MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elo12r Structured version   Visualization version   GIF version

Theorem elo12r 15546
Description: Sufficient condition for elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
elo12r (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → 𝐹 ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐹   𝑥,𝑀

Proof of Theorem elo12r
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5126 . . . . . . 7 (𝑦 = 𝐶 → (𝑦𝑥𝐶𝑥))
21imbi1d 341 . . . . . 6 (𝑦 = 𝐶 → ((𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ↔ (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
32ralbidv 3165 . . . . 5 (𝑦 = 𝐶 → (∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
4 breq2 5127 . . . . . . 7 (𝑚 = 𝑀 → ((abs‘(𝐹𝑥)) ≤ 𝑚 ↔ (abs‘(𝐹𝑥)) ≤ 𝑀))
54imbi2d 340 . . . . . 6 (𝑚 = 𝑀 → ((𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ↔ (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)))
65ralbidv 3165 . . . . 5 (𝑚 = 𝑀 → (∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)))
73, 6rspc2ev 3618 . . . 4 ((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
873expa 1118 . . 3 (((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
983adant1 1130 . 2 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
10 elo12 15545 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
11103ad2ant1 1133 . 2 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
129, 11mpbird 257 1 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → 𝐹 ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  wrex 3059  wss 3931   class class class wbr 5123  wf 6537  cfv 6541  cc 11135  cr 11136  cle 11278  abscabs 15255  𝑂(1)co1 15504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-pre-lttri 11211  ax-pre-lttrn 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-po 5572  df-so 5573  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-er 8727  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-ico 13375  df-o1 15508
This theorem is referenced by:  o1resb  15584  o1of2  15631  o1cxp  26954
  Copyright terms: Public domain W3C validator