Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > signshf | Structured version Visualization version GIF version |
Description: 𝐻, corresponding to the word 𝐹 multiplied by (𝑥 − 𝐶), as a function. (Contributed by Thierry Arnoux, 29-Sep-2018.) |
Ref | Expression |
---|---|
signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
signs.h | ⊢ 𝐻 = ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)) |
Ref | Expression |
---|---|
signshf | ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resubcl 11215 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 − 𝑦) ∈ ℝ) | |
2 | 1 | adantl 481 | . . 3 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 − 𝑦) ∈ ℝ) |
3 | 0re 10908 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
4 | s1cl 14235 | . . . . . . . 8 ⊢ (0 ∈ ℝ → 〈“0”〉 ∈ Word ℝ) | |
5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ 〈“0”〉 ∈ Word ℝ |
6 | ccatcl 14205 | . . . . . . 7 ⊢ ((〈“0”〉 ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ) → (〈“0”〉 ++ 𝐹) ∈ Word ℝ) | |
7 | 5, 6 | mpan 686 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → (〈“0”〉 ++ 𝐹) ∈ Word ℝ) |
8 | wrdf 14150 | . . . . . 6 ⊢ ((〈“0”〉 ++ 𝐹) ∈ Word ℝ → (〈“0”〉 ++ 𝐹):(0..^(♯‘(〈“0”〉 ++ 𝐹)))⟶ℝ) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ Word ℝ → (〈“0”〉 ++ 𝐹):(0..^(♯‘(〈“0”〉 ++ 𝐹)))⟶ℝ) |
10 | 1cnd 10901 | . . . . . . . 8 ⊢ (𝐹 ∈ Word ℝ → 1 ∈ ℂ) | |
11 | lencl 14164 | . . . . . . . . 9 ⊢ (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0) | |
12 | 11 | nn0cnd 12225 | . . . . . . . 8 ⊢ (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℂ) |
13 | ccatlen 14206 | . . . . . . . . . 10 ⊢ ((〈“0”〉 ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ) → (♯‘(〈“0”〉 ++ 𝐹)) = ((♯‘〈“0”〉) + (♯‘𝐹))) | |
14 | 5, 13 | mpan 686 | . . . . . . . . 9 ⊢ (𝐹 ∈ Word ℝ → (♯‘(〈“0”〉 ++ 𝐹)) = ((♯‘〈“0”〉) + (♯‘𝐹))) |
15 | s1len 14239 | . . . . . . . . . 10 ⊢ (♯‘〈“0”〉) = 1 | |
16 | 15 | oveq1i 7265 | . . . . . . . . 9 ⊢ ((♯‘〈“0”〉) + (♯‘𝐹)) = (1 + (♯‘𝐹)) |
17 | 14, 16 | eqtrdi 2795 | . . . . . . . 8 ⊢ (𝐹 ∈ Word ℝ → (♯‘(〈“0”〉 ++ 𝐹)) = (1 + (♯‘𝐹))) |
18 | 10, 12, 17 | comraddd 11119 | . . . . . . 7 ⊢ (𝐹 ∈ Word ℝ → (♯‘(〈“0”〉 ++ 𝐹)) = ((♯‘𝐹) + 1)) |
19 | 18 | oveq2d 7271 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → (0..^(♯‘(〈“0”〉 ++ 𝐹))) = (0..^((♯‘𝐹) + 1))) |
20 | 19 | feq2d 6570 | . . . . 5 ⊢ (𝐹 ∈ Word ℝ → ((〈“0”〉 ++ 𝐹):(0..^(♯‘(〈“0”〉 ++ 𝐹)))⟶ℝ ↔ (〈“0”〉 ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ)) |
21 | 9, 20 | mpbid 231 | . . . 4 ⊢ (𝐹 ∈ Word ℝ → (〈“0”〉 ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ) |
22 | 21 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (〈“0”〉 ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ) |
23 | remulcl 10887 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) | |
24 | 23 | adantl 481 | . . . 4 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ) |
25 | ccatcl 14205 | . . . . . . . 8 ⊢ ((𝐹 ∈ Word ℝ ∧ 〈“0”〉 ∈ Word ℝ) → (𝐹 ++ 〈“0”〉) ∈ Word ℝ) | |
26 | 5, 25 | mpan2 687 | . . . . . . 7 ⊢ (𝐹 ∈ Word ℝ → (𝐹 ++ 〈“0”〉) ∈ Word ℝ) |
27 | wrdf 14150 | . . . . . . 7 ⊢ ((𝐹 ++ 〈“0”〉) ∈ Word ℝ → (𝐹 ++ 〈“0”〉):(0..^(♯‘(𝐹 ++ 〈“0”〉)))⟶ℝ) | |
28 | 26, 27 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → (𝐹 ++ 〈“0”〉):(0..^(♯‘(𝐹 ++ 〈“0”〉)))⟶ℝ) |
29 | ccatws1len 14253 | . . . . . . . 8 ⊢ (𝐹 ∈ Word ℝ → (♯‘(𝐹 ++ 〈“0”〉)) = ((♯‘𝐹) + 1)) | |
30 | 29 | oveq2d 7271 | . . . . . . 7 ⊢ (𝐹 ∈ Word ℝ → (0..^(♯‘(𝐹 ++ 〈“0”〉))) = (0..^((♯‘𝐹) + 1))) |
31 | 30 | feq2d 6570 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → ((𝐹 ++ 〈“0”〉):(0..^(♯‘(𝐹 ++ 〈“0”〉)))⟶ℝ ↔ (𝐹 ++ 〈“0”〉):(0..^((♯‘𝐹) + 1))⟶ℝ)) |
32 | 28, 31 | mpbid 231 | . . . . 5 ⊢ (𝐹 ∈ Word ℝ → (𝐹 ++ 〈“0”〉):(0..^((♯‘𝐹) + 1))⟶ℝ) |
33 | 32 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (𝐹 ++ 〈“0”〉):(0..^((♯‘𝐹) + 1))⟶ℝ) |
34 | ovexd 7290 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (0..^((♯‘𝐹) + 1)) ∈ V) | |
35 | rpre 12667 | . . . . 5 ⊢ (𝐶 ∈ ℝ+ → 𝐶 ∈ ℝ) | |
36 | 35 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ) |
37 | 24, 33, 34, 36 | ofcf 31971 | . . 3 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶):(0..^((♯‘𝐹) + 1))⟶ℝ) |
38 | inidm 4149 | . . 3 ⊢ ((0..^((♯‘𝐹) + 1)) ∩ (0..^((♯‘𝐹) + 1))) = (0..^((♯‘𝐹) + 1)) | |
39 | 2, 22, 37, 34, 34, 38 | off 7529 | . 2 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)):(0..^((♯‘𝐹) + 1))⟶ℝ) |
40 | signs.h | . . 3 ⊢ 𝐻 = ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)) | |
41 | 40 | feq1i 6575 | . 2 ⊢ (𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ ↔ ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)):(0..^((♯‘𝐹) + 1))⟶ℝ) |
42 | 39, 41 | sylibr 233 | 1 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ifcif 4456 {cpr 4560 {ctp 4562 〈cop 4564 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ∘f cof 7509 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 − cmin 11135 -cneg 11136 ℝ+crp 12659 ...cfz 13168 ..^cfzo 13311 ♯chash 13972 Word cword 14145 ++ cconcat 14201 〈“cs1 14228 sgncsgn 14725 Σcsu 15325 ndxcnx 16822 Basecbs 16840 +gcplusg 16888 Σg cgsu 17068 ∘f/c cofc 31963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-ofc 31964 |
This theorem is referenced by: signshwrd 32468 signshlen 32469 |
Copyright terms: Public domain | W3C validator |