Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneineine0lem Structured version   Visualization version   GIF version

Theorem ntrneineine0lem 44045
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 29-May-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
ntrnei.x (𝜑𝑋𝐵)
Assertion
Ref Expression
ntrneineine0lem (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠) ↔ (𝑁𝑋) ≠ ∅))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝑘,𝐼,𝑙,𝑚   𝑁,𝑠   𝑋,𝑙,𝑚,𝑠   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠
Allowed substitution hints:   𝜑(𝑚)   𝐵(𝑠)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑖,𝑗,𝑠)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑋(𝑖,𝑗,𝑘)

Proof of Theorem ntrneineine0lem
StepHypRef Expression
1 ntrnei.o . . . 4 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 ntrnei.f . . . 4 𝐹 = (𝒫 𝐵𝑂𝐵)
3 ntrnei.r . . . . 5 (𝜑𝐼𝐹𝑁)
43adantr 480 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐼𝐹𝑁)
5 ntrnei.x . . . . 5 (𝜑𝑋𝐵)
65adantr 480 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑋𝐵)
7 simpr 484 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
81, 2, 4, 6, 7ntrneiel 44043 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑋 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑋)))
98rexbidva 3183 . 2 (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁𝑋)))
101, 2, 3ntrneinex 44039 . . . . . . . . . 10 (𝜑𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵))
11 elmapi 8907 . . . . . . . . . 10 (𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵) → 𝑁:𝐵⟶𝒫 𝒫 𝐵)
1210, 11syl 17 . . . . . . . . 9 (𝜑𝑁:𝐵⟶𝒫 𝒫 𝐵)
1312, 5ffvelcdmd 7119 . . . . . . . 8 (𝜑 → (𝑁𝑋) ∈ 𝒫 𝒫 𝐵)
1413elpwid 4631 . . . . . . 7 (𝜑 → (𝑁𝑋) ⊆ 𝒫 𝐵)
1514sseld 4007 . . . . . 6 (𝜑 → (𝑠 ∈ (𝑁𝑋) → 𝑠 ∈ 𝒫 𝐵))
1615pm4.71rd 562 . . . . 5 (𝜑 → (𝑠 ∈ (𝑁𝑋) ↔ (𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁𝑋))))
1716exbidv 1920 . . . 4 (𝜑 → (∃𝑠 𝑠 ∈ (𝑁𝑋) ↔ ∃𝑠(𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁𝑋))))
1817bicomd 223 . . 3 (𝜑 → (∃𝑠(𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁𝑋)) ↔ ∃𝑠 𝑠 ∈ (𝑁𝑋)))
19 df-rex 3077 . . 3 (∃𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁𝑋) ↔ ∃𝑠(𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁𝑋)))
20 n0 4376 . . 3 ((𝑁𝑋) ≠ ∅ ↔ ∃𝑠 𝑠 ∈ (𝑁𝑋))
2118, 19, 203bitr4g 314 . 2 (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁𝑋) ↔ (𝑁𝑋) ≠ ∅))
229, 21bitrd 279 1 (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠) ↔ (𝑁𝑋) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wrex 3076  {crab 3443  Vcvv 3488  c0 4352  𝒫 cpw 4622   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  m cmap 8884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886
This theorem is referenced by:  ntrneineine0  44049
  Copyright terms: Public domain W3C validator