|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneineine1 | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at not all subsets are (pseudo-)neighborboods hold equally. (Contributed by RP, 1-Jun-2021.) | 
| Ref | Expression | 
|---|---|
| ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | 
| ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | 
| ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) | 
| Ref | Expression | 
|---|---|
| ntrneineine1 | ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑥 ∈ (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 (𝑁‘𝑥) ≠ 𝒫 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ntrnei.o | . . 3 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
| 2 | ntrnei.f | . . 3 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
| 3 | ntrnei.r | . . . 4 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐼𝐹𝑁) | 
| 5 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 6 | 1, 2, 4, 5 | ntrneineine1lem 44097 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑥 ∈ (𝐼‘𝑠) ↔ (𝑁‘𝑥) ≠ 𝒫 𝐵)) | 
| 7 | 6 | ralbidva 3176 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑥 ∈ (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 (𝑁‘𝑥) ≠ 𝒫 𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 {crab 3436 Vcvv 3480 𝒫 cpw 4600 class class class wbr 5143 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 ↑m cmap 8866 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-map 8868 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |