Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcfval2 Structured version   Visualization version   GIF version

Theorem ofcfval2 34109
Description: The function operation expressed as a mapping. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcfval2.1 (𝜑𝐴𝑉)
ofcfval2.2 (𝜑𝐶𝑊)
ofcfval2.3 ((𝜑𝑥𝐴) → 𝐵𝑋)
ofcfval2.4 (𝜑𝐹 = (𝑥𝐴𝐵))
Assertion
Ref Expression
ofcfval2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐹   𝑥,𝑅   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem ofcfval2
StepHypRef Expression
1 ofcfval2.3 . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑋)
21ralrimiva 3124 . . . 4 (𝜑 → ∀𝑥𝐴 𝐵𝑋)
3 eqid 2731 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43fnmpt 6616 . . . 4 (∀𝑥𝐴 𝐵𝑋 → (𝑥𝐴𝐵) Fn 𝐴)
52, 4syl 17 . . 3 (𝜑 → (𝑥𝐴𝐵) Fn 𝐴)
6 ofcfval2.4 . . . 4 (𝜑𝐹 = (𝑥𝐴𝐵))
76fneq1d 6569 . . 3 (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑥𝐴𝐵) Fn 𝐴))
85, 7mpbird 257 . 2 (𝜑𝐹 Fn 𝐴)
9 ofcfval2.1 . 2 (𝜑𝐴𝑉)
10 ofcfval2.2 . 2 (𝜑𝐶𝑊)
116, 1fvmpt2d 6937 . 2 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
128, 9, 10, 11ofcfval 34103 1 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  cmpt 5167   Fn wfn 6471  (class class class)co 7341  f/c cofc 34100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-ofc 34101
This theorem is referenced by:  coinflippv  34489  ofcs1  34549
  Copyright terms: Public domain W3C validator