Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneineine0lem | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 29-May-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
ntrnei.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
ntrneineine0lem | ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ (𝑁‘𝑋) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | . . . 4 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | ntrnei.f | . . . 4 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
3 | ntrnei.r | . . . . 5 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐼𝐹𝑁) |
5 | ntrnei.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑋 ∈ 𝐵) |
7 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) | |
8 | 1, 2, 4, 6, 7 | ntrneiel 41580 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑋 ∈ (𝐼‘𝑠) ↔ 𝑠 ∈ (𝑁‘𝑋))) |
9 | 8 | rexbidva 3224 | . 2 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁‘𝑋))) |
10 | 1, 2, 3 | ntrneinex 41576 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) |
11 | elmapi 8595 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵) → 𝑁:𝐵⟶𝒫 𝒫 𝐵) | |
12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁:𝐵⟶𝒫 𝒫 𝐵) |
13 | 12, 5 | ffvelrnd 6944 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝒫 𝒫 𝐵) |
14 | 13 | elpwid 4541 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘𝑋) ⊆ 𝒫 𝐵) |
15 | 14 | sseld 3916 | . . . . . 6 ⊢ (𝜑 → (𝑠 ∈ (𝑁‘𝑋) → 𝑠 ∈ 𝒫 𝐵)) |
16 | 15 | pm4.71rd 562 | . . . . 5 ⊢ (𝜑 → (𝑠 ∈ (𝑁‘𝑋) ↔ (𝑠 ∈ 𝒫 𝐵 ∧ 𝑠 ∈ (𝑁‘𝑋)))) |
17 | 16 | exbidv 1925 | . . . 4 ⊢ (𝜑 → (∃𝑠 𝑠 ∈ (𝑁‘𝑋) ↔ ∃𝑠(𝑠 ∈ 𝒫 𝐵 ∧ 𝑠 ∈ (𝑁‘𝑋)))) |
18 | 17 | bicomd 222 | . . 3 ⊢ (𝜑 → (∃𝑠(𝑠 ∈ 𝒫 𝐵 ∧ 𝑠 ∈ (𝑁‘𝑋)) ↔ ∃𝑠 𝑠 ∈ (𝑁‘𝑋))) |
19 | df-rex 3069 | . . 3 ⊢ (∃𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁‘𝑋) ↔ ∃𝑠(𝑠 ∈ 𝒫 𝐵 ∧ 𝑠 ∈ (𝑁‘𝑋))) | |
20 | n0 4277 | . . 3 ⊢ ((𝑁‘𝑋) ≠ ∅ ↔ ∃𝑠 𝑠 ∈ (𝑁‘𝑋)) | |
21 | 18, 19, 20 | 3bitr4g 313 | . 2 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁‘𝑋) ↔ (𝑁‘𝑋) ≠ ∅)) |
22 | 9, 21 | bitrd 278 | 1 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ (𝑁‘𝑋) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 {crab 3067 Vcvv 3422 ∅c0 4253 𝒫 cpw 4530 class class class wbr 5070 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ↑m cmap 8573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-map 8575 |
This theorem is referenced by: ntrneineine0 41586 |
Copyright terms: Public domain | W3C validator |