Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signshf Structured version   Visualization version   GIF version

Theorem signshf 31005
Description: 𝐻, corresponding to the word 𝐹 multiplied by (𝑥𝐶), as a function. (Contributed by Thierry Arnoux, 29-Sep-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signs.h 𝐻 = ((⟨“0”⟩ ++ 𝐹) ∘𝑓 − ((𝐹 ++ ⟨“0”⟩)∘𝑓/𝑐 · 𝐶))
Assertion
Ref Expression
signshf ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ)
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛
Allowed substitution hints:   𝐶(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝐻(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signshf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resubcl 10551 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
21adantl 467 . . 3 (((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦) ∈ ℝ)
3 0red 10247 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 0 ∈ ℝ)
43s1cld 13583 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ⟨“0”⟩ ∈ Word ℝ)
5 simpl 468 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐹 ∈ Word ℝ)
6 ccatcl 13556 . . . . . 6 ((⟨“0”⟩ ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ) → (⟨“0”⟩ ++ 𝐹) ∈ Word ℝ)
74, 5, 6syl2anc 573 . . . . 5 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (⟨“0”⟩ ++ 𝐹) ∈ Word ℝ)
8 wrdf 13506 . . . . 5 ((⟨“0”⟩ ++ 𝐹) ∈ Word ℝ → (⟨“0”⟩ ++ 𝐹):(0..^(♯‘(⟨“0”⟩ ++ 𝐹)))⟶ℝ)
97, 8syl 17 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (⟨“0”⟩ ++ 𝐹):(0..^(♯‘(⟨“0”⟩ ++ 𝐹)))⟶ℝ)
10 ccatlen 13557 . . . . . . . . 9 ((⟨“0”⟩ ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ) → (♯‘(⟨“0”⟩ ++ 𝐹)) = ((♯‘⟨“0”⟩) + (♯‘𝐹)))
114, 5, 10syl2anc 573 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘(⟨“0”⟩ ++ 𝐹)) = ((♯‘⟨“0”⟩) + (♯‘𝐹)))
12 s1len 13586 . . . . . . . . 9 (♯‘⟨“0”⟩) = 1
1312oveq1i 6806 . . . . . . . 8 ((♯‘⟨“0”⟩) + (♯‘𝐹)) = (1 + (♯‘𝐹))
1411, 13syl6eq 2821 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘(⟨“0”⟩ ++ 𝐹)) = (1 + (♯‘𝐹)))
15 1cnd 10262 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 1 ∈ ℂ)
16 wrdfin 13519 . . . . . . . . . 10 (𝐹 ∈ Word ℝ → 𝐹 ∈ Fin)
17 hashcl 13349 . . . . . . . . . 10 (𝐹 ∈ Fin → (♯‘𝐹) ∈ ℕ0)
185, 16, 173syl 18 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘𝐹) ∈ ℕ0)
1918nn0cnd 11560 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘𝐹) ∈ ℂ)
2015, 19addcomd 10444 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (1 + (♯‘𝐹)) = ((♯‘𝐹) + 1))
2114, 20eqtrd 2805 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘(⟨“0”⟩ ++ 𝐹)) = ((♯‘𝐹) + 1))
2221oveq2d 6812 . . . . 5 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (0..^(♯‘(⟨“0”⟩ ++ 𝐹))) = (0..^((♯‘𝐹) + 1)))
2322feq2d 6170 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((⟨“0”⟩ ++ 𝐹):(0..^(♯‘(⟨“0”⟩ ++ 𝐹)))⟶ℝ ↔ (⟨“0”⟩ ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ))
249, 23mpbid 222 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (⟨“0”⟩ ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ)
25 remulcl 10227 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
2625adantl 467 . . . 4 (((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
27 ccatcl 13556 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ ⟨“0”⟩ ∈ Word ℝ) → (𝐹 ++ ⟨“0”⟩) ∈ Word ℝ)
284, 27syldan 579 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (𝐹 ++ ⟨“0”⟩) ∈ Word ℝ)
29 wrdf 13506 . . . . . 6 ((𝐹 ++ ⟨“0”⟩) ∈ Word ℝ → (𝐹 ++ ⟨“0”⟩):(0..^(♯‘(𝐹 ++ ⟨“0”⟩)))⟶ℝ)
3028, 29syl 17 . . . . 5 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (𝐹 ++ ⟨“0”⟩):(0..^(♯‘(𝐹 ++ ⟨“0”⟩)))⟶ℝ)
31 ccatlen 13557 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ ⟨“0”⟩ ∈ Word ℝ) → (♯‘(𝐹 ++ ⟨“0”⟩)) = ((♯‘𝐹) + (♯‘⟨“0”⟩)))
324, 31syldan 579 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘(𝐹 ++ ⟨“0”⟩)) = ((♯‘𝐹) + (♯‘⟨“0”⟩)))
3312oveq2i 6807 . . . . . . . 8 ((♯‘𝐹) + (♯‘⟨“0”⟩)) = ((♯‘𝐹) + 1)
3432, 33syl6eq 2821 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘(𝐹 ++ ⟨“0”⟩)) = ((♯‘𝐹) + 1))
3534oveq2d 6812 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (0..^(♯‘(𝐹 ++ ⟨“0”⟩))) = (0..^((♯‘𝐹) + 1)))
3635feq2d 6170 . . . . 5 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐹 ++ ⟨“0”⟩):(0..^(♯‘(𝐹 ++ ⟨“0”⟩)))⟶ℝ ↔ (𝐹 ++ ⟨“0”⟩):(0..^((♯‘𝐹) + 1))⟶ℝ))
3730, 36mpbid 222 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (𝐹 ++ ⟨“0”⟩):(0..^((♯‘𝐹) + 1))⟶ℝ)
38 ovexd 6829 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (0..^((♯‘𝐹) + 1)) ∈ V)
39 simpr 471 . . . . 5 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ+)
4039rpred 12075 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
4126, 37, 38, 40ofcf 30505 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐹 ++ ⟨“0”⟩)∘𝑓/𝑐 · 𝐶):(0..^((♯‘𝐹) + 1))⟶ℝ)
42 inidm 3971 . . 3 ((0..^((♯‘𝐹) + 1)) ∩ (0..^((♯‘𝐹) + 1))) = (0..^((♯‘𝐹) + 1))
432, 24, 41, 38, 38, 42off 7063 . 2 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((⟨“0”⟩ ++ 𝐹) ∘𝑓 − ((𝐹 ++ ⟨“0”⟩)∘𝑓/𝑐 · 𝐶)):(0..^((♯‘𝐹) + 1))⟶ℝ)
44 signs.h . . 3 𝐻 = ((⟨“0”⟩ ++ 𝐹) ∘𝑓 − ((𝐹 ++ ⟨“0”⟩)∘𝑓/𝑐 · 𝐶))
4544feq1i 6175 . 2 (𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ ↔ ((⟨“0”⟩ ++ 𝐹) ∘𝑓 − ((𝐹 ++ ⟨“0”⟩)∘𝑓/𝑐 · 𝐶)):(0..^((♯‘𝐹) + 1))⟶ℝ)
4643, 45sylibr 224 1 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  Vcvv 3351  ifcif 4226  {cpr 4319  {ctp 4321  cop 4323  cmpt 4864  wf 6026  cfv 6030  (class class class)co 6796  cmpt2 6798  𝑓 cof 7046  Fincfn 8113  cr 10141  0cc0 10142  1c1 10143   + caddc 10145   · cmul 10147  cmin 10472  -cneg 10473  0cn0 11499  +crp 12035  ...cfz 12533  ..^cfzo 12673  chash 13321  Word cword 13487   ++ cconcat 13489  ⟨“cs1 13490  sgncsgn 14034  Σcsu 14624  ndxcnx 16061  Basecbs 16064  +gcplusg 16149   Σg cgsu 16309  𝑓/𝑐cofc 30497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8969  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-n0 11500  df-z 11585  df-uz 11894  df-rp 12036  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13495  df-concat 13497  df-s1 13498  df-ofc 30498
This theorem is referenced by:  signshwrd  31006  signshlen  31007
  Copyright terms: Public domain W3C validator