| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signshf | Structured version Visualization version GIF version | ||
| Description: 𝐻, corresponding to the word 𝐹 multiplied by (𝑥 − 𝐶), as a function. (Contributed by Thierry Arnoux, 29-Sep-2018.) |
| Ref | Expression |
|---|---|
| signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
| signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
| signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
| signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
| signs.h | ⊢ 𝐻 = ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)) |
| Ref | Expression |
|---|---|
| signshf | ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubcl 11425 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 − 𝑦) ∈ ℝ) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 − 𝑦) ∈ ℝ) |
| 3 | 0re 11114 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 4 | s1cl 14510 | . . . . . . . 8 ⊢ (0 ∈ ℝ → 〈“0”〉 ∈ Word ℝ) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ 〈“0”〉 ∈ Word ℝ |
| 6 | ccatcl 14481 | . . . . . . 7 ⊢ ((〈“0”〉 ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ) → (〈“0”〉 ++ 𝐹) ∈ Word ℝ) | |
| 7 | 5, 6 | mpan 690 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → (〈“0”〉 ++ 𝐹) ∈ Word ℝ) |
| 8 | wrdf 14425 | . . . . . 6 ⊢ ((〈“0”〉 ++ 𝐹) ∈ Word ℝ → (〈“0”〉 ++ 𝐹):(0..^(♯‘(〈“0”〉 ++ 𝐹)))⟶ℝ) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ Word ℝ → (〈“0”〉 ++ 𝐹):(0..^(♯‘(〈“0”〉 ++ 𝐹)))⟶ℝ) |
| 10 | 1cnd 11107 | . . . . . . . 8 ⊢ (𝐹 ∈ Word ℝ → 1 ∈ ℂ) | |
| 11 | lencl 14440 | . . . . . . . . 9 ⊢ (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0) | |
| 12 | 11 | nn0cnd 12444 | . . . . . . . 8 ⊢ (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℂ) |
| 13 | ccatlen 14482 | . . . . . . . . . 10 ⊢ ((〈“0”〉 ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ) → (♯‘(〈“0”〉 ++ 𝐹)) = ((♯‘〈“0”〉) + (♯‘𝐹))) | |
| 14 | 5, 13 | mpan 690 | . . . . . . . . 9 ⊢ (𝐹 ∈ Word ℝ → (♯‘(〈“0”〉 ++ 𝐹)) = ((♯‘〈“0”〉) + (♯‘𝐹))) |
| 15 | s1len 14514 | . . . . . . . . . 10 ⊢ (♯‘〈“0”〉) = 1 | |
| 16 | 15 | oveq1i 7356 | . . . . . . . . 9 ⊢ ((♯‘〈“0”〉) + (♯‘𝐹)) = (1 + (♯‘𝐹)) |
| 17 | 14, 16 | eqtrdi 2782 | . . . . . . . 8 ⊢ (𝐹 ∈ Word ℝ → (♯‘(〈“0”〉 ++ 𝐹)) = (1 + (♯‘𝐹))) |
| 18 | 10, 12, 17 | comraddd 11327 | . . . . . . 7 ⊢ (𝐹 ∈ Word ℝ → (♯‘(〈“0”〉 ++ 𝐹)) = ((♯‘𝐹) + 1)) |
| 19 | 18 | oveq2d 7362 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → (0..^(♯‘(〈“0”〉 ++ 𝐹))) = (0..^((♯‘𝐹) + 1))) |
| 20 | 19 | feq2d 6635 | . . . . 5 ⊢ (𝐹 ∈ Word ℝ → ((〈“0”〉 ++ 𝐹):(0..^(♯‘(〈“0”〉 ++ 𝐹)))⟶ℝ ↔ (〈“0”〉 ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ)) |
| 21 | 9, 20 | mpbid 232 | . . . 4 ⊢ (𝐹 ∈ Word ℝ → (〈“0”〉 ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ) |
| 22 | 21 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (〈“0”〉 ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ) |
| 23 | remulcl 11091 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) | |
| 24 | 23 | adantl 481 | . . . 4 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ) |
| 25 | ccatcl 14481 | . . . . . . . 8 ⊢ ((𝐹 ∈ Word ℝ ∧ 〈“0”〉 ∈ Word ℝ) → (𝐹 ++ 〈“0”〉) ∈ Word ℝ) | |
| 26 | 5, 25 | mpan2 691 | . . . . . . 7 ⊢ (𝐹 ∈ Word ℝ → (𝐹 ++ 〈“0”〉) ∈ Word ℝ) |
| 27 | wrdf 14425 | . . . . . . 7 ⊢ ((𝐹 ++ 〈“0”〉) ∈ Word ℝ → (𝐹 ++ 〈“0”〉):(0..^(♯‘(𝐹 ++ 〈“0”〉)))⟶ℝ) | |
| 28 | 26, 27 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → (𝐹 ++ 〈“0”〉):(0..^(♯‘(𝐹 ++ 〈“0”〉)))⟶ℝ) |
| 29 | ccatws1len 14528 | . . . . . . . 8 ⊢ (𝐹 ∈ Word ℝ → (♯‘(𝐹 ++ 〈“0”〉)) = ((♯‘𝐹) + 1)) | |
| 30 | 29 | oveq2d 7362 | . . . . . . 7 ⊢ (𝐹 ∈ Word ℝ → (0..^(♯‘(𝐹 ++ 〈“0”〉))) = (0..^((♯‘𝐹) + 1))) |
| 31 | 30 | feq2d 6635 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → ((𝐹 ++ 〈“0”〉):(0..^(♯‘(𝐹 ++ 〈“0”〉)))⟶ℝ ↔ (𝐹 ++ 〈“0”〉):(0..^((♯‘𝐹) + 1))⟶ℝ)) |
| 32 | 28, 31 | mpbid 232 | . . . . 5 ⊢ (𝐹 ∈ Word ℝ → (𝐹 ++ 〈“0”〉):(0..^((♯‘𝐹) + 1))⟶ℝ) |
| 33 | 32 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (𝐹 ++ 〈“0”〉):(0..^((♯‘𝐹) + 1))⟶ℝ) |
| 34 | ovexd 7381 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (0..^((♯‘𝐹) + 1)) ∈ V) | |
| 35 | rpre 12899 | . . . . 5 ⊢ (𝐶 ∈ ℝ+ → 𝐶 ∈ ℝ) | |
| 36 | 35 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ) |
| 37 | 24, 33, 34, 36 | ofcf 34116 | . . 3 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶):(0..^((♯‘𝐹) + 1))⟶ℝ) |
| 38 | inidm 4174 | . . 3 ⊢ ((0..^((♯‘𝐹) + 1)) ∩ (0..^((♯‘𝐹) + 1))) = (0..^((♯‘𝐹) + 1)) | |
| 39 | 2, 22, 37, 34, 34, 38 | off 7628 | . 2 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)):(0..^((♯‘𝐹) + 1))⟶ℝ) |
| 40 | signs.h | . . 3 ⊢ 𝐻 = ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)) | |
| 41 | 40 | feq1i 6642 | . 2 ⊢ (𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ ↔ ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)):(0..^((♯‘𝐹) + 1))⟶ℝ) |
| 42 | 39, 41 | sylibr 234 | 1 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ifcif 4472 {cpr 4575 {ctp 4577 〈cop 4579 ↦ cmpt 5170 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ∘f cof 7608 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 − cmin 11344 -cneg 11345 ℝ+crp 12890 ...cfz 13407 ..^cfzo 13554 ♯chash 14237 Word cword 14420 ++ cconcat 14477 〈“cs1 14503 sgncsgn 14993 Σcsu 15593 ndxcnx 17104 Basecbs 17120 +gcplusg 17161 Σg cgsu 17344 ∘f/c cofc 34108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 df-ofc 34109 |
| This theorem is referenced by: signshwrd 34602 signshlen 34603 |
| Copyright terms: Public domain | W3C validator |