| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toptopon | Structured version Visualization version GIF version | ||
| Description: Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| toptopon.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| toptopon | ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toptopon.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | istopon 22775 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
| 3 | 1, 2 | mpbiran2 710 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ Top) |
| 4 | 3 | bicomi 224 | 1 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∪ cuni 4867 ‘cfv 6499 Topctop 22756 TopOnctopon 22773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-topon 22774 |
| This theorem is referenced by: toptopon2 22781 eltpsi 22807 restuni 23025 stoig 23026 restlp 23046 restperf 23047 perfopn 23048 iscn2 23101 iscnp2 23102 cncnpi 23141 cncnp2 23144 cnnei 23145 cnrest 23148 cnpresti 23151 cnprest 23152 cnprest2 23153 paste 23157 t1sep2 23232 sshauslem 23235 1stcelcls 23324 kgenuni 23402 iskgen3 23412 txuni 23455 ptuniconst 23461 txcnmpt 23487 txcn 23489 txindis 23497 ptrescn 23502 txcmpb 23507 xkoptsub 23517 xkofvcn 23547 imasnopn 23553 imasncld 23554 imasncls 23555 qtopcmplem 23570 qtopkgen 23573 hmeof1o 23627 hmeores 23634 hmphindis 23660 cmphaushmeo 23663 txhmeo 23666 ptunhmeo 23671 hausflim 23844 flfneii 23855 hausflf 23860 flimfnfcls 23891 flfcntr 23906 cnextfun 23927 cnextfvval 23928 cnextf 23929 cnextcn 23930 cnextfres1 23931 retopon 24627 evth 24834 evth2 24835 qtophaus 33799 rrhre 33984 pconnconn 35191 connpconn 35195 pconnpi1 35197 sconnpi1 35199 txsconnlem 35200 txsconn 35201 cvmsf1o 35232 cvmliftmolem1 35241 cvmliftlem8 35252 cvmlift2lem9a 35263 cvmlift2lem9 35271 cvmlift2lem11 35273 cvmlift2lem12 35274 cvmliftphtlem 35277 cvmlift3lem6 35284 cvmlift3lem8 35286 cvmlift3lem9 35287 cnres2 37730 cnresima 37731 hausgraph 43167 ntrf2 44086 fcnre 44992 |
| Copyright terms: Public domain | W3C validator |