Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > signshf | Structured version Visualization version GIF version |
Description: 𝐻, corresponding to the word 𝐹 multiplied by (𝑥 − 𝐶), as a function. (Contributed by Thierry Arnoux, 29-Sep-2018.) |
Ref | Expression |
---|---|
signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
signs.h | ⊢ 𝐻 = ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)) |
Ref | Expression |
---|---|
signshf | ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resubcl 11001 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 − 𝑦) ∈ ℝ) | |
2 | 1 | adantl 485 | . . 3 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 − 𝑦) ∈ ℝ) |
3 | 0re 10694 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
4 | s1cl 14016 | . . . . . . . 8 ⊢ (0 ∈ ℝ → 〈“0”〉 ∈ Word ℝ) | |
5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ 〈“0”〉 ∈ Word ℝ |
6 | ccatcl 13986 | . . . . . . 7 ⊢ ((〈“0”〉 ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ) → (〈“0”〉 ++ 𝐹) ∈ Word ℝ) | |
7 | 5, 6 | mpan 689 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → (〈“0”〉 ++ 𝐹) ∈ Word ℝ) |
8 | wrdf 13931 | . . . . . 6 ⊢ ((〈“0”〉 ++ 𝐹) ∈ Word ℝ → (〈“0”〉 ++ 𝐹):(0..^(♯‘(〈“0”〉 ++ 𝐹)))⟶ℝ) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ Word ℝ → (〈“0”〉 ++ 𝐹):(0..^(♯‘(〈“0”〉 ++ 𝐹)))⟶ℝ) |
10 | 1cnd 10687 | . . . . . . . 8 ⊢ (𝐹 ∈ Word ℝ → 1 ∈ ℂ) | |
11 | lencl 13945 | . . . . . . . . 9 ⊢ (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0) | |
12 | 11 | nn0cnd 12009 | . . . . . . . 8 ⊢ (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℂ) |
13 | ccatlen 13987 | . . . . . . . . . 10 ⊢ ((〈“0”〉 ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ) → (♯‘(〈“0”〉 ++ 𝐹)) = ((♯‘〈“0”〉) + (♯‘𝐹))) | |
14 | 5, 13 | mpan 689 | . . . . . . . . 9 ⊢ (𝐹 ∈ Word ℝ → (♯‘(〈“0”〉 ++ 𝐹)) = ((♯‘〈“0”〉) + (♯‘𝐹))) |
15 | s1len 14020 | . . . . . . . . . 10 ⊢ (♯‘〈“0”〉) = 1 | |
16 | 15 | oveq1i 7166 | . . . . . . . . 9 ⊢ ((♯‘〈“0”〉) + (♯‘𝐹)) = (1 + (♯‘𝐹)) |
17 | 14, 16 | eqtrdi 2809 | . . . . . . . 8 ⊢ (𝐹 ∈ Word ℝ → (♯‘(〈“0”〉 ++ 𝐹)) = (1 + (♯‘𝐹))) |
18 | 10, 12, 17 | comraddd 10905 | . . . . . . 7 ⊢ (𝐹 ∈ Word ℝ → (♯‘(〈“0”〉 ++ 𝐹)) = ((♯‘𝐹) + 1)) |
19 | 18 | oveq2d 7172 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → (0..^(♯‘(〈“0”〉 ++ 𝐹))) = (0..^((♯‘𝐹) + 1))) |
20 | 19 | feq2d 6489 | . . . . 5 ⊢ (𝐹 ∈ Word ℝ → ((〈“0”〉 ++ 𝐹):(0..^(♯‘(〈“0”〉 ++ 𝐹)))⟶ℝ ↔ (〈“0”〉 ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ)) |
21 | 9, 20 | mpbid 235 | . . . 4 ⊢ (𝐹 ∈ Word ℝ → (〈“0”〉 ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ) |
22 | 21 | adantr 484 | . . 3 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (〈“0”〉 ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ) |
23 | remulcl 10673 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) | |
24 | 23 | adantl 485 | . . . 4 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ) |
25 | ccatcl 13986 | . . . . . . . 8 ⊢ ((𝐹 ∈ Word ℝ ∧ 〈“0”〉 ∈ Word ℝ) → (𝐹 ++ 〈“0”〉) ∈ Word ℝ) | |
26 | 5, 25 | mpan2 690 | . . . . . . 7 ⊢ (𝐹 ∈ Word ℝ → (𝐹 ++ 〈“0”〉) ∈ Word ℝ) |
27 | wrdf 13931 | . . . . . . 7 ⊢ ((𝐹 ++ 〈“0”〉) ∈ Word ℝ → (𝐹 ++ 〈“0”〉):(0..^(♯‘(𝐹 ++ 〈“0”〉)))⟶ℝ) | |
28 | 26, 27 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → (𝐹 ++ 〈“0”〉):(0..^(♯‘(𝐹 ++ 〈“0”〉)))⟶ℝ) |
29 | ccatws1len 14034 | . . . . . . . 8 ⊢ (𝐹 ∈ Word ℝ → (♯‘(𝐹 ++ 〈“0”〉)) = ((♯‘𝐹) + 1)) | |
30 | 29 | oveq2d 7172 | . . . . . . 7 ⊢ (𝐹 ∈ Word ℝ → (0..^(♯‘(𝐹 ++ 〈“0”〉))) = (0..^((♯‘𝐹) + 1))) |
31 | 30 | feq2d 6489 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → ((𝐹 ++ 〈“0”〉):(0..^(♯‘(𝐹 ++ 〈“0”〉)))⟶ℝ ↔ (𝐹 ++ 〈“0”〉):(0..^((♯‘𝐹) + 1))⟶ℝ)) |
32 | 28, 31 | mpbid 235 | . . . . 5 ⊢ (𝐹 ∈ Word ℝ → (𝐹 ++ 〈“0”〉):(0..^((♯‘𝐹) + 1))⟶ℝ) |
33 | 32 | adantr 484 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (𝐹 ++ 〈“0”〉):(0..^((♯‘𝐹) + 1))⟶ℝ) |
34 | ovexd 7191 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (0..^((♯‘𝐹) + 1)) ∈ V) | |
35 | rpre 12451 | . . . . 5 ⊢ (𝐶 ∈ ℝ+ → 𝐶 ∈ ℝ) | |
36 | 35 | adantl 485 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ) |
37 | 24, 33, 34, 36 | ofcf 31602 | . . 3 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶):(0..^((♯‘𝐹) + 1))⟶ℝ) |
38 | inidm 4125 | . . 3 ⊢ ((0..^((♯‘𝐹) + 1)) ∩ (0..^((♯‘𝐹) + 1))) = (0..^((♯‘𝐹) + 1)) | |
39 | 2, 22, 37, 34, 34, 38 | off 7428 | . 2 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)):(0..^((♯‘𝐹) + 1))⟶ℝ) |
40 | signs.h | . . 3 ⊢ 𝐻 = ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)) | |
41 | 40 | feq1i 6494 | . 2 ⊢ (𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ ↔ ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)):(0..^((♯‘𝐹) + 1))⟶ℝ) |
42 | 39, 41 | sylibr 237 | 1 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 Vcvv 3409 ifcif 4423 {cpr 4527 {ctp 4529 〈cop 4531 ↦ cmpt 5116 ⟶wf 6336 ‘cfv 6340 (class class class)co 7156 ∈ cmpo 7158 ∘f cof 7409 ℝcr 10587 0cc0 10588 1c1 10589 + caddc 10591 · cmul 10593 − cmin 10921 -cneg 10922 ℝ+crp 12443 ...cfz 12952 ..^cfzo 13095 ♯chash 13753 Word cword 13926 ++ cconcat 13982 〈“cs1 14009 sgncsgn 14506 Σcsu 15103 ndxcnx 16551 Basecbs 16554 +gcplusg 16636 Σg cgsu 16785 ∘f/c cofc 31594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-n0 11948 df-z 12034 df-uz 12296 df-rp 12444 df-fz 12953 df-fzo 13096 df-hash 13754 df-word 13927 df-concat 13983 df-s1 14010 df-ofc 31595 |
This theorem is referenced by: signshwrd 32099 signshlen 32100 |
Copyright terms: Public domain | W3C validator |