| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toptopon | Structured version Visualization version GIF version | ||
| Description: Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| toptopon.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| toptopon | ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toptopon.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | istopon 22832 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
| 3 | 1, 2 | mpbiran2 710 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ Top) |
| 4 | 3 | bicomi 224 | 1 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∪ cuni 4867 ‘cfv 6499 Topctop 22813 TopOnctopon 22830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-topon 22831 |
| This theorem is referenced by: toptopon2 22838 eltpsi 22864 restuni 23082 stoig 23083 restlp 23103 restperf 23104 perfopn 23105 iscn2 23158 iscnp2 23159 cncnpi 23198 cncnp2 23201 cnnei 23202 cnrest 23205 cnpresti 23208 cnprest 23209 cnprest2 23210 paste 23214 t1sep2 23289 sshauslem 23292 1stcelcls 23381 kgenuni 23459 iskgen3 23469 txuni 23512 ptuniconst 23518 txcnmpt 23544 txcn 23546 txindis 23554 ptrescn 23559 txcmpb 23564 xkoptsub 23574 xkofvcn 23604 imasnopn 23610 imasncld 23611 imasncls 23612 qtopcmplem 23627 qtopkgen 23630 hmeof1o 23684 hmeores 23691 hmphindis 23717 cmphaushmeo 23720 txhmeo 23723 ptunhmeo 23728 hausflim 23901 flfneii 23912 hausflf 23917 flimfnfcls 23948 flfcntr 23963 cnextfun 23984 cnextfvval 23985 cnextf 23986 cnextcn 23987 cnextfres1 23988 retopon 24684 evth 24891 evth2 24892 qtophaus 33819 rrhre 34004 pconnconn 35211 connpconn 35215 pconnpi1 35217 sconnpi1 35219 txsconnlem 35220 txsconn 35221 cvmsf1o 35252 cvmliftmolem1 35261 cvmliftlem8 35272 cvmlift2lem9a 35283 cvmlift2lem9 35291 cvmlift2lem11 35293 cvmlift2lem12 35294 cvmliftphtlem 35297 cvmlift3lem6 35304 cvmlift3lem8 35306 cvmlift3lem9 35307 cnres2 37750 cnresima 37751 hausgraph 43187 ntrf2 44106 fcnre 45012 |
| Copyright terms: Public domain | W3C validator |