| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signshf | Structured version Visualization version GIF version | ||
| Description: 𝐻, corresponding to the word 𝐹 multiplied by (𝑥 − 𝐶), as a function. (Contributed by Thierry Arnoux, 29-Sep-2018.) |
| Ref | Expression |
|---|---|
| signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
| signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
| signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
| signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
| signs.h | ⊢ 𝐻 = ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)) |
| Ref | Expression |
|---|---|
| signshf | ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubcl 11428 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 − 𝑦) ∈ ℝ) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 − 𝑦) ∈ ℝ) |
| 3 | 0re 11117 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 4 | s1cl 14509 | . . . . . . . 8 ⊢ (0 ∈ ℝ → 〈“0”〉 ∈ Word ℝ) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ 〈“0”〉 ∈ Word ℝ |
| 6 | ccatcl 14481 | . . . . . . 7 ⊢ ((〈“0”〉 ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ) → (〈“0”〉 ++ 𝐹) ∈ Word ℝ) | |
| 7 | 5, 6 | mpan 690 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → (〈“0”〉 ++ 𝐹) ∈ Word ℝ) |
| 8 | wrdf 14425 | . . . . . 6 ⊢ ((〈“0”〉 ++ 𝐹) ∈ Word ℝ → (〈“0”〉 ++ 𝐹):(0..^(♯‘(〈“0”〉 ++ 𝐹)))⟶ℝ) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ Word ℝ → (〈“0”〉 ++ 𝐹):(0..^(♯‘(〈“0”〉 ++ 𝐹)))⟶ℝ) |
| 10 | 1cnd 11110 | . . . . . . . 8 ⊢ (𝐹 ∈ Word ℝ → 1 ∈ ℂ) | |
| 11 | lencl 14440 | . . . . . . . . 9 ⊢ (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0) | |
| 12 | 11 | nn0cnd 12447 | . . . . . . . 8 ⊢ (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℂ) |
| 13 | ccatlen 14482 | . . . . . . . . . 10 ⊢ ((〈“0”〉 ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ) → (♯‘(〈“0”〉 ++ 𝐹)) = ((♯‘〈“0”〉) + (♯‘𝐹))) | |
| 14 | 5, 13 | mpan 690 | . . . . . . . . 9 ⊢ (𝐹 ∈ Word ℝ → (♯‘(〈“0”〉 ++ 𝐹)) = ((♯‘〈“0”〉) + (♯‘𝐹))) |
| 15 | s1len 14513 | . . . . . . . . . 10 ⊢ (♯‘〈“0”〉) = 1 | |
| 16 | 15 | oveq1i 7359 | . . . . . . . . 9 ⊢ ((♯‘〈“0”〉) + (♯‘𝐹)) = (1 + (♯‘𝐹)) |
| 17 | 14, 16 | eqtrdi 2780 | . . . . . . . 8 ⊢ (𝐹 ∈ Word ℝ → (♯‘(〈“0”〉 ++ 𝐹)) = (1 + (♯‘𝐹))) |
| 18 | 10, 12, 17 | comraddd 11330 | . . . . . . 7 ⊢ (𝐹 ∈ Word ℝ → (♯‘(〈“0”〉 ++ 𝐹)) = ((♯‘𝐹) + 1)) |
| 19 | 18 | oveq2d 7365 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → (0..^(♯‘(〈“0”〉 ++ 𝐹))) = (0..^((♯‘𝐹) + 1))) |
| 20 | 19 | feq2d 6636 | . . . . 5 ⊢ (𝐹 ∈ Word ℝ → ((〈“0”〉 ++ 𝐹):(0..^(♯‘(〈“0”〉 ++ 𝐹)))⟶ℝ ↔ (〈“0”〉 ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ)) |
| 21 | 9, 20 | mpbid 232 | . . . 4 ⊢ (𝐹 ∈ Word ℝ → (〈“0”〉 ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ) |
| 22 | 21 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (〈“0”〉 ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ) |
| 23 | remulcl 11094 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) | |
| 24 | 23 | adantl 481 | . . . 4 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ) |
| 25 | ccatcl 14481 | . . . . . . . 8 ⊢ ((𝐹 ∈ Word ℝ ∧ 〈“0”〉 ∈ Word ℝ) → (𝐹 ++ 〈“0”〉) ∈ Word ℝ) | |
| 26 | 5, 25 | mpan2 691 | . . . . . . 7 ⊢ (𝐹 ∈ Word ℝ → (𝐹 ++ 〈“0”〉) ∈ Word ℝ) |
| 27 | wrdf 14425 | . . . . . . 7 ⊢ ((𝐹 ++ 〈“0”〉) ∈ Word ℝ → (𝐹 ++ 〈“0”〉):(0..^(♯‘(𝐹 ++ 〈“0”〉)))⟶ℝ) | |
| 28 | 26, 27 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → (𝐹 ++ 〈“0”〉):(0..^(♯‘(𝐹 ++ 〈“0”〉)))⟶ℝ) |
| 29 | ccatws1len 14527 | . . . . . . . 8 ⊢ (𝐹 ∈ Word ℝ → (♯‘(𝐹 ++ 〈“0”〉)) = ((♯‘𝐹) + 1)) | |
| 30 | 29 | oveq2d 7365 | . . . . . . 7 ⊢ (𝐹 ∈ Word ℝ → (0..^(♯‘(𝐹 ++ 〈“0”〉))) = (0..^((♯‘𝐹) + 1))) |
| 31 | 30 | feq2d 6636 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → ((𝐹 ++ 〈“0”〉):(0..^(♯‘(𝐹 ++ 〈“0”〉)))⟶ℝ ↔ (𝐹 ++ 〈“0”〉):(0..^((♯‘𝐹) + 1))⟶ℝ)) |
| 32 | 28, 31 | mpbid 232 | . . . . 5 ⊢ (𝐹 ∈ Word ℝ → (𝐹 ++ 〈“0”〉):(0..^((♯‘𝐹) + 1))⟶ℝ) |
| 33 | 32 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (𝐹 ++ 〈“0”〉):(0..^((♯‘𝐹) + 1))⟶ℝ) |
| 34 | ovexd 7384 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (0..^((♯‘𝐹) + 1)) ∈ V) | |
| 35 | rpre 12902 | . . . . 5 ⊢ (𝐶 ∈ ℝ+ → 𝐶 ∈ ℝ) | |
| 36 | 35 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ) |
| 37 | 24, 33, 34, 36 | ofcf 34070 | . . 3 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶):(0..^((♯‘𝐹) + 1))⟶ℝ) |
| 38 | inidm 4178 | . . 3 ⊢ ((0..^((♯‘𝐹) + 1)) ∩ (0..^((♯‘𝐹) + 1))) = (0..^((♯‘𝐹) + 1)) | |
| 39 | 2, 22, 37, 34, 34, 38 | off 7631 | . 2 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)):(0..^((♯‘𝐹) + 1))⟶ℝ) |
| 40 | signs.h | . . 3 ⊢ 𝐻 = ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)) | |
| 41 | 40 | feq1i 6643 | . 2 ⊢ (𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ ↔ ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)):(0..^((♯‘𝐹) + 1))⟶ℝ) |
| 42 | 39, 41 | sylibr 234 | 1 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3436 ifcif 4476 {cpr 4579 {ctp 4581 〈cop 4583 ↦ cmpt 5173 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 ∘f cof 7611 ℝcr 11008 0cc0 11009 1c1 11010 + caddc 11012 · cmul 11014 − cmin 11347 -cneg 11348 ℝ+crp 12893 ...cfz 13410 ..^cfzo 13557 ♯chash 14237 Word cword 14420 ++ cconcat 14477 〈“cs1 14502 sgncsgn 14993 Σcsu 15593 ndxcnx 17104 Basecbs 17120 +gcplusg 17161 Σg cgsu 17344 ∘f/c cofc 34062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-fz 13411 df-fzo 13558 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14503 df-ofc 34063 |
| This theorem is referenced by: signshwrd 34557 signshlen 34558 |
| Copyright terms: Public domain | W3C validator |