 cvmlift2lem11 35286 cvmlift2lem12 35287 cvmliftphtlem 35290 cvmlift3lem6 35297 cvmlift3lem8 35299 cvmlift3lem9 35300 cnres2 37743 cnresima 37744 hausgraph 43178 ntrf2 44097 fcnre 45003 |
| Copyright terms: Public domain | W3C validator |