MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elo12r Structured version   Visualization version   GIF version

Theorem elo12r 14887
Description: Sufficient condition for elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
elo12r (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → 𝐹 ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐹   𝑥,𝑀

Proof of Theorem elo12r
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5071 . . . . . . 7 (𝑦 = 𝐶 → (𝑦𝑥𝐶𝑥))
21imbi1d 344 . . . . . 6 (𝑦 = 𝐶 → ((𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ↔ (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
32ralbidv 3199 . . . . 5 (𝑦 = 𝐶 → (∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
4 breq2 5072 . . . . . . 7 (𝑚 = 𝑀 → ((abs‘(𝐹𝑥)) ≤ 𝑚 ↔ (abs‘(𝐹𝑥)) ≤ 𝑀))
54imbi2d 343 . . . . . 6 (𝑚 = 𝑀 → ((𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ↔ (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)))
65ralbidv 3199 . . . . 5 (𝑚 = 𝑀 → (∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)))
73, 6rspc2ev 3637 . . . 4 ((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
873expa 1114 . . 3 (((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
983adant1 1126 . 2 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
10 elo12 14886 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
11103ad2ant1 1129 . 2 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
129, 11mpbird 259 1 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → 𝐹 ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wrex 3141  wss 3938   class class class wbr 5068  wf 6353  cfv 6357  cc 10537  cr 10538  cle 10678  abscabs 14595  𝑂(1)co1 14845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-pre-lttri 10613  ax-pre-lttrn 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-ico 12747  df-o1 14849
This theorem is referenced by:  o1resb  14925  o1of2  14971  o1cxp  25554
  Copyright terms: Public domain W3C validator