| Step | Hyp | Ref
| Expression |
| 1 | | o1cxp.4 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) |
| 2 | | o1f 15565 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) → (𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℂ) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℂ) |
| 4 | | o1cxp.3 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| 5 | 4 | ralrimiva 3146 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) |
| 6 | | dmmptg 6262 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| 7 | 5, 6 | syl 17 |
. . . . 5
⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| 8 | 7 | feq2d 6722 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℂ ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ)) |
| 9 | 3, 8 | mpbid 232 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
| 10 | | o1bdd 15567 |
. . 3
⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ∧ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) |
| 11 | 1, 9, 10 | syl2anc 584 |
. 2
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) |
| 12 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 13 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 14 | 13 | fvmpt2 7027 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 15 | 12, 4, 14 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 16 | 15 | oveq1d 7446 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)↑𝑐𝐶) = (𝐵↑𝑐𝐶)) |
| 17 | | ovex 7464 |
. . . . . . . . . . . . . . 15
⊢ (𝐵↑𝑐𝐶) ∈ V |
| 18 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)) |
| 19 | 18 | fvmpt2 7027 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝐴 ∧ (𝐵↑𝑐𝐶) ∈ V) → ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑥) = (𝐵↑𝑐𝐶)) |
| 20 | 12, 17, 19 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑥) = (𝐵↑𝑐𝐶)) |
| 21 | 16, 20 | eqtr4d 2780 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑥)) |
| 22 | 21 | ralrimiva 3146 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑥)) |
| 23 | | nfv 1914 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑥) |
| 24 | | nffvmpt1 6917 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) |
| 25 | | nfcv 2905 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥↑𝑐 |
| 26 | | nfcv 2905 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥𝐶 |
| 27 | 24, 25, 26 | nfov 7461 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)↑𝑐𝐶) |
| 28 | | nffvmpt1 6917 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧) |
| 29 | 27, 28 | nfeq 2919 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧) |
| 30 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) |
| 31 | 30 | oveq1d 7446 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)↑𝑐𝐶) = (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)↑𝑐𝐶)) |
| 32 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑥) = ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧)) |
| 33 | 31, 32 | eqeq12d 2753 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → ((((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑥) ↔ (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧))) |
| 34 | 23, 29, 33 | cbvralw 3306 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝐴 (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑥) ↔ ∀𝑧 ∈ 𝐴 (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧)) |
| 35 | 22, 34 | sylib 218 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑧 ∈ 𝐴 (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧)) |
| 36 | 35 | r19.21bi 3251 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧)) |
| 37 | 36 | ad2ant2r 747 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧)) |
| 38 | 37 | fveq2d 6910 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)↑𝑐𝐶)) = (abs‘((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧))) |
| 39 | 9 | ffvelcdmda 7104 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ∈ ℂ) |
| 40 | 39 | ad2ant2r 747 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧) ∈ ℂ) |
| 41 | | o1cxp.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 42 | 41 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → 𝐶 ∈ ℂ) |
| 43 | | o1cxp.2 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ (ℜ‘𝐶)) |
| 44 | 43 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → 0 ≤ (ℜ‘𝐶)) |
| 45 | | simprr 773 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑚 ∈ ℝ) |
| 46 | | 0re 11263 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
| 47 | | ifcl 4571 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ 𝑚, 𝑚, 0) ∈ ℝ) |
| 48 | 45, 46, 47 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → if(0 ≤ 𝑚, 𝑚, 0) ∈ ℝ) |
| 49 | 48 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → if(0 ≤ 𝑚, 𝑚, 0) ∈ ℝ) |
| 50 | 40 | abscld 15475 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ∈ ℝ) |
| 51 | 45 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → 𝑚 ∈ ℝ) |
| 52 | | simprr 773 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚) |
| 53 | | max2 13229 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ 𝑚
∈ ℝ) → 𝑚
≤ if(0 ≤ 𝑚, 𝑚, 0)) |
| 54 | 46, 45, 53 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑚 ≤ if(0 ≤ 𝑚, 𝑚, 0)) |
| 55 | 54 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → 𝑚 ≤ if(0 ≤ 𝑚, 𝑚, 0)) |
| 56 | 50, 51, 49, 52, 55 | letrd 11418 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ if(0 ≤ 𝑚, 𝑚, 0)) |
| 57 | 40, 42, 44, 49, 56 | abscxpbnd 26796 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)↑𝑐𝐶)) ≤ ((if(0 ≤ 𝑚, 𝑚,
0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) ·
π)))) |
| 58 | 38, 57 | eqbrtrrd 5167 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧 ∈ 𝐴 ∧ (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚,
0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) ·
π)))) |
| 59 | 58 | expr 456 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑧 ∈ 𝐴) → ((abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚 → (abs‘((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚,
0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) ·
π))))) |
| 60 | 59 | imim2d 57 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑧 ∈ 𝐴) → ((𝑦 ≤ 𝑧 → (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚) → (𝑦 ≤ 𝑧 → (abs‘((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚,
0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) ·
π)))))) |
| 61 | 60 | ralimdva 3167 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚) → ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚,
0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) ·
π)))))) |
| 62 | 4, 1 | o1mptrcl 15659 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 63 | 41 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 64 | 62, 63 | cxpcld 26750 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵↑𝑐𝐶) ∈ ℂ) |
| 65 | 64 | fmpttd 7135 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)):𝐴⟶ℂ) |
| 66 | 65 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)):𝐴⟶ℂ) |
| 67 | | o1dm 15566 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
| 68 | 1, 67 | syl 17 |
. . . . . . 7
⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
| 69 | 7, 68 | eqsstrrd 4019 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 70 | 69 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐴 ⊆ ℝ) |
| 71 | | simprl 771 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑦 ∈ ℝ) |
| 72 | | max1 13227 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ 𝑚
∈ ℝ) → 0 ≤ if(0 ≤ 𝑚, 𝑚, 0)) |
| 73 | 46, 45, 72 | sylancr 587 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 0 ≤ if(0 ≤
𝑚, 𝑚, 0)) |
| 74 | 41 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐶 ∈ ℂ) |
| 75 | 74 | recld 15233 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (ℜ‘𝐶) ∈
ℝ) |
| 76 | 48, 73, 75 | recxpcld 26765 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (if(0 ≤ 𝑚, 𝑚,
0)↑𝑐(ℜ‘𝐶)) ∈ ℝ) |
| 77 | 74 | abscld 15475 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (abs‘𝐶) ∈
ℝ) |
| 78 | | pire 26500 |
. . . . . . . 8
⊢ π
∈ ℝ |
| 79 | | remulcl 11240 |
. . . . . . . 8
⊢
(((abs‘𝐶)
∈ ℝ ∧ π ∈ ℝ) → ((abs‘𝐶) · π) ∈
ℝ) |
| 80 | 77, 78, 79 | sylancl 586 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ((abs‘𝐶) · π) ∈
ℝ) |
| 81 | 80 | reefcld 16124 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) →
(exp‘((abs‘𝐶)
· π)) ∈ ℝ) |
| 82 | 76, 81 | remulcld 11291 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ((if(0 ≤ 𝑚, 𝑚,
0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))) ∈
ℝ) |
| 83 | | elo12r 15564 |
. . . . . 6
⊢ ((((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝑦 ∈ ℝ ∧ ((if(0 ≤ 𝑚, 𝑚,
0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))) ∈
ℝ) ∧ ∀𝑧
∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚,
0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))) →
(𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)) ∈ 𝑂(1)) |
| 84 | 83 | 3expia 1122 |
. . . . 5
⊢ ((((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝑦 ∈ ℝ ∧ ((if(0 ≤ 𝑚, 𝑚,
0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))) ∈
ℝ)) → (∀𝑧
∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚,
0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π)))) →
(𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)) ∈ 𝑂(1))) |
| 85 | 66, 70, 71, 82, 84 | syl22anc 839 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘((𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚,
0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π)))) →
(𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)) ∈ 𝑂(1))) |
| 86 | 61, 85 | syld 47 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚) → (𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)) ∈ 𝑂(1))) |
| 87 | 86 | rexlimdvva 3213 |
. 2
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑧)) ≤ 𝑚) → (𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)) ∈ 𝑂(1))) |
| 88 | 11, 87 | mpd 15 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵↑𝑐𝐶)) ∈ 𝑂(1)) |