Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcfval2 Structured version   Visualization version   GIF version

Theorem ofcfval2 34068
Description: The function operation expressed as a mapping. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcfval2.1 (𝜑𝐴𝑉)
ofcfval2.2 (𝜑𝐶𝑊)
ofcfval2.3 ((𝜑𝑥𝐴) → 𝐵𝑋)
ofcfval2.4 (𝜑𝐹 = (𝑥𝐴𝐵))
Assertion
Ref Expression
ofcfval2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐹   𝑥,𝑅   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem ofcfval2
StepHypRef Expression
1 ofcfval2.3 . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑋)
21ralrimiva 3152 . . . 4 (𝜑 → ∀𝑥𝐴 𝐵𝑋)
3 eqid 2740 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43fnmpt 6720 . . . 4 (∀𝑥𝐴 𝐵𝑋 → (𝑥𝐴𝐵) Fn 𝐴)
52, 4syl 17 . . 3 (𝜑 → (𝑥𝐴𝐵) Fn 𝐴)
6 ofcfval2.4 . . . 4 (𝜑𝐹 = (𝑥𝐴𝐵))
76fneq1d 6672 . . 3 (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑥𝐴𝐵) Fn 𝐴))
85, 7mpbird 257 . 2 (𝜑𝐹 Fn 𝐴)
9 ofcfval2.1 . 2 (𝜑𝐴𝑉)
10 ofcfval2.2 . 2 (𝜑𝐶𝑊)
116, 1fvmpt2d 7042 . 2 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
128, 9, 10, 11ofcfval 34062 1 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  cmpt 5249   Fn wfn 6568  (class class class)co 7448  f/c cofc 34059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-ofc 34060
This theorem is referenced by:  coinflippv  34448  ofcs1  34521
  Copyright terms: Public domain W3C validator