MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1cxp Structured version   Visualization version   GIF version

Theorem o1cxp 27018
Description: An eventually bounded function taken to a nonnegative power is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
o1cxp.1 (𝜑𝐶 ∈ ℂ)
o1cxp.2 (𝜑 → 0 ≤ (ℜ‘𝐶))
o1cxp.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
o1cxp.4 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
Assertion
Ref Expression
o1cxp (𝜑 → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem o1cxp
Dummy variables 𝑚 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1cxp.4 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
2 o1f 15565 . . . . 5 ((𝑥𝐴𝐵) ∈ 𝑂(1) → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ)
31, 2syl 17 . . . 4 (𝜑 → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ)
4 o1cxp.3 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
54ralrimiva 3146 . . . . . 6 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
6 dmmptg 6262 . . . . . 6 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
75, 6syl 17 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
87feq2d 6722 . . . 4 (𝜑 → ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ ↔ (𝑥𝐴𝐵):𝐴⟶ℂ))
93, 8mpbid 232 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℂ)
10 o1bdd 15567 . . 3 (((𝑥𝐴𝐵) ∈ 𝑂(1) ∧ (𝑥𝐴𝐵):𝐴⟶ℂ) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚))
111, 9, 10syl2anc 584 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚))
12 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → 𝑥𝐴)
13 eqid 2737 . . . . . . . . . . . . . . . . 17 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1413fvmpt2 7027 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1512, 4, 14syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1615oveq1d 7446 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = (𝐵𝑐𝐶))
17 ovex 7464 . . . . . . . . . . . . . . 15 (𝐵𝑐𝐶) ∈ V
18 eqid 2737 . . . . . . . . . . . . . . . 16 (𝑥𝐴 ↦ (𝐵𝑐𝐶)) = (𝑥𝐴 ↦ (𝐵𝑐𝐶))
1918fvmpt2 7027 . . . . . . . . . . . . . . 15 ((𝑥𝐴 ∧ (𝐵𝑐𝐶) ∈ V) → ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) = (𝐵𝑐𝐶))
2012, 17, 19sylancl 586 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) = (𝐵𝑐𝐶))
2116, 20eqtr4d 2780 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥))
2221ralrimiva 3146 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐴 (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥))
23 nfv 1914 . . . . . . . . . . . . 13 𝑧(((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥)
24 nffvmpt1 6917 . . . . . . . . . . . . . . 15 𝑥((𝑥𝐴𝐵)‘𝑧)
25 nfcv 2905 . . . . . . . . . . . . . . 15 𝑥𝑐
26 nfcv 2905 . . . . . . . . . . . . . . 15 𝑥𝐶
2724, 25, 26nfov 7461 . . . . . . . . . . . . . 14 𝑥(((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶)
28 nffvmpt1 6917 . . . . . . . . . . . . . 14 𝑥((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)
2927, 28nfeq 2919 . . . . . . . . . . . . 13 𝑥(((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)
30 fveq2 6906 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝑥𝐴𝐵)‘𝑥) = ((𝑥𝐴𝐵)‘𝑧))
3130oveq1d 7446 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶))
32 fveq2 6906 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3331, 32eqeq12d 2753 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) ↔ (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)))
3423, 29, 33cbvralw 3306 . . . . . . . . . . . 12 (∀𝑥𝐴 (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) ↔ ∀𝑧𝐴 (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3522, 34sylib 218 . . . . . . . . . . 11 (𝜑 → ∀𝑧𝐴 (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3635r19.21bi 3251 . . . . . . . . . 10 ((𝜑𝑧𝐴) → (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3736ad2ant2r 747 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3837fveq2d 6910 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘(((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶)) = (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)))
399ffvelcdmda 7104 . . . . . . . . . 10 ((𝜑𝑧𝐴) → ((𝑥𝐴𝐵)‘𝑧) ∈ ℂ)
4039ad2ant2r 747 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → ((𝑥𝐴𝐵)‘𝑧) ∈ ℂ)
41 o1cxp.1 . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
4241ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → 𝐶 ∈ ℂ)
43 o1cxp.2 . . . . . . . . . 10 (𝜑 → 0 ≤ (ℜ‘𝐶))
4443ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → 0 ≤ (ℜ‘𝐶))
45 simprr 773 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑚 ∈ ℝ)
46 0re 11263 . . . . . . . . . . 11 0 ∈ ℝ
47 ifcl 4571 . . . . . . . . . . 11 ((𝑚 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝑚, 𝑚, 0) ∈ ℝ)
4845, 46, 47sylancl 586 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → if(0 ≤ 𝑚, 𝑚, 0) ∈ ℝ)
4948adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → if(0 ≤ 𝑚, 𝑚, 0) ∈ ℝ)
5040abscld 15475 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥𝐴𝐵)‘𝑧)) ∈ ℝ)
5145adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → 𝑚 ∈ ℝ)
52 simprr 773 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)
53 max2 13229 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝑚 ∈ ℝ) → 𝑚 ≤ if(0 ≤ 𝑚, 𝑚, 0))
5446, 45, 53sylancr 587 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑚 ≤ if(0 ≤ 𝑚, 𝑚, 0))
5554adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → 𝑚 ≤ if(0 ≤ 𝑚, 𝑚, 0))
5650, 51, 49, 52, 55letrd 11418 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ if(0 ≤ 𝑚, 𝑚, 0))
5740, 42, 44, 49, 56abscxpbnd 26796 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘(((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))
5838, 57eqbrtrrd 5167 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))
5958expr 456 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑧𝐴) → ((abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π)))))
6059imim2d 57 . . . . 5 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑧𝐴) → ((𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚) → (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))))
6160ralimdva 3167 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚) → ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))))
624, 1o1mptrcl 15659 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
6341adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
6462, 63cxpcld 26750 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐵𝑐𝐶) ∈ ℂ)
6564fmpttd 7135 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝐵𝑐𝐶)):𝐴⟶ℂ)
6665adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)):𝐴⟶ℂ)
67 o1dm 15566 . . . . . . . 8 ((𝑥𝐴𝐵) ∈ 𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
681, 67syl 17 . . . . . . 7 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
697, 68eqsstrrd 4019 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
7069adantr 480 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐴 ⊆ ℝ)
71 simprl 771 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑦 ∈ ℝ)
72 max1 13227 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑚 ∈ ℝ) → 0 ≤ if(0 ≤ 𝑚, 𝑚, 0))
7346, 45, 72sylancr 587 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 0 ≤ if(0 ≤ 𝑚, 𝑚, 0))
7441adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐶 ∈ ℂ)
7574recld 15233 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (ℜ‘𝐶) ∈ ℝ)
7648, 73, 75recxpcld 26765 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) ∈ ℝ)
7774abscld 15475 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (abs‘𝐶) ∈ ℝ)
78 pire 26500 . . . . . . . 8 π ∈ ℝ
79 remulcl 11240 . . . . . . . 8 (((abs‘𝐶) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘𝐶) · π) ∈ ℝ)
8077, 78, 79sylancl 586 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ((abs‘𝐶) · π) ∈ ℝ)
8180reefcld 16124 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (exp‘((abs‘𝐶) · π)) ∈ ℝ)
8276, 81remulcld 11291 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))) ∈ ℝ)
83 elo12r 15564 . . . . . 6 ((((𝑥𝐴 ↦ (𝐵𝑐𝐶)):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝑦 ∈ ℝ ∧ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))) ∈ ℝ) ∧ ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1))
84833expia 1122 . . . . 5 ((((𝑥𝐴 ↦ (𝐵𝑐𝐶)):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝑦 ∈ ℝ ∧ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))) ∈ ℝ)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π)))) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1)))
8566, 70, 71, 82, 84syl22anc 839 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π)))) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1)))
8661, 85syld 47 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1)))
8786rexlimdvva 3213 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1)))
8811, 87mpd 15 1 (𝜑 → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  wss 3951  ifcif 4525   class class class wbr 5143  cmpt 5225  dom cdm 5685  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155   · cmul 11160  cle 11296  cre 15136  abscabs 15273  𝑂(1)co1 15522  expce 16097  πcpi 16102  𝑐ccxp 26597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-o1 15526  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-cxp 26599
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator