MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1cxp Structured version   Visualization version   GIF version

Theorem o1cxp 25664
Description: An eventually bounded function taken to a nonnegative power is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
o1cxp.1 (𝜑𝐶 ∈ ℂ)
o1cxp.2 (𝜑 → 0 ≤ (ℜ‘𝐶))
o1cxp.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
o1cxp.4 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
Assertion
Ref Expression
o1cxp (𝜑 → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem o1cxp
Dummy variables 𝑚 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1cxp.4 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
2 o1f 14939 . . . . 5 ((𝑥𝐴𝐵) ∈ 𝑂(1) → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ)
31, 2syl 17 . . . 4 (𝜑 → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ)
4 o1cxp.3 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
54ralrimiva 3113 . . . . . 6 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
6 dmmptg 6075 . . . . . 6 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
75, 6syl 17 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
87feq2d 6488 . . . 4 (𝜑 → ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ ↔ (𝑥𝐴𝐵):𝐴⟶ℂ))
93, 8mpbid 235 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℂ)
10 o1bdd 14941 . . 3 (((𝑥𝐴𝐵) ∈ 𝑂(1) ∧ (𝑥𝐴𝐵):𝐴⟶ℂ) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚))
111, 9, 10syl2anc 587 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚))
12 simpr 488 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → 𝑥𝐴)
13 eqid 2758 . . . . . . . . . . . . . . . . 17 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1413fvmpt2 6774 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1512, 4, 14syl2anc 587 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1615oveq1d 7170 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = (𝐵𝑐𝐶))
17 ovex 7188 . . . . . . . . . . . . . . 15 (𝐵𝑐𝐶) ∈ V
18 eqid 2758 . . . . . . . . . . . . . . . 16 (𝑥𝐴 ↦ (𝐵𝑐𝐶)) = (𝑥𝐴 ↦ (𝐵𝑐𝐶))
1918fvmpt2 6774 . . . . . . . . . . . . . . 15 ((𝑥𝐴 ∧ (𝐵𝑐𝐶) ∈ V) → ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) = (𝐵𝑐𝐶))
2012, 17, 19sylancl 589 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) = (𝐵𝑐𝐶))
2116, 20eqtr4d 2796 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥))
2221ralrimiva 3113 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐴 (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥))
23 nfv 1915 . . . . . . . . . . . . 13 𝑧(((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥)
24 nffvmpt1 6673 . . . . . . . . . . . . . . 15 𝑥((𝑥𝐴𝐵)‘𝑧)
25 nfcv 2919 . . . . . . . . . . . . . . 15 𝑥𝑐
26 nfcv 2919 . . . . . . . . . . . . . . 15 𝑥𝐶
2724, 25, 26nfov 7185 . . . . . . . . . . . . . 14 𝑥(((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶)
28 nffvmpt1 6673 . . . . . . . . . . . . . 14 𝑥((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)
2927, 28nfeq 2932 . . . . . . . . . . . . 13 𝑥(((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)
30 fveq2 6662 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝑥𝐴𝐵)‘𝑥) = ((𝑥𝐴𝐵)‘𝑧))
3130oveq1d 7170 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶))
32 fveq2 6662 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3331, 32eqeq12d 2774 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) ↔ (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)))
3423, 29, 33cbvralw 3352 . . . . . . . . . . . 12 (∀𝑥𝐴 (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) ↔ ∀𝑧𝐴 (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3522, 34sylib 221 . . . . . . . . . . 11 (𝜑 → ∀𝑧𝐴 (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3635r19.21bi 3137 . . . . . . . . . 10 ((𝜑𝑧𝐴) → (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3736ad2ant2r 746 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3837fveq2d 6666 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘(((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶)) = (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)))
399ffvelrnda 6847 . . . . . . . . . 10 ((𝜑𝑧𝐴) → ((𝑥𝐴𝐵)‘𝑧) ∈ ℂ)
4039ad2ant2r 746 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → ((𝑥𝐴𝐵)‘𝑧) ∈ ℂ)
41 o1cxp.1 . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
4241ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → 𝐶 ∈ ℂ)
43 o1cxp.2 . . . . . . . . . 10 (𝜑 → 0 ≤ (ℜ‘𝐶))
4443ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → 0 ≤ (ℜ‘𝐶))
45 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑚 ∈ ℝ)
46 0re 10686 . . . . . . . . . . 11 0 ∈ ℝ
47 ifcl 4468 . . . . . . . . . . 11 ((𝑚 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝑚, 𝑚, 0) ∈ ℝ)
4845, 46, 47sylancl 589 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → if(0 ≤ 𝑚, 𝑚, 0) ∈ ℝ)
4948adantr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → if(0 ≤ 𝑚, 𝑚, 0) ∈ ℝ)
5040abscld 14849 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥𝐴𝐵)‘𝑧)) ∈ ℝ)
5145adantr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → 𝑚 ∈ ℝ)
52 simprr 772 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)
53 max2 12626 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝑚 ∈ ℝ) → 𝑚 ≤ if(0 ≤ 𝑚, 𝑚, 0))
5446, 45, 53sylancr 590 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑚 ≤ if(0 ≤ 𝑚, 𝑚, 0))
5554adantr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → 𝑚 ≤ if(0 ≤ 𝑚, 𝑚, 0))
5650, 51, 49, 52, 55letrd 10840 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ if(0 ≤ 𝑚, 𝑚, 0))
5740, 42, 44, 49, 56abscxpbnd 25446 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘(((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))
5838, 57eqbrtrrd 5059 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))
5958expr 460 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑧𝐴) → ((abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π)))))
6059imim2d 57 . . . . 5 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑧𝐴) → ((𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚) → (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))))
6160ralimdva 3108 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚) → ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))))
624, 1o1mptrcl 15032 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
6341adantr 484 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
6462, 63cxpcld 25403 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐵𝑐𝐶) ∈ ℂ)
6564fmpttd 6875 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝐵𝑐𝐶)):𝐴⟶ℂ)
6665adantr 484 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)):𝐴⟶ℂ)
67 o1dm 14940 . . . . . . . 8 ((𝑥𝐴𝐵) ∈ 𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
681, 67syl 17 . . . . . . 7 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
697, 68eqsstrrd 3933 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
7069adantr 484 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐴 ⊆ ℝ)
71 simprl 770 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑦 ∈ ℝ)
72 max1 12624 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑚 ∈ ℝ) → 0 ≤ if(0 ≤ 𝑚, 𝑚, 0))
7346, 45, 72sylancr 590 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 0 ≤ if(0 ≤ 𝑚, 𝑚, 0))
7441adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐶 ∈ ℂ)
7574recld 14606 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (ℜ‘𝐶) ∈ ℝ)
7648, 73, 75recxpcld 25418 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) ∈ ℝ)
7774abscld 14849 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (abs‘𝐶) ∈ ℝ)
78 pire 25155 . . . . . . . 8 π ∈ ℝ
79 remulcl 10665 . . . . . . . 8 (((abs‘𝐶) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘𝐶) · π) ∈ ℝ)
8077, 78, 79sylancl 589 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ((abs‘𝐶) · π) ∈ ℝ)
8180reefcld 15494 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (exp‘((abs‘𝐶) · π)) ∈ ℝ)
8276, 81remulcld 10714 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))) ∈ ℝ)
83 elo12r 14938 . . . . . 6 ((((𝑥𝐴 ↦ (𝐵𝑐𝐶)):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝑦 ∈ ℝ ∧ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))) ∈ ℝ) ∧ ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1))
84833expia 1118 . . . . 5 ((((𝑥𝐴 ↦ (𝐵𝑐𝐶)):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝑦 ∈ ℝ ∧ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))) ∈ ℝ)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π)))) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1)))
8566, 70, 71, 82, 84syl22anc 837 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π)))) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1)))
8661, 85syld 47 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1)))
8786rexlimdvva 3218 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1)))
8811, 87mpd 15 1 (𝜑 → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3070  wrex 3071  Vcvv 3409  wss 3860  ifcif 4423   class class class wbr 5035  cmpt 5115  dom cdm 5527  wf 6335  cfv 6339  (class class class)co 7155  cc 10578  cr 10579  0cc0 10580   · cmul 10585  cle 10719  cre 14509  abscabs 14646  𝑂(1)co1 14896  expce 15468  πcpi 15473  𝑐ccxp 25251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-inf2 9142  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-pre-sup 10658  ax-addf 10659  ax-mulf 10660
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7410  df-om 7585  df-1st 7698  df-2nd 7699  df-supp 7841  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-2o 8118  df-er 8304  df-map 8423  df-pm 8424  df-ixp 8485  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-fsupp 8872  df-fi 8913  df-sup 8944  df-inf 8945  df-oi 9012  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-n0 11940  df-z 12026  df-dec 12143  df-uz 12288  df-q 12394  df-rp 12436  df-xneg 12553  df-xadd 12554  df-xmul 12555  df-ioo 12788  df-ioc 12789  df-ico 12790  df-icc 12791  df-fz 12945  df-fzo 13088  df-fl 13216  df-mod 13292  df-seq 13424  df-exp 13485  df-fac 13689  df-bc 13718  df-hash 13746  df-shft 14479  df-cj 14511  df-re 14512  df-im 14513  df-sqrt 14647  df-abs 14648  df-limsup 14881  df-clim 14898  df-rlim 14899  df-o1 14900  df-sum 15096  df-ef 15474  df-sin 15476  df-cos 15477  df-pi 15479  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-sets 16553  df-ress 16554  df-plusg 16641  df-mulr 16642  df-starv 16643  df-sca 16644  df-vsca 16645  df-ip 16646  df-tset 16647  df-ple 16648  df-ds 16650  df-unif 16651  df-hom 16652  df-cco 16653  df-rest 16759  df-topn 16760  df-0g 16778  df-gsum 16779  df-topgen 16780  df-pt 16781  df-prds 16784  df-xrs 16838  df-qtop 16843  df-imas 16844  df-xps 16846  df-mre 16920  df-mrc 16921  df-acs 16923  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-submnd 18028  df-mulg 18297  df-cntz 18519  df-cmn 18980  df-psmet 20163  df-xmet 20164  df-met 20165  df-bl 20166  df-mopn 20167  df-fbas 20168  df-fg 20169  df-cnfld 20172  df-top 21599  df-topon 21616  df-topsp 21638  df-bases 21651  df-cld 21724  df-ntr 21725  df-cls 21726  df-nei 21803  df-lp 21841  df-perf 21842  df-cn 21932  df-cnp 21933  df-haus 22020  df-tx 22267  df-hmeo 22460  df-fil 22551  df-fm 22643  df-flim 22644  df-flf 22645  df-xms 23027  df-ms 23028  df-tms 23029  df-cncf 23584  df-limc 24570  df-dv 24571  df-log 25252  df-cxp 25253
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator