Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneineine1 Structured version   Visualization version   GIF version

Theorem ntrneineine1 40626
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at not all subsets are (pseudo-)neighborboods hold equally. (Contributed by RP, 1-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneineine1 (𝜑 → (∀𝑥𝐵𝑠 ∈ 𝒫 𝐵 ¬ 𝑥 ∈ (𝐼𝑠) ↔ ∀𝑥𝐵 (𝑁𝑥) ≠ 𝒫 𝐵))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠   𝑘,𝐼,𝑙,𝑚   𝑁,𝑠   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠,𝑥   𝑥,𝑚
Allowed substitution hints:   𝜑(𝑚)   𝐵(𝑥)   𝐹(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑥,𝑖,𝑗,𝑠)   𝑁(𝑥,𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem ntrneineine1
StepHypRef Expression
1 ntrnei.o . . 3 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 ntrnei.f . . 3 𝐹 = (𝒫 𝐵𝑂𝐵)
3 ntrnei.r . . . 4 (𝜑𝐼𝐹𝑁)
43adantr 484 . . 3 ((𝜑𝑥𝐵) → 𝐼𝐹𝑁)
5 simpr 488 . . 3 ((𝜑𝑥𝐵) → 𝑥𝐵)
61, 2, 4, 5ntrneineine1lem 40622 . 2 ((𝜑𝑥𝐵) → (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑥 ∈ (𝐼𝑠) ↔ (𝑁𝑥) ≠ 𝒫 𝐵))
76ralbidva 3190 1 (𝜑 → (∀𝑥𝐵𝑠 ∈ 𝒫 𝐵 ¬ 𝑥 ∈ (𝐼𝑠) ↔ ∀𝑥𝐵 (𝑁𝑥) ≠ 𝒫 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wne 3013  wral 3132  wrex 3133  {crab 3136  Vcvv 3479  𝒫 cpw 4520   class class class wbr 5047  cmpt 5127  cfv 6336  (class class class)co 7138  cmpo 7140  m cmap 8389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-ov 7141  df-oprab 7142  df-mpo 7143  df-1st 7672  df-2nd 7673  df-map 8391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator