Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signshf Structured version   Visualization version   GIF version

Theorem signshf 34604
Description: 𝐻, corresponding to the word 𝐹 multiplied by (𝑥𝐶), as a function. (Contributed by Thierry Arnoux, 29-Sep-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signs.h 𝐻 = ((⟨“0”⟩ ++ 𝐹) ∘f − ((𝐹 ++ ⟨“0”⟩) ∘f/c · 𝐶))
Assertion
Ref Expression
signshf ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ)
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛
Allowed substitution hints:   𝐶(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝐻(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signshf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resubcl 11574 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
21adantl 481 . . 3 (((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦) ∈ ℝ)
3 0re 11264 . . . . . . . 8 0 ∈ ℝ
4 s1cl 14641 . . . . . . . 8 (0 ∈ ℝ → ⟨“0”⟩ ∈ Word ℝ)
53, 4ax-mp 5 . . . . . . 7 ⟨“0”⟩ ∈ Word ℝ
6 ccatcl 14613 . . . . . . 7 ((⟨“0”⟩ ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ) → (⟨“0”⟩ ++ 𝐹) ∈ Word ℝ)
75, 6mpan 690 . . . . . 6 (𝐹 ∈ Word ℝ → (⟨“0”⟩ ++ 𝐹) ∈ Word ℝ)
8 wrdf 14558 . . . . . 6 ((⟨“0”⟩ ++ 𝐹) ∈ Word ℝ → (⟨“0”⟩ ++ 𝐹):(0..^(♯‘(⟨“0”⟩ ++ 𝐹)))⟶ℝ)
97, 8syl 17 . . . . 5 (𝐹 ∈ Word ℝ → (⟨“0”⟩ ++ 𝐹):(0..^(♯‘(⟨“0”⟩ ++ 𝐹)))⟶ℝ)
10 1cnd 11257 . . . . . . . 8 (𝐹 ∈ Word ℝ → 1 ∈ ℂ)
11 lencl 14572 . . . . . . . . 9 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0)
1211nn0cnd 12591 . . . . . . . 8 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℂ)
13 ccatlen 14614 . . . . . . . . . 10 ((⟨“0”⟩ ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ) → (♯‘(⟨“0”⟩ ++ 𝐹)) = ((♯‘⟨“0”⟩) + (♯‘𝐹)))
145, 13mpan 690 . . . . . . . . 9 (𝐹 ∈ Word ℝ → (♯‘(⟨“0”⟩ ++ 𝐹)) = ((♯‘⟨“0”⟩) + (♯‘𝐹)))
15 s1len 14645 . . . . . . . . . 10 (♯‘⟨“0”⟩) = 1
1615oveq1i 7442 . . . . . . . . 9 ((♯‘⟨“0”⟩) + (♯‘𝐹)) = (1 + (♯‘𝐹))
1714, 16eqtrdi 2792 . . . . . . . 8 (𝐹 ∈ Word ℝ → (♯‘(⟨“0”⟩ ++ 𝐹)) = (1 + (♯‘𝐹)))
1810, 12, 17comraddd 11476 . . . . . . 7 (𝐹 ∈ Word ℝ → (♯‘(⟨“0”⟩ ++ 𝐹)) = ((♯‘𝐹) + 1))
1918oveq2d 7448 . . . . . 6 (𝐹 ∈ Word ℝ → (0..^(♯‘(⟨“0”⟩ ++ 𝐹))) = (0..^((♯‘𝐹) + 1)))
2019feq2d 6721 . . . . 5 (𝐹 ∈ Word ℝ → ((⟨“0”⟩ ++ 𝐹):(0..^(♯‘(⟨“0”⟩ ++ 𝐹)))⟶ℝ ↔ (⟨“0”⟩ ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ))
219, 20mpbid 232 . . . 4 (𝐹 ∈ Word ℝ → (⟨“0”⟩ ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ)
2221adantr 480 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (⟨“0”⟩ ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ)
23 remulcl 11241 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
2423adantl 481 . . . 4 (((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
25 ccatcl 14613 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ ⟨“0”⟩ ∈ Word ℝ) → (𝐹 ++ ⟨“0”⟩) ∈ Word ℝ)
265, 25mpan2 691 . . . . . . 7 (𝐹 ∈ Word ℝ → (𝐹 ++ ⟨“0”⟩) ∈ Word ℝ)
27 wrdf 14558 . . . . . . 7 ((𝐹 ++ ⟨“0”⟩) ∈ Word ℝ → (𝐹 ++ ⟨“0”⟩):(0..^(♯‘(𝐹 ++ ⟨“0”⟩)))⟶ℝ)
2826, 27syl 17 . . . . . 6 (𝐹 ∈ Word ℝ → (𝐹 ++ ⟨“0”⟩):(0..^(♯‘(𝐹 ++ ⟨“0”⟩)))⟶ℝ)
29 ccatws1len 14659 . . . . . . . 8 (𝐹 ∈ Word ℝ → (♯‘(𝐹 ++ ⟨“0”⟩)) = ((♯‘𝐹) + 1))
3029oveq2d 7448 . . . . . . 7 (𝐹 ∈ Word ℝ → (0..^(♯‘(𝐹 ++ ⟨“0”⟩))) = (0..^((♯‘𝐹) + 1)))
3130feq2d 6721 . . . . . 6 (𝐹 ∈ Word ℝ → ((𝐹 ++ ⟨“0”⟩):(0..^(♯‘(𝐹 ++ ⟨“0”⟩)))⟶ℝ ↔ (𝐹 ++ ⟨“0”⟩):(0..^((♯‘𝐹) + 1))⟶ℝ))
3228, 31mpbid 232 . . . . 5 (𝐹 ∈ Word ℝ → (𝐹 ++ ⟨“0”⟩):(0..^((♯‘𝐹) + 1))⟶ℝ)
3332adantr 480 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (𝐹 ++ ⟨“0”⟩):(0..^((♯‘𝐹) + 1))⟶ℝ)
34 ovexd 7467 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (0..^((♯‘𝐹) + 1)) ∈ V)
35 rpre 13044 . . . . 5 (𝐶 ∈ ℝ+𝐶 ∈ ℝ)
3635adantl 481 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
3724, 33, 34, 36ofcf 34105 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐹 ++ ⟨“0”⟩) ∘f/c · 𝐶):(0..^((♯‘𝐹) + 1))⟶ℝ)
38 inidm 4226 . . 3 ((0..^((♯‘𝐹) + 1)) ∩ (0..^((♯‘𝐹) + 1))) = (0..^((♯‘𝐹) + 1))
392, 22, 37, 34, 34, 38off 7716 . 2 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((⟨“0”⟩ ++ 𝐹) ∘f − ((𝐹 ++ ⟨“0”⟩) ∘f/c · 𝐶)):(0..^((♯‘𝐹) + 1))⟶ℝ)
40 signs.h . . 3 𝐻 = ((⟨“0”⟩ ++ 𝐹) ∘f − ((𝐹 ++ ⟨“0”⟩) ∘f/c · 𝐶))
4140feq1i 6726 . 2 (𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ ↔ ((⟨“0”⟩ ++ 𝐹) ∘f − ((𝐹 ++ ⟨“0”⟩) ∘f/c · 𝐶)):(0..^((♯‘𝐹) + 1))⟶ℝ)
4239, 41sylibr 234 1 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2939  Vcvv 3479  ifcif 4524  {cpr 4627  {ctp 4629  cop 4631  cmpt 5224  wf 6556  cfv 6560  (class class class)co 7432  cmpo 7434  f cof 7696  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161  cmin 11493  -cneg 11494  +crp 13035  ...cfz 13548  ..^cfzo 13695  chash 14370  Word cword 14553   ++ cconcat 14609  ⟨“cs1 14634  sgncsgn 15126  Σcsu 15723  ndxcnx 17231  Basecbs 17248  +gcplusg 17298   Σg cgsu 17486  f/c cofc 34097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-hash 14371  df-word 14554  df-concat 14610  df-s1 14635  df-ofc 34098
This theorem is referenced by:  signshwrd  34605  signshlen  34606
  Copyright terms: Public domain W3C validator