| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toptopon | Structured version Visualization version GIF version | ||
| Description: Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| toptopon.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| toptopon | ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toptopon.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | istopon 22799 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
| 3 | 1, 2 | mpbiran2 710 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ Top) |
| 4 | 3 | bicomi 224 | 1 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∪ cuni 4871 ‘cfv 6511 Topctop 22780 TopOnctopon 22797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-topon 22798 |
| This theorem is referenced by: toptopon2 22805 eltpsi 22831 restuni 23049 stoig 23050 restlp 23070 restperf 23071 perfopn 23072 iscn2 23125 iscnp2 23126 cncnpi 23165 cncnp2 23168 cnnei 23169 cnrest 23172 cnpresti 23175 cnprest 23176 cnprest2 23177 paste 23181 t1sep2 23256 sshauslem 23259 1stcelcls 23348 kgenuni 23426 iskgen3 23436 txuni 23479 ptuniconst 23485 txcnmpt 23511 txcn 23513 txindis 23521 ptrescn 23526 txcmpb 23531 xkoptsub 23541 xkofvcn 23571 imasnopn 23577 imasncld 23578 imasncls 23579 qtopcmplem 23594 qtopkgen 23597 hmeof1o 23651 hmeores 23658 hmphindis 23684 cmphaushmeo 23687 txhmeo 23690 ptunhmeo 23695 hausflim 23868 flfneii 23879 hausflf 23884 flimfnfcls 23915 flfcntr 23930 cnextfun 23951 cnextfvval 23952 cnextf 23953 cnextcn 23954 cnextfres1 23955 retopon 24651 evth 24858 evth2 24859 qtophaus 33826 rrhre 34011 pconnconn 35218 connpconn 35222 pconnpi1 35224 sconnpi1 35226 txsconnlem 35227 txsconn 35228 cvmsf1o 35259 cvmliftmolem1 35268 cvmliftlem8 35279 cvmlift2lem9a 35290 cvmlift2lem9 35298 cvmlift2lem11 35300 cvmlift2lem12 35301 cvmliftphtlem 35304 cvmlift3lem6 35311 cvmlift3lem8 35313 cvmlift3lem9 35314 cnres2 37757 cnresima 37758 hausgraph 43194 ntrf2 44113 fcnre 45019 |
| Copyright terms: Public domain | W3C validator |