![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneineine0lem | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, πΉ, then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 29-May-2021.) |
Ref | Expression |
---|---|
ntrnei.o | β’ π = (π β V, π β V β¦ (π β (π« π βm π) β¦ (π β π β¦ {π β π β£ π β (πβπ)}))) |
ntrnei.f | β’ πΉ = (π« π΅ππ΅) |
ntrnei.r | β’ (π β πΌπΉπ) |
ntrnei.x | β’ (π β π β π΅) |
Ref | Expression |
---|---|
ntrneineine0lem | β’ (π β (βπ β π« π΅π β (πΌβπ ) β (πβπ) β β )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | . . . 4 β’ π = (π β V, π β V β¦ (π β (π« π βm π) β¦ (π β π β¦ {π β π β£ π β (πβπ)}))) | |
2 | ntrnei.f | . . . 4 β’ πΉ = (π« π΅ππ΅) | |
3 | ntrnei.r | . . . . 5 β’ (π β πΌπΉπ) | |
4 | 3 | adantr 480 | . . . 4 β’ ((π β§ π β π« π΅) β πΌπΉπ) |
5 | ntrnei.x | . . . . 5 β’ (π β π β π΅) | |
6 | 5 | adantr 480 | . . . 4 β’ ((π β§ π β π« π΅) β π β π΅) |
7 | simpr 484 | . . . 4 β’ ((π β§ π β π« π΅) β π β π« π΅) | |
8 | 1, 2, 4, 6, 7 | ntrneiel 43321 | . . 3 β’ ((π β§ π β π« π΅) β (π β (πΌβπ ) β π β (πβπ))) |
9 | 8 | rexbidva 3168 | . 2 β’ (π β (βπ β π« π΅π β (πΌβπ ) β βπ β π« π΅π β (πβπ))) |
10 | 1, 2, 3 | ntrneinex 43317 | . . . . . . . . . 10 β’ (π β π β (π« π« π΅ βm π΅)) |
11 | elmapi 8839 | . . . . . . . . . 10 β’ (π β (π« π« π΅ βm π΅) β π:π΅βΆπ« π« π΅) | |
12 | 10, 11 | syl 17 | . . . . . . . . 9 β’ (π β π:π΅βΆπ« π« π΅) |
13 | 12, 5 | ffvelcdmd 7077 | . . . . . . . 8 β’ (π β (πβπ) β π« π« π΅) |
14 | 13 | elpwid 4603 | . . . . . . 7 β’ (π β (πβπ) β π« π΅) |
15 | 14 | sseld 3973 | . . . . . 6 β’ (π β (π β (πβπ) β π β π« π΅)) |
16 | 15 | pm4.71rd 562 | . . . . 5 β’ (π β (π β (πβπ) β (π β π« π΅ β§ π β (πβπ)))) |
17 | 16 | exbidv 1916 | . . . 4 β’ (π β (βπ π β (πβπ) β βπ (π β π« π΅ β§ π β (πβπ)))) |
18 | 17 | bicomd 222 | . . 3 β’ (π β (βπ (π β π« π΅ β§ π β (πβπ)) β βπ π β (πβπ))) |
19 | df-rex 3063 | . . 3 β’ (βπ β π« π΅π β (πβπ) β βπ (π β π« π΅ β§ π β (πβπ))) | |
20 | n0 4338 | . . 3 β’ ((πβπ) β β β βπ π β (πβπ)) | |
21 | 18, 19, 20 | 3bitr4g 314 | . 2 β’ (π β (βπ β π« π΅π β (πβπ) β (πβπ) β β )) |
22 | 9, 21 | bitrd 279 | 1 β’ (π β (βπ β π« π΅π β (πΌβπ ) β (πβπ) β β )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 βwex 1773 β wcel 2098 β wne 2932 βwrex 3062 {crab 3424 Vcvv 3466 β c0 4314 π« cpw 4594 class class class wbr 5138 β¦ cmpt 5221 βΆwf 6529 βcfv 6533 (class class class)co 7401 β cmpo 7403 βm cmap 8816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-map 8818 |
This theorem is referenced by: ntrneineine0 43327 |
Copyright terms: Public domain | W3C validator |