![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneineine0lem | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 29-May-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
ntrnei.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
ntrneineine0lem | ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ (𝑁‘𝑋) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | . . . 4 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | ntrnei.f | . . . 4 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
3 | ntrnei.r | . . . . 5 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
4 | 3 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐼𝐹𝑁) |
5 | ntrnei.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | 5 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑋 ∈ 𝐵) |
7 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) | |
8 | 1, 2, 4, 6, 7 | ntrneiel 42295 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑋 ∈ (𝐼‘𝑠) ↔ 𝑠 ∈ (𝑁‘𝑋))) |
9 | 8 | rexbidva 3171 | . 2 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁‘𝑋))) |
10 | 1, 2, 3 | ntrneinex 42291 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) |
11 | elmapi 8783 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵) → 𝑁:𝐵⟶𝒫 𝒫 𝐵) | |
12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁:𝐵⟶𝒫 𝒫 𝐵) |
13 | 12, 5 | ffvelcdmd 7032 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝒫 𝒫 𝐵) |
14 | 13 | elpwid 4567 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘𝑋) ⊆ 𝒫 𝐵) |
15 | 14 | sseld 3941 | . . . . . 6 ⊢ (𝜑 → (𝑠 ∈ (𝑁‘𝑋) → 𝑠 ∈ 𝒫 𝐵)) |
16 | 15 | pm4.71rd 563 | . . . . 5 ⊢ (𝜑 → (𝑠 ∈ (𝑁‘𝑋) ↔ (𝑠 ∈ 𝒫 𝐵 ∧ 𝑠 ∈ (𝑁‘𝑋)))) |
17 | 16 | exbidv 1924 | . . . 4 ⊢ (𝜑 → (∃𝑠 𝑠 ∈ (𝑁‘𝑋) ↔ ∃𝑠(𝑠 ∈ 𝒫 𝐵 ∧ 𝑠 ∈ (𝑁‘𝑋)))) |
18 | 17 | bicomd 222 | . . 3 ⊢ (𝜑 → (∃𝑠(𝑠 ∈ 𝒫 𝐵 ∧ 𝑠 ∈ (𝑁‘𝑋)) ↔ ∃𝑠 𝑠 ∈ (𝑁‘𝑋))) |
19 | df-rex 3072 | . . 3 ⊢ (∃𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁‘𝑋) ↔ ∃𝑠(𝑠 ∈ 𝒫 𝐵 ∧ 𝑠 ∈ (𝑁‘𝑋))) | |
20 | n0 4304 | . . 3 ⊢ ((𝑁‘𝑋) ≠ ∅ ↔ ∃𝑠 𝑠 ∈ (𝑁‘𝑋)) | |
21 | 18, 19, 20 | 3bitr4g 313 | . 2 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁‘𝑋) ↔ (𝑁‘𝑋) ≠ ∅)) |
22 | 9, 21 | bitrd 278 | 1 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ (𝑁‘𝑋) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ≠ wne 2941 ∃wrex 3071 {crab 3405 Vcvv 3443 ∅c0 4280 𝒫 cpw 4558 class class class wbr 5103 ↦ cmpt 5186 ⟶wf 6489 ‘cfv 6493 (class class class)co 7353 ∈ cmpo 7355 ↑m cmap 8761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7668 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-id 5529 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7917 df-2nd 7918 df-map 8763 |
This theorem is referenced by: ntrneineine0 42301 |
Copyright terms: Public domain | W3C validator |