| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toptopon | Structured version Visualization version GIF version | ||
| Description: Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| toptopon.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| toptopon | ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toptopon.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | istopon 22827 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
| 3 | 1, 2 | mpbiran2 710 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ Top) |
| 4 | 3 | bicomi 224 | 1 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∪ cuni 4856 ‘cfv 6481 Topctop 22808 TopOnctopon 22825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-topon 22826 |
| This theorem is referenced by: toptopon2 22833 eltpsi 22859 restuni 23077 stoig 23078 restlp 23098 restperf 23099 perfopn 23100 iscn2 23153 iscnp2 23154 cncnpi 23193 cncnp2 23196 cnnei 23197 cnrest 23200 cnpresti 23203 cnprest 23204 cnprest2 23205 paste 23209 t1sep2 23284 sshauslem 23287 1stcelcls 23376 kgenuni 23454 iskgen3 23464 txuni 23507 ptuniconst 23513 txcnmpt 23539 txcn 23541 txindis 23549 ptrescn 23554 txcmpb 23559 xkoptsub 23569 xkofvcn 23599 imasnopn 23605 imasncld 23606 imasncls 23607 qtopcmplem 23622 qtopkgen 23625 hmeof1o 23679 hmeores 23686 hmphindis 23712 cmphaushmeo 23715 txhmeo 23718 ptunhmeo 23723 hausflim 23896 flfneii 23907 hausflf 23912 flimfnfcls 23943 flfcntr 23958 cnextfun 23979 cnextfvval 23980 cnextf 23981 cnextcn 23982 cnextfres1 23983 retopon 24678 evth 24885 evth2 24886 qtophaus 33849 rrhre 34034 pconnconn 35275 connpconn 35279 pconnpi1 35281 sconnpi1 35283 txsconnlem 35284 txsconn 35285 cvmsf1o 35316 cvmliftmolem1 35325 cvmliftlem8 35336 cvmlift2lem9a 35347 cvmlift2lem9 35355 cvmlift2lem11 35357 cvmlift2lem12 35358 cvmliftphtlem 35361 cvmlift3lem6 35368 cvmlift3lem8 35370 cvmlift3lem9 35371 cnres2 37811 cnresima 37812 hausgraph 43246 ntrf2 44165 fcnre 45070 |
| Copyright terms: Public domain | W3C validator |