Step | Hyp | Ref
| Expression |
1 | | resubcl 11520 |
. . . 4
β’ ((π₯ β β β§ π¦ β β) β (π₯ β π¦) β β) |
2 | 1 | adantl 481 |
. . 3
β’ (((πΉ β Word β β§ πΆ β β+)
β§ (π₯ β β
β§ π¦ β β))
β (π₯ β π¦) β
β) |
3 | | 0re 11212 |
. . . . . . . 8
β’ 0 β
β |
4 | | s1cl 14548 |
. . . . . . . 8
β’ (0 β
β β β¨β0ββ© β Word
β) |
5 | 3, 4 | ax-mp 5 |
. . . . . . 7
β’
β¨β0ββ© β Word β |
6 | | ccatcl 14520 |
. . . . . . 7
β’
((β¨β0ββ© β Word β β§ πΉ β Word β) β
(β¨β0ββ© ++ πΉ) β Word β) |
7 | 5, 6 | mpan 687 |
. . . . . 6
β’ (πΉ β Word β β
(β¨β0ββ© ++ πΉ) β Word β) |
8 | | wrdf 14465 |
. . . . . 6
β’
((β¨β0ββ© ++ πΉ) β Word β β
(β¨β0ββ© ++ πΉ):(0..^(β―β(β¨β0ββ©
++ πΉ)))βΆβ) |
9 | 7, 8 | syl 17 |
. . . . 5
β’ (πΉ β Word β β
(β¨β0ββ© ++ πΉ):(0..^(β―β(β¨β0ββ©
++ πΉ)))βΆβ) |
10 | | 1cnd 11205 |
. . . . . . . 8
β’ (πΉ β Word β β 1
β β) |
11 | | lencl 14479 |
. . . . . . . . 9
β’ (πΉ β Word β β
(β―βπΉ) β
β0) |
12 | 11 | nn0cnd 12530 |
. . . . . . . 8
β’ (πΉ β Word β β
(β―βπΉ) β
β) |
13 | | ccatlen 14521 |
. . . . . . . . . 10
β’
((β¨β0ββ© β Word β β§ πΉ β Word β) β
(β―β(β¨β0ββ© ++ πΉ)) =
((β―ββ¨β0ββ©) + (β―βπΉ))) |
14 | 5, 13 | mpan 687 |
. . . . . . . . 9
β’ (πΉ β Word β β
(β―β(β¨β0ββ© ++ πΉ)) =
((β―ββ¨β0ββ©) + (β―βπΉ))) |
15 | | s1len 14552 |
. . . . . . . . . 10
β’
(β―ββ¨β0ββ©) = 1 |
16 | 15 | oveq1i 7411 |
. . . . . . . . 9
β’
((β―ββ¨β0ββ©) + (β―βπΉ)) = (1 + (β―βπΉ)) |
17 | 14, 16 | eqtrdi 2780 |
. . . . . . . 8
β’ (πΉ β Word β β
(β―β(β¨β0ββ© ++ πΉ)) = (1 + (β―βπΉ))) |
18 | 10, 12, 17 | comraddd 11424 |
. . . . . . 7
β’ (πΉ β Word β β
(β―β(β¨β0ββ© ++ πΉ)) = ((β―βπΉ) + 1)) |
19 | 18 | oveq2d 7417 |
. . . . . 6
β’ (πΉ β Word β β
(0..^(β―β(β¨β0ββ© ++ πΉ))) = (0..^((β―βπΉ) + 1))) |
20 | 19 | feq2d 6693 |
. . . . 5
β’ (πΉ β Word β β
((β¨β0ββ© ++ πΉ):(0..^(β―β(β¨β0ββ©
++ πΉ)))βΆβ β
(β¨β0ββ© ++ πΉ):(0..^((β―βπΉ) + 1))βΆβ)) |
21 | 9, 20 | mpbid 231 |
. . . 4
β’ (πΉ β Word β β
(β¨β0ββ© ++ πΉ):(0..^((β―βπΉ) + 1))βΆβ) |
22 | 21 | adantr 480 |
. . 3
β’ ((πΉ β Word β β§ πΆ β β+)
β (β¨β0ββ© ++ πΉ):(0..^((β―βπΉ) + 1))βΆβ) |
23 | | remulcl 11190 |
. . . . 5
β’ ((π₯ β β β§ π¦ β β) β (π₯ Β· π¦) β β) |
24 | 23 | adantl 481 |
. . . 4
β’ (((πΉ β Word β β§ πΆ β β+)
β§ (π₯ β β
β§ π¦ β β))
β (π₯ Β· π¦) β
β) |
25 | | ccatcl 14520 |
. . . . . . . 8
β’ ((πΉ β Word β β§
β¨β0ββ© β Word β) β (πΉ ++ β¨β0ββ©) β Word
β) |
26 | 5, 25 | mpan2 688 |
. . . . . . 7
β’ (πΉ β Word β β
(πΉ ++
β¨β0ββ©) β Word β) |
27 | | wrdf 14465 |
. . . . . . 7
β’ ((πΉ ++ β¨β0ββ©)
β Word β β (πΉ ++
β¨β0ββ©):(0..^(β―β(πΉ ++
β¨β0ββ©)))βΆβ) |
28 | 26, 27 | syl 17 |
. . . . . 6
β’ (πΉ β Word β β
(πΉ ++
β¨β0ββ©):(0..^(β―β(πΉ ++
β¨β0ββ©)))βΆβ) |
29 | | ccatws1len 14566 |
. . . . . . . 8
β’ (πΉ β Word β β
(β―β(πΉ ++
β¨β0ββ©)) = ((β―βπΉ) + 1)) |
30 | 29 | oveq2d 7417 |
. . . . . . 7
β’ (πΉ β Word β β
(0..^(β―β(πΉ ++
β¨β0ββ©))) = (0..^((β―βπΉ) + 1))) |
31 | 30 | feq2d 6693 |
. . . . . 6
β’ (πΉ β Word β β
((πΉ ++
β¨β0ββ©):(0..^(β―β(πΉ ++
β¨β0ββ©)))βΆβ β (πΉ ++
β¨β0ββ©):(0..^((β―βπΉ) + 1))βΆβ)) |
32 | 28, 31 | mpbid 231 |
. . . . 5
β’ (πΉ β Word β β
(πΉ ++
β¨β0ββ©):(0..^((β―βπΉ) + 1))βΆβ) |
33 | 32 | adantr 480 |
. . . 4
β’ ((πΉ β Word β β§ πΆ β β+)
β (πΉ ++
β¨β0ββ©):(0..^((β―βπΉ) + 1))βΆβ) |
34 | | ovexd 7436 |
. . . 4
β’ ((πΉ β Word β β§ πΆ β β+)
β (0..^((β―βπΉ) + 1)) β V) |
35 | | rpre 12978 |
. . . . 5
β’ (πΆ β β+
β πΆ β
β) |
36 | 35 | adantl 481 |
. . . 4
β’ ((πΉ β Word β β§ πΆ β β+)
β πΆ β
β) |
37 | 24, 33, 34, 36 | ofcf 33556 |
. . 3
β’ ((πΉ β Word β β§ πΆ β β+)
β ((πΉ ++
β¨β0ββ©) βf/c Β· πΆ):(0..^((β―βπΉ) + 1))βΆβ) |
38 | | inidm 4210 |
. . 3
β’
((0..^((β―βπΉ) + 1)) β© (0..^((β―βπΉ) + 1))) =
(0..^((β―βπΉ) +
1)) |
39 | 2, 22, 37, 34, 34, 38 | off 7681 |
. 2
β’ ((πΉ β Word β β§ πΆ β β+)
β ((β¨β0ββ© ++ πΉ) βf β ((πΉ ++ β¨β0ββ©)
βf/c Β· πΆ)):(0..^((β―βπΉ) + 1))βΆβ) |
40 | | signs.h |
. . 3
β’ π» = ((β¨β0ββ©
++ πΉ) βf
β ((πΉ ++
β¨β0ββ©) βf/c Β· πΆ)) |
41 | 40 | feq1i 6698 |
. 2
β’ (π»:(0..^((β―βπΉ) + 1))βΆβ β
((β¨β0ββ© ++ πΉ) βf β ((πΉ ++ β¨β0ββ©)
βf/c Β· πΆ)):(0..^((β―βπΉ) + 1))βΆβ) |
42 | 39, 41 | sylibr 233 |
1
β’ ((πΉ β Word β β§ πΆ β β+)
β π»:(0..^((β―βπΉ) + 1))βΆβ) |