MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elo12r Structured version   Visualization version   GIF version

Theorem elo12r 15445
Description: Sufficient condition for elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
elo12r (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → 𝐹 ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐹   𝑥,𝑀

Proof of Theorem elo12r
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5098 . . . . . . 7 (𝑦 = 𝐶 → (𝑦𝑥𝐶𝑥))
21imbi1d 341 . . . . . 6 (𝑦 = 𝐶 → ((𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ↔ (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
32ralbidv 3157 . . . . 5 (𝑦 = 𝐶 → (∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
4 breq2 5099 . . . . . . 7 (𝑚 = 𝑀 → ((abs‘(𝐹𝑥)) ≤ 𝑚 ↔ (abs‘(𝐹𝑥)) ≤ 𝑀))
54imbi2d 340 . . . . . 6 (𝑚 = 𝑀 → ((𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ↔ (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)))
65ralbidv 3157 . . . . 5 (𝑚 = 𝑀 → (∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)))
73, 6rspc2ev 3587 . . . 4 ((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
873expa 1118 . . 3 (((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
983adant1 1130 . 2 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
10 elo12 15444 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
11103ad2ant1 1133 . 2 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
129, 11mpbird 257 1 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → 𝐹 ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3049  wrex 3058  wss 3899   class class class wbr 5095  wf 6485  cfv 6489  cc 11014  cr 11015  cle 11157  abscabs 15151  𝑂(1)co1 15403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-pre-lttri 11090  ax-pre-lttrn 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-er 8631  df-pm 8762  df-en 8879  df-dom 8880  df-sdom 8881  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-ico 13261  df-o1 15407
This theorem is referenced by:  o1resb  15483  o1of2  15530  o1cxp  26922
  Copyright terms: Public domain W3C validator