![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > toptopon | Structured version Visualization version GIF version |
Description: Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
toptopon.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
toptopon | ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toptopon.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | istopon 22939 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
3 | 1, 2 | mpbiran2 709 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ Top) |
4 | 3 | bicomi 224 | 1 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∪ cuni 4931 ‘cfv 6573 Topctop 22920 TopOnctopon 22937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-topon 22938 |
This theorem is referenced by: toptopon2 22945 eltpsi 22972 restuni 23191 stoig 23192 restlp 23212 restperf 23213 perfopn 23214 iscn2 23267 iscnp2 23268 cncnpi 23307 cncnp2 23310 cnnei 23311 cnrest 23314 cnpresti 23317 cnprest 23318 cnprest2 23319 paste 23323 t1sep2 23398 sshauslem 23401 1stcelcls 23490 kgenuni 23568 iskgen3 23578 txuni 23621 ptuniconst 23627 txcnmpt 23653 txcn 23655 txindis 23663 ptrescn 23668 txcmpb 23673 xkoptsub 23683 xkofvcn 23713 imasnopn 23719 imasncld 23720 imasncls 23721 qtopcmplem 23736 qtopkgen 23739 hmeof1o 23793 hmeores 23800 hmphindis 23826 cmphaushmeo 23829 txhmeo 23832 ptunhmeo 23837 hausflim 24010 flfneii 24021 hausflf 24026 flimfnfcls 24057 flfcntr 24072 cnextfun 24093 cnextfvval 24094 cnextf 24095 cnextcn 24096 cnextfres1 24097 retopon 24805 evth 25010 evth2 25011 qtophaus 33782 rrhre 33967 pconnconn 35199 connpconn 35203 pconnpi1 35205 sconnpi1 35207 txsconnlem 35208 txsconn 35209 cvmsf1o 35240 cvmliftmolem1 35249 cvmliftlem8 35260 cvmlift2lem9a 35271 cvmlift2lem9 35279 cvmlift2lem11 35281 cvmlift2lem12 35282 cvmliftphtlem 35285 cvmlift3lem6 35292 cvmlift3lem8 35294 cvmlift3lem9 35295 cnres2 37723 cnresima 37724 hausgraph 43166 ntrf2 44086 fcnre 44925 |
Copyright terms: Public domain | W3C validator |