Step | Hyp | Ref
| Expression |
1 | | o1cxp.4 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) |
2 | | o1f 15238 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) → (𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℂ) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℂ) |
4 | | o1cxp.3 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
5 | 4 | ralrimiva 3103 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) |
6 | | dmmptg 6145 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
7 | 5, 6 | syl 17 |
. . . . 5
⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
8 | 7 | feq2d 6586 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℂ ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ)) |
9 | 3, 8 | mpbid 231 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
10 | | o1bdd 15240 |
. . 3
⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ∧ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) |
11 | 1, 9, 10 | syl2anc 584 |
. 2
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) |
12 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
13 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
14 | 13 | fvmpt2 6886 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
15 | 12, 4, 14 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
16 | 15 | oveq1d 7290 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)↑𝑐𝐶) = (𝐵↑𝑐𝐶)) |
17 | | ovex 7308 |
. . . . . . . . . . . . . . 15
⊢ (𝐵↑𝑐𝐶) ∈ V |
18 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)) |
19 | 18 | fvmpt2 6886 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝐴 ∧ (𝐵↑𝑐𝐶) ∈ V) → ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑥) = (𝐵↑𝑐𝐶)) |
20 | 12, 17, 19 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑥) = (𝐵↑𝑐𝐶)) |
21 | 16, 20 | eqtr4d 2781 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑥)) |
22 | 21 | ralrimiva 3103 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑥)) |
23 | | nfv 1917 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑥) |
24 | | nffvmpt1 6785 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) |
25 | | nfcv 2907 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥↑𝑐 |
26 | | nfcv 2907 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥𝐶 |
27 | 24, 25, 26 | nfov 7305 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)↑𝑐𝐶) |
28 | | nffvmpt1 6785 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧) |
29 | 27, 28 | nfeq 2920 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧) |
30 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) |
31 | 30 | oveq1d 7290 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)↑𝑐𝐶) = (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)↑𝑐𝐶)) |
32 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑥) = ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧)) |
33 | 31, 32 | eqeq12d 2754 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → ((((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑥) ↔ (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧))) |
34 | 23, 29, 33 | cbvralw 3373 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝐴 (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑥) ↔ ∀𝑧 ∈ 𝐴 (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧)) |
35 | 22, 34 | sylib 217 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑧 ∈ 𝐴 (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧)) |
36 | 35 | r19.21bi 3134 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧)) |
37 | 36 | ad2ant2r 744 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧)) |
38 | 37 | fveq2d 6778 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)↑𝑐𝐶)) = (abs‘((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧))) |
39 | 9 | ffvelrnda 6961 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ∈ ℂ) |
40 | 39 | ad2ant2r 744 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ∈ ℂ) |
41 | | o1cxp.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ ℂ) |
42 | 41 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → 𝐶 ∈ ℂ) |
43 | | o1cxp.2 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ (ℜ‘𝐶)) |
44 | 43 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → 0 ≤ (ℜ‘𝐶)) |
45 | | simprr 770 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑚 ∈ ℝ) |
46 | | 0re 10977 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
47 | | ifcl 4504 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ 𝑚, 𝑚, 0) ∈ ℝ) |
48 | 45, 46, 47 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → if(0 ≤ 𝑚, 𝑚, 0) ∈ ℝ) |
49 | 48 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → if(0 ≤ 𝑚, 𝑚, 0) ∈ ℝ) |
50 | 40 | abscld 15148 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ∈ ℝ) |
51 | 45 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → 𝑚 ∈ ℝ) |
52 | | simprr 770 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚) |
53 | | max2 12921 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ 𝑚
∈ ℝ) → 𝑚
≤ if(0 ≤ 𝑚, 𝑚, 0)) |
54 | 46, 45, 53 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑚 ≤ if(0 ≤ 𝑚, 𝑚, 0)) |
55 | 54 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → 𝑚 ≤ if(0 ≤ 𝑚, 𝑚, 0)) |
56 | 50, 51, 49, 52, 55 | letrd 11132 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ if(0 ≤ 𝑚, 𝑚, 0)) |
57 | 40, 42, 44, 49, 56 | abscxpbnd 25906 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)↑𝑐𝐶)) ≤ ((if(0 ≤ 𝑚, 𝑚,
0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) ·
π)))) |
58 | 38, 57 | eqbrtrrd 5098 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚,
0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) ·
π)))) |
59 | 58 | expr 457 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑧 ∈ 𝐴) → ((abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚 → (abs‘((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚,
0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) ·
π))))) |
60 | 59 | imim2d 57 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑧 ∈ 𝐴) → ((𝑦 ≤ 𝑧 → (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚) → (𝑦 ≤ 𝑧 → (abs‘((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚,
0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) ·
π)))))) |
61 | 60 | ralimdva 3108 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚) → ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚,
0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) ·
π)))))) |
62 | 4, 1 | o1mptrcl 15332 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
63 | 41 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
64 | 62, 63 | cxpcld 25863 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵↑𝑐𝐶) ∈ ℂ) |
65 | 64 | fmpttd 6989 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)):𝐴⟶ℂ) |
66 | 65 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)):𝐴⟶ℂ) |
67 | | o1dm 15239 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
68 | 1, 67 | syl 17 |
. . . . . . 7
⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
69 | 7, 68 | eqsstrrd 3960 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
70 | 69 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐴 ⊆ ℝ) |
71 | | simprl 768 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑦 ∈ ℝ) |
72 | | max1 12919 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ 𝑚
∈ ℝ) → 0 ≤ if(0 ≤ 𝑚, 𝑚, 0)) |
73 | 46, 45, 72 | sylancr 587 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 0 ≤ if(0 ≤
𝑚, 𝑚, 0)) |
74 | 41 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐶 ∈ ℂ) |
75 | 74 | recld 14905 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (ℜ‘𝐶) ∈
ℝ) |
76 | 48, 73, 75 | recxpcld 25878 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (if(0 ≤ 𝑚, 𝑚,
0)↑𝑐(ℜ‘𝐶)) ∈ ℝ) |
77 | 74 | abscld 15148 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (abs‘𝐶) ∈
ℝ) |
78 | | pire 25615 |
. . . . . . . 8
⊢ π
∈ ℝ |
79 | | remulcl 10956 |
. . . . . . . 8
⊢
(((abs‘𝐶)
∈ ℝ ∧ π ∈ ℝ) → ((abs‘𝐶) · π) ∈
ℝ) |
80 | 77, 78, 79 | sylancl 586 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ((abs‘𝐶) · π) ∈
ℝ) |
81 | 80 | reefcld 15797 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) →
(exp‘((abs‘𝐶)
· π)) ∈ ℝ) |
82 | 76, 81 | remulcld 11005 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ((if(0 ≤ 𝑚, 𝑚,
0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))) ∈
ℝ) |
83 | | elo12r 15237 |
. . . . . 6
⊢ ((((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝑦 ∈ ℝ ∧ ((if(0 ≤ 𝑚, 𝑚,
0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))) ∈
ℝ) ∧ ∀𝑧
∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚,
0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))) →
(𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)) ∈ 𝑂(1)) |
84 | 83 | 3expia 1120 |
. . . . 5
⊢ ((((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝑦 ∈ ℝ ∧ ((if(0 ≤ 𝑚, 𝑚,
0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))) ∈
ℝ)) → (∀𝑧
∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚,
0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π)))) →
(𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)) ∈ 𝑂(1))) |
85 | 66, 70, 71, 82, 84 | syl22anc 836 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚,
0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π)))) →
(𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)) ∈ 𝑂(1))) |
86 | 61, 85 | syld 47 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚) → (𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)) ∈ 𝑂(1))) |
87 | 86 | rexlimdvva 3223 |
. 2
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚) → (𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)) ∈ 𝑂(1))) |
88 | 11, 87 | mpd 15 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)) ∈ 𝑂(1)) |