MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1cxp Structured version   Visualization version   GIF version

Theorem o1cxp 26124
Description: An eventually bounded function taken to a nonnegative power is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
o1cxp.1 (𝜑𝐶 ∈ ℂ)
o1cxp.2 (𝜑 → 0 ≤ (ℜ‘𝐶))
o1cxp.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
o1cxp.4 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
Assertion
Ref Expression
o1cxp (𝜑 → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem o1cxp
Dummy variables 𝑚 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1cxp.4 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
2 o1f 15238 . . . . 5 ((𝑥𝐴𝐵) ∈ 𝑂(1) → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ)
31, 2syl 17 . . . 4 (𝜑 → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ)
4 o1cxp.3 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
54ralrimiva 3103 . . . . . 6 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
6 dmmptg 6145 . . . . . 6 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
75, 6syl 17 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
87feq2d 6586 . . . 4 (𝜑 → ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ ↔ (𝑥𝐴𝐵):𝐴⟶ℂ))
93, 8mpbid 231 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℂ)
10 o1bdd 15240 . . 3 (((𝑥𝐴𝐵) ∈ 𝑂(1) ∧ (𝑥𝐴𝐵):𝐴⟶ℂ) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚))
111, 9, 10syl2anc 584 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚))
12 simpr 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → 𝑥𝐴)
13 eqid 2738 . . . . . . . . . . . . . . . . 17 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1413fvmpt2 6886 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1512, 4, 14syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1615oveq1d 7290 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = (𝐵𝑐𝐶))
17 ovex 7308 . . . . . . . . . . . . . . 15 (𝐵𝑐𝐶) ∈ V
18 eqid 2738 . . . . . . . . . . . . . . . 16 (𝑥𝐴 ↦ (𝐵𝑐𝐶)) = (𝑥𝐴 ↦ (𝐵𝑐𝐶))
1918fvmpt2 6886 . . . . . . . . . . . . . . 15 ((𝑥𝐴 ∧ (𝐵𝑐𝐶) ∈ V) → ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) = (𝐵𝑐𝐶))
2012, 17, 19sylancl 586 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) = (𝐵𝑐𝐶))
2116, 20eqtr4d 2781 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥))
2221ralrimiva 3103 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐴 (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥))
23 nfv 1917 . . . . . . . . . . . . 13 𝑧(((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥)
24 nffvmpt1 6785 . . . . . . . . . . . . . . 15 𝑥((𝑥𝐴𝐵)‘𝑧)
25 nfcv 2907 . . . . . . . . . . . . . . 15 𝑥𝑐
26 nfcv 2907 . . . . . . . . . . . . . . 15 𝑥𝐶
2724, 25, 26nfov 7305 . . . . . . . . . . . . . 14 𝑥(((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶)
28 nffvmpt1 6785 . . . . . . . . . . . . . 14 𝑥((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)
2927, 28nfeq 2920 . . . . . . . . . . . . 13 𝑥(((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)
30 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝑥𝐴𝐵)‘𝑥) = ((𝑥𝐴𝐵)‘𝑧))
3130oveq1d 7290 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶))
32 fveq2 6774 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3331, 32eqeq12d 2754 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) ↔ (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)))
3423, 29, 33cbvralw 3373 . . . . . . . . . . . 12 (∀𝑥𝐴 (((𝑥𝐴𝐵)‘𝑥)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑥) ↔ ∀𝑧𝐴 (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3522, 34sylib 217 . . . . . . . . . . 11 (𝜑 → ∀𝑧𝐴 (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3635r19.21bi 3134 . . . . . . . . . 10 ((𝜑𝑧𝐴) → (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3736ad2ant2r 744 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶) = ((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧))
3837fveq2d 6778 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘(((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶)) = (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)))
399ffvelrnda 6961 . . . . . . . . . 10 ((𝜑𝑧𝐴) → ((𝑥𝐴𝐵)‘𝑧) ∈ ℂ)
4039ad2ant2r 744 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → ((𝑥𝐴𝐵)‘𝑧) ∈ ℂ)
41 o1cxp.1 . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
4241ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → 𝐶 ∈ ℂ)
43 o1cxp.2 . . . . . . . . . 10 (𝜑 → 0 ≤ (ℜ‘𝐶))
4443ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → 0 ≤ (ℜ‘𝐶))
45 simprr 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑚 ∈ ℝ)
46 0re 10977 . . . . . . . . . . 11 0 ∈ ℝ
47 ifcl 4504 . . . . . . . . . . 11 ((𝑚 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝑚, 𝑚, 0) ∈ ℝ)
4845, 46, 47sylancl 586 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → if(0 ≤ 𝑚, 𝑚, 0) ∈ ℝ)
4948adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → if(0 ≤ 𝑚, 𝑚, 0) ∈ ℝ)
5040abscld 15148 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥𝐴𝐵)‘𝑧)) ∈ ℝ)
5145adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → 𝑚 ∈ ℝ)
52 simprr 770 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)
53 max2 12921 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝑚 ∈ ℝ) → 𝑚 ≤ if(0 ≤ 𝑚, 𝑚, 0))
5446, 45, 53sylancr 587 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑚 ≤ if(0 ≤ 𝑚, 𝑚, 0))
5554adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → 𝑚 ≤ if(0 ≤ 𝑚, 𝑚, 0))
5650, 51, 49, 52, 55letrd 11132 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ if(0 ≤ 𝑚, 𝑚, 0))
5740, 42, 44, 49, 56abscxpbnd 25906 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘(((𝑥𝐴𝐵)‘𝑧)↑𝑐𝐶)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))
5838, 57eqbrtrrd 5098 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑧𝐴 ∧ (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚)) → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))
5958expr 457 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑧𝐴) → ((abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π)))))
6059imim2d 57 . . . . 5 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑧𝐴) → ((𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚) → (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))))
6160ralimdva 3108 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚) → ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))))
624, 1o1mptrcl 15332 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
6341adantr 481 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
6462, 63cxpcld 25863 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐵𝑐𝐶) ∈ ℂ)
6564fmpttd 6989 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝐵𝑐𝐶)):𝐴⟶ℂ)
6665adantr 481 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)):𝐴⟶ℂ)
67 o1dm 15239 . . . . . . . 8 ((𝑥𝐴𝐵) ∈ 𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
681, 67syl 17 . . . . . . 7 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
697, 68eqsstrrd 3960 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
7069adantr 481 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐴 ⊆ ℝ)
71 simprl 768 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑦 ∈ ℝ)
72 max1 12919 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑚 ∈ ℝ) → 0 ≤ if(0 ≤ 𝑚, 𝑚, 0))
7346, 45, 72sylancr 587 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 0 ≤ if(0 ≤ 𝑚, 𝑚, 0))
7441adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐶 ∈ ℂ)
7574recld 14905 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (ℜ‘𝐶) ∈ ℝ)
7648, 73, 75recxpcld 25878 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) ∈ ℝ)
7774abscld 15148 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (abs‘𝐶) ∈ ℝ)
78 pire 25615 . . . . . . . 8 π ∈ ℝ
79 remulcl 10956 . . . . . . . 8 (((abs‘𝐶) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘𝐶) · π) ∈ ℝ)
8077, 78, 79sylancl 586 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ((abs‘𝐶) · π) ∈ ℝ)
8180reefcld 15797 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (exp‘((abs‘𝐶) · π)) ∈ ℝ)
8276, 81remulcld 11005 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))) ∈ ℝ)
83 elo12r 15237 . . . . . 6 ((((𝑥𝐴 ↦ (𝐵𝑐𝐶)):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝑦 ∈ ℝ ∧ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))) ∈ ℝ) ∧ ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))))) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1))
84833expia 1120 . . . . 5 ((((𝑥𝐴 ↦ (𝐵𝑐𝐶)):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝑦 ∈ ℝ ∧ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π))) ∈ ℝ)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π)))) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1)))
8566, 70, 71, 82, 84syl22anc 836 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴 ↦ (𝐵𝑐𝐶))‘𝑧)) ≤ ((if(0 ≤ 𝑚, 𝑚, 0)↑𝑐(ℜ‘𝐶)) · (exp‘((abs‘𝐶) · π)))) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1)))
8661, 85syld 47 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1)))
8786rexlimdvva 3223 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘((𝑥𝐴𝐵)‘𝑧)) ≤ 𝑚) → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1)))
8811, 87mpd 15 1 (𝜑 → (𝑥𝐴 ↦ (𝐵𝑐𝐶)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887  ifcif 4459   class class class wbr 5074  cmpt 5157  dom cdm 5589  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   · cmul 10876  cle 11010  cre 14808  abscabs 14945  𝑂(1)co1 15195  expce 15771  πcpi 15776  𝑐ccxp 25711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-o1 15199  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-cxp 25713
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator