Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneineine0lem Structured version   Visualization version   GIF version

Theorem ntrneineine0lem 41582
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 29-May-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
ntrnei.x (𝜑𝑋𝐵)
Assertion
Ref Expression
ntrneineine0lem (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠) ↔ (𝑁𝑋) ≠ ∅))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝑘,𝐼,𝑙,𝑚   𝑁,𝑠   𝑋,𝑙,𝑚,𝑠   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠
Allowed substitution hints:   𝜑(𝑚)   𝐵(𝑠)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑖,𝑗,𝑠)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑋(𝑖,𝑗,𝑘)

Proof of Theorem ntrneineine0lem
StepHypRef Expression
1 ntrnei.o . . . 4 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 ntrnei.f . . . 4 𝐹 = (𝒫 𝐵𝑂𝐵)
3 ntrnei.r . . . . 5 (𝜑𝐼𝐹𝑁)
43adantr 480 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐼𝐹𝑁)
5 ntrnei.x . . . . 5 (𝜑𝑋𝐵)
65adantr 480 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑋𝐵)
7 simpr 484 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
81, 2, 4, 6, 7ntrneiel 41580 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑋 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑋)))
98rexbidva 3224 . 2 (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁𝑋)))
101, 2, 3ntrneinex 41576 . . . . . . . . . 10 (𝜑𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵))
11 elmapi 8595 . . . . . . . . . 10 (𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵) → 𝑁:𝐵⟶𝒫 𝒫 𝐵)
1210, 11syl 17 . . . . . . . . 9 (𝜑𝑁:𝐵⟶𝒫 𝒫 𝐵)
1312, 5ffvelrnd 6944 . . . . . . . 8 (𝜑 → (𝑁𝑋) ∈ 𝒫 𝒫 𝐵)
1413elpwid 4541 . . . . . . 7 (𝜑 → (𝑁𝑋) ⊆ 𝒫 𝐵)
1514sseld 3916 . . . . . 6 (𝜑 → (𝑠 ∈ (𝑁𝑋) → 𝑠 ∈ 𝒫 𝐵))
1615pm4.71rd 562 . . . . 5 (𝜑 → (𝑠 ∈ (𝑁𝑋) ↔ (𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁𝑋))))
1716exbidv 1925 . . . 4 (𝜑 → (∃𝑠 𝑠 ∈ (𝑁𝑋) ↔ ∃𝑠(𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁𝑋))))
1817bicomd 222 . . 3 (𝜑 → (∃𝑠(𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁𝑋)) ↔ ∃𝑠 𝑠 ∈ (𝑁𝑋)))
19 df-rex 3069 . . 3 (∃𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁𝑋) ↔ ∃𝑠(𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁𝑋)))
20 n0 4277 . . 3 ((𝑁𝑋) ≠ ∅ ↔ ∃𝑠 𝑠 ∈ (𝑁𝑋))
2118, 19, 203bitr4g 313 . 2 (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑠 ∈ (𝑁𝑋) ↔ (𝑁𝑋) ≠ ∅))
229, 21bitrd 278 1 (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠) ↔ (𝑁𝑋) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  wrex 3064  {crab 3067  Vcvv 3422  c0 4253  𝒫 cpw 4530   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  m cmap 8573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575
This theorem is referenced by:  ntrneineine0  41586
  Copyright terms: Public domain W3C validator