MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elo12r Structured version   Visualization version   GIF version

Theorem elo12r 15574
Description: Sufficient condition for elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
elo12r (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → 𝐹 ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐹   𝑥,𝑀

Proof of Theorem elo12r
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5169 . . . . . . 7 (𝑦 = 𝐶 → (𝑦𝑥𝐶𝑥))
21imbi1d 341 . . . . . 6 (𝑦 = 𝐶 → ((𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ↔ (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
32ralbidv 3184 . . . . 5 (𝑦 = 𝐶 → (∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
4 breq2 5170 . . . . . . 7 (𝑚 = 𝑀 → ((abs‘(𝐹𝑥)) ≤ 𝑚 ↔ (abs‘(𝐹𝑥)) ≤ 𝑀))
54imbi2d 340 . . . . . 6 (𝑚 = 𝑀 → ((𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ↔ (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)))
65ralbidv 3184 . . . . 5 (𝑚 = 𝑀 → (∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)))
73, 6rspc2ev 3648 . . . 4 ((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
873expa 1118 . . 3 (((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
983adant1 1130 . 2 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
10 elo12 15573 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
11103ad2ant1 1133 . 2 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
129, 11mpbird 257 1 (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑀)) → 𝐹 ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  wss 3976   class class class wbr 5166  wf 6569  cfv 6573  cc 11182  cr 11183  cle 11325  abscabs 15283  𝑂(1)co1 15532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-ico 13413  df-o1 15536
This theorem is referenced by:  o1resb  15612  o1of2  15659  o1cxp  27036
  Copyright terms: Public domain W3C validator