![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > toptopon | Structured version Visualization version GIF version |
Description: Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
toptopon.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
toptopon | ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toptopon.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | istopon 22933 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
3 | 1, 2 | mpbiran2 710 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ Top) |
4 | 3 | bicomi 224 | 1 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1536 ∈ wcel 2105 ∪ cuni 4911 ‘cfv 6562 Topctop 22914 TopOnctopon 22931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-iota 6515 df-fun 6564 df-fv 6570 df-topon 22932 |
This theorem is referenced by: toptopon2 22939 eltpsi 22966 restuni 23185 stoig 23186 restlp 23206 restperf 23207 perfopn 23208 iscn2 23261 iscnp2 23262 cncnpi 23301 cncnp2 23304 cnnei 23305 cnrest 23308 cnpresti 23311 cnprest 23312 cnprest2 23313 paste 23317 t1sep2 23392 sshauslem 23395 1stcelcls 23484 kgenuni 23562 iskgen3 23572 txuni 23615 ptuniconst 23621 txcnmpt 23647 txcn 23649 txindis 23657 ptrescn 23662 txcmpb 23667 xkoptsub 23677 xkofvcn 23707 imasnopn 23713 imasncld 23714 imasncls 23715 qtopcmplem 23730 qtopkgen 23733 hmeof1o 23787 hmeores 23794 hmphindis 23820 cmphaushmeo 23823 txhmeo 23826 ptunhmeo 23831 hausflim 24004 flfneii 24015 hausflf 24020 flimfnfcls 24051 flfcntr 24066 cnextfun 24087 cnextfvval 24088 cnextf 24089 cnextcn 24090 cnextfres1 24091 retopon 24799 evth 25004 evth2 25005 qtophaus 33796 rrhre 33983 pconnconn 35215 connpconn 35219 pconnpi1 35221 sconnpi1 35223 txsconnlem 35224 txsconn 35225 cvmsf1o 35256 cvmliftmolem1 35265 cvmliftlem8 35276 cvmlift2lem9a 35287 cvmlift2lem9 35295 cvmlift2lem11 35297 cvmlift2lem12 35298 cvmliftphtlem 35301 cvmlift3lem6 35308 cvmlift3lem8 35310 cvmlift3lem9 35311 cnres2 37749 cnresima 37750 hausgraph 43193 ntrf2 44113 fcnre 44962 |
Copyright terms: Public domain | W3C validator |