Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcfval2 Structured version   Visualization version   GIF version

Theorem ofcfval2 31473
 Description: The function operation expressed as a mapping. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcfval2.1 (𝜑𝐴𝑉)
ofcfval2.2 (𝜑𝐶𝑊)
ofcfval2.3 ((𝜑𝑥𝐴) → 𝐵𝑋)
ofcfval2.4 (𝜑𝐹 = (𝑥𝐴𝐵))
Assertion
Ref Expression
ofcfval2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐹   𝑥,𝑅   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem ofcfval2
StepHypRef Expression
1 ofcfval2.3 . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑋)
21ralrimiva 3149 . . . 4 (𝜑 → ∀𝑥𝐴 𝐵𝑋)
3 eqid 2798 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43fnmpt 6460 . . . 4 (∀𝑥𝐴 𝐵𝑋 → (𝑥𝐴𝐵) Fn 𝐴)
52, 4syl 17 . . 3 (𝜑 → (𝑥𝐴𝐵) Fn 𝐴)
6 ofcfval2.4 . . . 4 (𝜑𝐹 = (𝑥𝐴𝐵))
76fneq1d 6416 . . 3 (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑥𝐴𝐵) Fn 𝐴))
85, 7mpbird 260 . 2 (𝜑𝐹 Fn 𝐴)
9 ofcfval2.1 . 2 (𝜑𝐴𝑉)
10 ofcfval2.2 . 2 (𝜑𝐶𝑊)
116, 1fvmpt2d 6758 . 2 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
128, 9, 10, 11ofcfval 31467 1 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106   ↦ cmpt 5110   Fn wfn 6319  (class class class)co 7135   ∘f/c cofc 31464 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-ofc 31465 This theorem is referenced by:  coinflippv  31851  ofcs1  31924
 Copyright terms: Public domain W3C validator