| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toptopon | Structured version Visualization version GIF version | ||
| Description: Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| toptopon.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| toptopon | ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toptopon.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | istopon 22850 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
| 3 | 1, 2 | mpbiran2 710 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ Top) |
| 4 | 3 | bicomi 224 | 1 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∪ cuni 4883 ‘cfv 6531 Topctop 22831 TopOnctopon 22848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-topon 22849 |
| This theorem is referenced by: toptopon2 22856 eltpsi 22882 restuni 23100 stoig 23101 restlp 23121 restperf 23122 perfopn 23123 iscn2 23176 iscnp2 23177 cncnpi 23216 cncnp2 23219 cnnei 23220 cnrest 23223 cnpresti 23226 cnprest 23227 cnprest2 23228 paste 23232 t1sep2 23307 sshauslem 23310 1stcelcls 23399 kgenuni 23477 iskgen3 23487 txuni 23530 ptuniconst 23536 txcnmpt 23562 txcn 23564 txindis 23572 ptrescn 23577 txcmpb 23582 xkoptsub 23592 xkofvcn 23622 imasnopn 23628 imasncld 23629 imasncls 23630 qtopcmplem 23645 qtopkgen 23648 hmeof1o 23702 hmeores 23709 hmphindis 23735 cmphaushmeo 23738 txhmeo 23741 ptunhmeo 23746 hausflim 23919 flfneii 23930 hausflf 23935 flimfnfcls 23966 flfcntr 23981 cnextfun 24002 cnextfvval 24003 cnextf 24004 cnextcn 24005 cnextfres1 24006 retopon 24702 evth 24909 evth2 24910 qtophaus 33867 rrhre 34052 pconnconn 35253 connpconn 35257 pconnpi1 35259 sconnpi1 35261 txsconnlem 35262 txsconn 35263 cvmsf1o 35294 cvmliftmolem1 35303 cvmliftlem8 35314 cvmlift2lem9a 35325 cvmlift2lem9 35333 cvmlift2lem11 35335 cvmlift2lem12 35336 cvmliftphtlem 35339 cvmlift3lem6 35346 cvmlift3lem8 35348 cvmlift3lem9 35349 cnres2 37787 cnresima 37788 hausgraph 43229 ntrf2 44148 fcnre 45049 |
| Copyright terms: Public domain | W3C validator |