Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcfval2 | Structured version Visualization version GIF version |
Description: The function operation expressed as a mapping. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
Ref | Expression |
---|---|
ofcfval2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofcfval2.2 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
ofcfval2.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑋) |
ofcfval2.4 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
Ref | Expression |
---|---|
ofcfval2 | ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofcfval2.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑋) | |
2 | 1 | ralrimiva 3107 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑋) |
3 | eqid 2738 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | fnmpt 6557 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑋 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
5 | 2, 4 | syl 17 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
6 | ofcfval2.4 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
7 | 6 | fneq1d 6510 | . . 3 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴)) |
8 | 5, 7 | mpbird 256 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
9 | ofcfval2.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
10 | ofcfval2.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
11 | 6, 1 | fvmpt2d 6870 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
12 | 8, 9, 10, 11 | ofcfval 31966 | 1 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ↦ cmpt 5153 Fn wfn 6413 (class class class)co 7255 ∘f/c cofc 31963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-ofc 31964 |
This theorem is referenced by: coinflippv 32350 ofcs1 32423 |
Copyright terms: Public domain | W3C validator |