| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toptopon | Structured version Visualization version GIF version | ||
| Description: Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| toptopon.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| toptopon | ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toptopon.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | istopon 22806 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
| 3 | 1, 2 | mpbiran2 710 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ Top) |
| 4 | 3 | bicomi 224 | 1 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∪ cuni 4874 ‘cfv 6514 Topctop 22787 TopOnctopon 22804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-topon 22805 |
| This theorem is referenced by: toptopon2 22812 eltpsi 22838 restuni 23056 stoig 23057 restlp 23077 restperf 23078 perfopn 23079 iscn2 23132 iscnp2 23133 cncnpi 23172 cncnp2 23175 cnnei 23176 cnrest 23179 cnpresti 23182 cnprest 23183 cnprest2 23184 paste 23188 t1sep2 23263 sshauslem 23266 1stcelcls 23355 kgenuni 23433 iskgen3 23443 txuni 23486 ptuniconst 23492 txcnmpt 23518 txcn 23520 txindis 23528 ptrescn 23533 txcmpb 23538 xkoptsub 23548 xkofvcn 23578 imasnopn 23584 imasncld 23585 imasncls 23586 qtopcmplem 23601 qtopkgen 23604 hmeof1o 23658 hmeores 23665 hmphindis 23691 cmphaushmeo 23694 txhmeo 23697 ptunhmeo 23702 hausflim 23875 flfneii 23886 hausflf 23891 flimfnfcls 23922 flfcntr 23937 cnextfun 23958 cnextfvval 23959 cnextf 23960 cnextcn 23961 cnextfres1 23962 retopon 24658 evth 24865 evth2 24866 qtophaus 33833 rrhre 34018 pconnconn 35225 connpconn 35229 pconnpi1 35231 sconnpi1 35233 txsconnlem 35234 txsconn 35235 cvmsf1o 35266 cvmliftmolem1 35275 cvmliftlem8 35286 cvmlift2lem9a 35297 cvmlift2lem9 35305 cvmlift2lem11 35307 cvmlift2lem12 35308 cvmliftphtlem 35311 cvmlift3lem6 35318 cvmlift3lem8 35320 cvmlift3lem9 35321 cnres2 37764 cnresima 37765 hausgraph 43201 ntrf2 44120 fcnre 45026 |
| Copyright terms: Public domain | W3C validator |