![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneineine0 | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 29-May-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
Ref | Expression |
---|---|
ntrneineine0 | ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∃𝑠 ∈ 𝒫 𝐵𝑥 ∈ (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 (𝑁‘𝑥) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | . . 3 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | ntrnei.f | . . 3 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
3 | ntrnei.r | . . . 4 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐼𝐹𝑁) |
5 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
6 | 1, 2, 4, 5 | ntrneineine0lem 43323 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∃𝑠 ∈ 𝒫 𝐵𝑥 ∈ (𝐼‘𝑠) ↔ (𝑁‘𝑥) ≠ ∅)) |
7 | 6 | ralbidva 3167 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∃𝑠 ∈ 𝒫 𝐵𝑥 ∈ (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 (𝑁‘𝑥) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∀wral 3053 ∃wrex 3062 {crab 3424 Vcvv 3466 ∅c0 4314 𝒫 cpw 4594 class class class wbr 5138 ↦ cmpt 5221 ‘cfv 6533 (class class class)co 7401 ∈ cmpo 7403 ↑m cmap 8816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-map 8818 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |