Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signshf Structured version   Visualization version   GIF version

Theorem signshf 32567
Description: 𝐻, corresponding to the word 𝐹 multiplied by (𝑥𝐶), as a function. (Contributed by Thierry Arnoux, 29-Sep-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signs.h 𝐻 = ((⟨“0”⟩ ++ 𝐹) ∘f − ((𝐹 ++ ⟨“0”⟩) ∘f/c · 𝐶))
Assertion
Ref Expression
signshf ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ)
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛
Allowed substitution hints:   𝐶(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝐻(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signshf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resubcl 11285 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
21adantl 482 . . 3 (((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦) ∈ ℝ)
3 0re 10977 . . . . . . . 8 0 ∈ ℝ
4 s1cl 14307 . . . . . . . 8 (0 ∈ ℝ → ⟨“0”⟩ ∈ Word ℝ)
53, 4ax-mp 5 . . . . . . 7 ⟨“0”⟩ ∈ Word ℝ
6 ccatcl 14277 . . . . . . 7 ((⟨“0”⟩ ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ) → (⟨“0”⟩ ++ 𝐹) ∈ Word ℝ)
75, 6mpan 687 . . . . . 6 (𝐹 ∈ Word ℝ → (⟨“0”⟩ ++ 𝐹) ∈ Word ℝ)
8 wrdf 14222 . . . . . 6 ((⟨“0”⟩ ++ 𝐹) ∈ Word ℝ → (⟨“0”⟩ ++ 𝐹):(0..^(♯‘(⟨“0”⟩ ++ 𝐹)))⟶ℝ)
97, 8syl 17 . . . . 5 (𝐹 ∈ Word ℝ → (⟨“0”⟩ ++ 𝐹):(0..^(♯‘(⟨“0”⟩ ++ 𝐹)))⟶ℝ)
10 1cnd 10970 . . . . . . . 8 (𝐹 ∈ Word ℝ → 1 ∈ ℂ)
11 lencl 14236 . . . . . . . . 9 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0)
1211nn0cnd 12295 . . . . . . . 8 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℂ)
13 ccatlen 14278 . . . . . . . . . 10 ((⟨“0”⟩ ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ) → (♯‘(⟨“0”⟩ ++ 𝐹)) = ((♯‘⟨“0”⟩) + (♯‘𝐹)))
145, 13mpan 687 . . . . . . . . 9 (𝐹 ∈ Word ℝ → (♯‘(⟨“0”⟩ ++ 𝐹)) = ((♯‘⟨“0”⟩) + (♯‘𝐹)))
15 s1len 14311 . . . . . . . . . 10 (♯‘⟨“0”⟩) = 1
1615oveq1i 7285 . . . . . . . . 9 ((♯‘⟨“0”⟩) + (♯‘𝐹)) = (1 + (♯‘𝐹))
1714, 16eqtrdi 2794 . . . . . . . 8 (𝐹 ∈ Word ℝ → (♯‘(⟨“0”⟩ ++ 𝐹)) = (1 + (♯‘𝐹)))
1810, 12, 17comraddd 11189 . . . . . . 7 (𝐹 ∈ Word ℝ → (♯‘(⟨“0”⟩ ++ 𝐹)) = ((♯‘𝐹) + 1))
1918oveq2d 7291 . . . . . 6 (𝐹 ∈ Word ℝ → (0..^(♯‘(⟨“0”⟩ ++ 𝐹))) = (0..^((♯‘𝐹) + 1)))
2019feq2d 6586 . . . . 5 (𝐹 ∈ Word ℝ → ((⟨“0”⟩ ++ 𝐹):(0..^(♯‘(⟨“0”⟩ ++ 𝐹)))⟶ℝ ↔ (⟨“0”⟩ ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ))
219, 20mpbid 231 . . . 4 (𝐹 ∈ Word ℝ → (⟨“0”⟩ ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ)
2221adantr 481 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (⟨“0”⟩ ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ)
23 remulcl 10956 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
2423adantl 482 . . . 4 (((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
25 ccatcl 14277 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ ⟨“0”⟩ ∈ Word ℝ) → (𝐹 ++ ⟨“0”⟩) ∈ Word ℝ)
265, 25mpan2 688 . . . . . . 7 (𝐹 ∈ Word ℝ → (𝐹 ++ ⟨“0”⟩) ∈ Word ℝ)
27 wrdf 14222 . . . . . . 7 ((𝐹 ++ ⟨“0”⟩) ∈ Word ℝ → (𝐹 ++ ⟨“0”⟩):(0..^(♯‘(𝐹 ++ ⟨“0”⟩)))⟶ℝ)
2826, 27syl 17 . . . . . 6 (𝐹 ∈ Word ℝ → (𝐹 ++ ⟨“0”⟩):(0..^(♯‘(𝐹 ++ ⟨“0”⟩)))⟶ℝ)
29 ccatws1len 14325 . . . . . . . 8 (𝐹 ∈ Word ℝ → (♯‘(𝐹 ++ ⟨“0”⟩)) = ((♯‘𝐹) + 1))
3029oveq2d 7291 . . . . . . 7 (𝐹 ∈ Word ℝ → (0..^(♯‘(𝐹 ++ ⟨“0”⟩))) = (0..^((♯‘𝐹) + 1)))
3130feq2d 6586 . . . . . 6 (𝐹 ∈ Word ℝ → ((𝐹 ++ ⟨“0”⟩):(0..^(♯‘(𝐹 ++ ⟨“0”⟩)))⟶ℝ ↔ (𝐹 ++ ⟨“0”⟩):(0..^((♯‘𝐹) + 1))⟶ℝ))
3228, 31mpbid 231 . . . . 5 (𝐹 ∈ Word ℝ → (𝐹 ++ ⟨“0”⟩):(0..^((♯‘𝐹) + 1))⟶ℝ)
3332adantr 481 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (𝐹 ++ ⟨“0”⟩):(0..^((♯‘𝐹) + 1))⟶ℝ)
34 ovexd 7310 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (0..^((♯‘𝐹) + 1)) ∈ V)
35 rpre 12738 . . . . 5 (𝐶 ∈ ℝ+𝐶 ∈ ℝ)
3635adantl 482 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
3724, 33, 34, 36ofcf 32071 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐹 ++ ⟨“0”⟩) ∘f/c · 𝐶):(0..^((♯‘𝐹) + 1))⟶ℝ)
38 inidm 4152 . . 3 ((0..^((♯‘𝐹) + 1)) ∩ (0..^((♯‘𝐹) + 1))) = (0..^((♯‘𝐹) + 1))
392, 22, 37, 34, 34, 38off 7551 . 2 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((⟨“0”⟩ ++ 𝐹) ∘f − ((𝐹 ++ ⟨“0”⟩) ∘f/c · 𝐶)):(0..^((♯‘𝐹) + 1))⟶ℝ)
40 signs.h . . 3 𝐻 = ((⟨“0”⟩ ++ 𝐹) ∘f − ((𝐹 ++ ⟨“0”⟩) ∘f/c · 𝐶))
4140feq1i 6591 . 2 (𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ ↔ ((⟨“0”⟩ ++ 𝐹) ∘f − ((𝐹 ++ ⟨“0”⟩) ∘f/c · 𝐶)):(0..^((♯‘𝐹) + 1))⟶ℝ)
4239, 41sylibr 233 1 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  ifcif 4459  {cpr 4563  {ctp 4565  cop 4567  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  f cof 7531  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206  +crp 12730  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217   ++ cconcat 14273  ⟨“cs1 14300  sgncsgn 14797  Σcsu 15397  ndxcnx 16894  Basecbs 16912  +gcplusg 16962   Σg cgsu 17151  f/c cofc 32063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-ofc 32064
This theorem is referenced by:  signshwrd  32568  signshlen  32569
  Copyright terms: Public domain W3C validator