MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toptopon Structured version   Visualization version   GIF version

Theorem toptopon 21974
Description: Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
toptopon.1 𝑋 = 𝐽
Assertion
Ref Expression
toptopon (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))

Proof of Theorem toptopon
StepHypRef Expression
1 toptopon.1 . . 3 𝑋 = 𝐽
2 istopon 21969 . . 3 (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝐽))
31, 2mpbiran2 706 . 2 (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ Top)
43bicomi 223 1 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2108   cuni 4836  cfv 6418  Topctop 21950  TopOnctopon 21967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-topon 21968
This theorem is referenced by:  toptopon2  21975  eltpsi  22002  restuni  22221  stoig  22222  restlp  22242  restperf  22243  perfopn  22244  iscn2  22297  iscnp2  22298  cncnpi  22337  cncnp2  22340  cnnei  22341  cnrest  22344  cnpresti  22347  cnprest  22348  cnprest2  22349  paste  22353  t1sep2  22428  sshauslem  22431  1stcelcls  22520  kgenuni  22598  iskgen3  22608  txuni  22651  ptuniconst  22657  txcnmpt  22683  txcn  22685  txindis  22693  ptrescn  22698  txcmpb  22703  xkoptsub  22713  xkofvcn  22743  imasnopn  22749  imasncld  22750  imasncls  22751  qtopcmplem  22766  qtopkgen  22769  hmeof1o  22823  hmeores  22830  hmphindis  22856  cmphaushmeo  22859  txhmeo  22862  ptunhmeo  22867  hausflim  23040  flfneii  23051  hausflf  23056  flimfnfcls  23087  flfcntr  23102  cnextfun  23123  cnextfvval  23124  cnextf  23125  cnextcn  23126  cnextfres1  23127  retopon  23833  evth  24028  evth2  24029  qtophaus  31688  rrhre  31871  pconnconn  33093  connpconn  33097  pconnpi1  33099  sconnpi1  33101  txsconnlem  33102  txsconn  33103  cvxsconn  33105  cvmsf1o  33134  cvmliftmolem1  33143  cvmliftlem8  33154  cvmlift2lem9a  33165  cvmlift2lem9  33173  cvmlift2lem11  33175  cvmlift2lem12  33176  cvmliftphtlem  33179  cvmlift3lem6  33186  cvmlift3lem8  33188  cvmlift3lem9  33189  cnres2  35848  cnresima  35849  hausgraph  40953  ntrf2  41623  fcnre  42457
  Copyright terms: Public domain W3C validator