![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elo12r | Structured version Visualization version GIF version |
Description: Sufficient condition for elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014.) |
Ref | Expression |
---|---|
elo12r | ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑀)) → 𝐹 ∈ 𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5149 | . . . . . . 7 ⊢ (𝑦 = 𝐶 → (𝑦 ≤ 𝑥 ↔ 𝐶 ≤ 𝑥)) | |
2 | 1 | imbi1d 342 | . . . . . 6 ⊢ (𝑦 = 𝐶 → ((𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑚) ↔ (𝐶 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑚))) |
3 | 2 | ralbidv 3178 | . . . . 5 ⊢ (𝑦 = 𝐶 → (∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑚) ↔ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑚))) |
4 | breq2 5150 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ((abs‘(𝐹‘𝑥)) ≤ 𝑚 ↔ (abs‘(𝐹‘𝑥)) ≤ 𝑀)) | |
5 | 4 | imbi2d 341 | . . . . . 6 ⊢ (𝑚 = 𝑀 → ((𝐶 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑚) ↔ (𝐶 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑀))) |
6 | 5 | ralbidv 3178 | . . . . 5 ⊢ (𝑚 = 𝑀 → (∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑚) ↔ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑀))) |
7 | 3, 6 | rspc2ev 3622 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑚)) |
8 | 7 | 3expa 1119 | . . 3 ⊢ (((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑚)) |
9 | 8 | 3adant1 1131 | . 2 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑚)) |
10 | elo12 15466 | . . 3 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑚))) | |
11 | 10 | 3ad2ant1 1134 | . 2 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑀)) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑚))) |
12 | 9, 11 | mpbird 257 | 1 ⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 (𝐶 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑀)) → 𝐹 ∈ 𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 ⊆ wss 3946 class class class wbr 5146 ⟶wf 6535 ‘cfv 6539 ℂcc 11103 ℝcr 11104 ≤ cle 11244 abscabs 15176 𝑂(1)co1 15425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 ax-cnex 11161 ax-resscn 11162 ax-pre-lttri 11179 ax-pre-lttrn 11180 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4907 df-br 5147 df-opab 5209 df-mpt 5230 df-id 5572 df-po 5586 df-so 5587 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-f1 6544 df-fo 6545 df-f1o 6546 df-fv 6547 df-ov 7406 df-oprab 7407 df-mpo 7408 df-er 8698 df-pm 8818 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11245 df-mnf 11246 df-xr 11247 df-ltxr 11248 df-le 11249 df-ico 13325 df-o1 15429 |
This theorem is referenced by: o1resb 15505 o1of2 15552 o1cxp 26458 |
Copyright terms: Public domain | W3C validator |