Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcfval2 Structured version   Visualization version   GIF version

Theorem ofcfval2 31972
Description: The function operation expressed as a mapping. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcfval2.1 (𝜑𝐴𝑉)
ofcfval2.2 (𝜑𝐶𝑊)
ofcfval2.3 ((𝜑𝑥𝐴) → 𝐵𝑋)
ofcfval2.4 (𝜑𝐹 = (𝑥𝐴𝐵))
Assertion
Ref Expression
ofcfval2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐹   𝑥,𝑅   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem ofcfval2
StepHypRef Expression
1 ofcfval2.3 . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑋)
21ralrimiva 3107 . . . 4 (𝜑 → ∀𝑥𝐴 𝐵𝑋)
3 eqid 2738 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43fnmpt 6557 . . . 4 (∀𝑥𝐴 𝐵𝑋 → (𝑥𝐴𝐵) Fn 𝐴)
52, 4syl 17 . . 3 (𝜑 → (𝑥𝐴𝐵) Fn 𝐴)
6 ofcfval2.4 . . . 4 (𝜑𝐹 = (𝑥𝐴𝐵))
76fneq1d 6510 . . 3 (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑥𝐴𝐵) Fn 𝐴))
85, 7mpbird 256 . 2 (𝜑𝐹 Fn 𝐴)
9 ofcfval2.1 . 2 (𝜑𝐴𝑉)
10 ofcfval2.2 . 2 (𝜑𝐶𝑊)
116, 1fvmpt2d 6870 . 2 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
128, 9, 10, 11ofcfval 31966 1 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  cmpt 5153   Fn wfn 6413  (class class class)co 7255  f/c cofc 31963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-ofc 31964
This theorem is referenced by:  coinflippv  32350  ofcs1  32423
  Copyright terms: Public domain W3C validator