| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneineine0lem | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 29-May-2021.) |
| Ref | Expression |
|---|---|
| ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
| ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
| ntrnei.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ntrneineine0lem | ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ (𝑁‘𝑋) ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrnei.o | . . . 4 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
| 2 | ntrnei.f | . . . 4 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
| 3 | ntrnei.r | . . . . 5 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐼𝐹𝑁) |
| 5 | ntrnei.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑋 ∈ 𝐵) |
| 7 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) | |
| 8 | 1, 2, 4, 6, 7 | ntrneiel 44070 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑋 ∈ (𝐼‘𝑠) ↔ 𝑠 ∈ (𝑁‘𝑋))) |
| 9 | 8 | rexbidva 3155 | . 2 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁‘𝑋))) |
| 10 | 1, 2, 3 | ntrneinex 44066 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) |
| 11 | elmapi 8822 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵) → 𝑁:𝐵⟶𝒫 𝒫 𝐵) | |
| 12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁:𝐵⟶𝒫 𝒫 𝐵) |
| 13 | 12, 5 | ffvelcdmd 7057 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝒫 𝒫 𝐵) |
| 14 | 13 | elpwid 4572 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘𝑋) ⊆ 𝒫 𝐵) |
| 15 | 14 | sseld 3945 | . . . . . 6 ⊢ (𝜑 → (𝑠 ∈ (𝑁‘𝑋) → 𝑠 ∈ 𝒫 𝐵)) |
| 16 | 15 | pm4.71rd 562 | . . . . 5 ⊢ (𝜑 → (𝑠 ∈ (𝑁‘𝑋) ↔ (𝑠 ∈ 𝒫 𝐵 ∧ 𝑠 ∈ (𝑁‘𝑋)))) |
| 17 | 16 | exbidv 1921 | . . . 4 ⊢ (𝜑 → (∃𝑠 𝑠 ∈ (𝑁‘𝑋) ↔ ∃𝑠(𝑠 ∈ 𝒫 𝐵 ∧ 𝑠 ∈ (𝑁‘𝑋)))) |
| 18 | 17 | bicomd 223 | . . 3 ⊢ (𝜑 → (∃𝑠(𝑠 ∈ 𝒫 𝐵 ∧ 𝑠 ∈ (𝑁‘𝑋)) ↔ ∃𝑠 𝑠 ∈ (𝑁‘𝑋))) |
| 19 | df-rex 3054 | . . 3 ⊢ (∃𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁‘𝑋) ↔ ∃𝑠(𝑠 ∈ 𝒫 𝐵 ∧ 𝑠 ∈ (𝑁‘𝑋))) | |
| 20 | n0 4316 | . . 3 ⊢ ((𝑁‘𝑋) ≠ ∅ ↔ ∃𝑠 𝑠 ∈ (𝑁‘𝑋)) | |
| 21 | 18, 19, 20 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁‘𝑋) ↔ (𝑁‘𝑋) ≠ ∅)) |
| 22 | 9, 21 | bitrd 279 | 1 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ (𝑁‘𝑋) ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3405 Vcvv 3447 ∅c0 4296 𝒫 cpw 4563 class class class wbr 5107 ↦ cmpt 5188 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ↑m cmap 8799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 |
| This theorem is referenced by: ntrneineine0 44076 |
| Copyright terms: Public domain | W3C validator |