|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signshf | Structured version Visualization version GIF version | ||
| Description: 𝐻, corresponding to the word 𝐹 multiplied by (𝑥 − 𝐶), as a function. (Contributed by Thierry Arnoux, 29-Sep-2018.) | 
| Ref | Expression | 
|---|---|
| signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | 
| signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | 
| signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | 
| signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | 
| signs.h | ⊢ 𝐻 = ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)) | 
| Ref | Expression | 
|---|---|
| signshf | ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | resubcl 11574 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 − 𝑦) ∈ ℝ) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 − 𝑦) ∈ ℝ) | 
| 3 | 0re 11264 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 4 | s1cl 14641 | . . . . . . . 8 ⊢ (0 ∈ ℝ → 〈“0”〉 ∈ Word ℝ) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ 〈“0”〉 ∈ Word ℝ | 
| 6 | ccatcl 14613 | . . . . . . 7 ⊢ ((〈“0”〉 ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ) → (〈“0”〉 ++ 𝐹) ∈ Word ℝ) | |
| 7 | 5, 6 | mpan 690 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → (〈“0”〉 ++ 𝐹) ∈ Word ℝ) | 
| 8 | wrdf 14558 | . . . . . 6 ⊢ ((〈“0”〉 ++ 𝐹) ∈ Word ℝ → (〈“0”〉 ++ 𝐹):(0..^(♯‘(〈“0”〉 ++ 𝐹)))⟶ℝ) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ Word ℝ → (〈“0”〉 ++ 𝐹):(0..^(♯‘(〈“0”〉 ++ 𝐹)))⟶ℝ) | 
| 10 | 1cnd 11257 | . . . . . . . 8 ⊢ (𝐹 ∈ Word ℝ → 1 ∈ ℂ) | |
| 11 | lencl 14572 | . . . . . . . . 9 ⊢ (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0) | |
| 12 | 11 | nn0cnd 12591 | . . . . . . . 8 ⊢ (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℂ) | 
| 13 | ccatlen 14614 | . . . . . . . . . 10 ⊢ ((〈“0”〉 ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ) → (♯‘(〈“0”〉 ++ 𝐹)) = ((♯‘〈“0”〉) + (♯‘𝐹))) | |
| 14 | 5, 13 | mpan 690 | . . . . . . . . 9 ⊢ (𝐹 ∈ Word ℝ → (♯‘(〈“0”〉 ++ 𝐹)) = ((♯‘〈“0”〉) + (♯‘𝐹))) | 
| 15 | s1len 14645 | . . . . . . . . . 10 ⊢ (♯‘〈“0”〉) = 1 | |
| 16 | 15 | oveq1i 7442 | . . . . . . . . 9 ⊢ ((♯‘〈“0”〉) + (♯‘𝐹)) = (1 + (♯‘𝐹)) | 
| 17 | 14, 16 | eqtrdi 2792 | . . . . . . . 8 ⊢ (𝐹 ∈ Word ℝ → (♯‘(〈“0”〉 ++ 𝐹)) = (1 + (♯‘𝐹))) | 
| 18 | 10, 12, 17 | comraddd 11476 | . . . . . . 7 ⊢ (𝐹 ∈ Word ℝ → (♯‘(〈“0”〉 ++ 𝐹)) = ((♯‘𝐹) + 1)) | 
| 19 | 18 | oveq2d 7448 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → (0..^(♯‘(〈“0”〉 ++ 𝐹))) = (0..^((♯‘𝐹) + 1))) | 
| 20 | 19 | feq2d 6721 | . . . . 5 ⊢ (𝐹 ∈ Word ℝ → ((〈“0”〉 ++ 𝐹):(0..^(♯‘(〈“0”〉 ++ 𝐹)))⟶ℝ ↔ (〈“0”〉 ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ)) | 
| 21 | 9, 20 | mpbid 232 | . . . 4 ⊢ (𝐹 ∈ Word ℝ → (〈“0”〉 ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ) | 
| 22 | 21 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (〈“0”〉 ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ) | 
| 23 | remulcl 11241 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) | |
| 24 | 23 | adantl 481 | . . . 4 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ) | 
| 25 | ccatcl 14613 | . . . . . . . 8 ⊢ ((𝐹 ∈ Word ℝ ∧ 〈“0”〉 ∈ Word ℝ) → (𝐹 ++ 〈“0”〉) ∈ Word ℝ) | |
| 26 | 5, 25 | mpan2 691 | . . . . . . 7 ⊢ (𝐹 ∈ Word ℝ → (𝐹 ++ 〈“0”〉) ∈ Word ℝ) | 
| 27 | wrdf 14558 | . . . . . . 7 ⊢ ((𝐹 ++ 〈“0”〉) ∈ Word ℝ → (𝐹 ++ 〈“0”〉):(0..^(♯‘(𝐹 ++ 〈“0”〉)))⟶ℝ) | |
| 28 | 26, 27 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → (𝐹 ++ 〈“0”〉):(0..^(♯‘(𝐹 ++ 〈“0”〉)))⟶ℝ) | 
| 29 | ccatws1len 14659 | . . . . . . . 8 ⊢ (𝐹 ∈ Word ℝ → (♯‘(𝐹 ++ 〈“0”〉)) = ((♯‘𝐹) + 1)) | |
| 30 | 29 | oveq2d 7448 | . . . . . . 7 ⊢ (𝐹 ∈ Word ℝ → (0..^(♯‘(𝐹 ++ 〈“0”〉))) = (0..^((♯‘𝐹) + 1))) | 
| 31 | 30 | feq2d 6721 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → ((𝐹 ++ 〈“0”〉):(0..^(♯‘(𝐹 ++ 〈“0”〉)))⟶ℝ ↔ (𝐹 ++ 〈“0”〉):(0..^((♯‘𝐹) + 1))⟶ℝ)) | 
| 32 | 28, 31 | mpbid 232 | . . . . 5 ⊢ (𝐹 ∈ Word ℝ → (𝐹 ++ 〈“0”〉):(0..^((♯‘𝐹) + 1))⟶ℝ) | 
| 33 | 32 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (𝐹 ++ 〈“0”〉):(0..^((♯‘𝐹) + 1))⟶ℝ) | 
| 34 | ovexd 7467 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (0..^((♯‘𝐹) + 1)) ∈ V) | |
| 35 | rpre 13044 | . . . . 5 ⊢ (𝐶 ∈ ℝ+ → 𝐶 ∈ ℝ) | |
| 36 | 35 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ) | 
| 37 | 24, 33, 34, 36 | ofcf 34105 | . . 3 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶):(0..^((♯‘𝐹) + 1))⟶ℝ) | 
| 38 | inidm 4226 | . . 3 ⊢ ((0..^((♯‘𝐹) + 1)) ∩ (0..^((♯‘𝐹) + 1))) = (0..^((♯‘𝐹) + 1)) | |
| 39 | 2, 22, 37, 34, 34, 38 | off 7716 | . 2 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)):(0..^((♯‘𝐹) + 1))⟶ℝ) | 
| 40 | signs.h | . . 3 ⊢ 𝐻 = ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)) | |
| 41 | 40 | feq1i 6726 | . 2 ⊢ (𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ ↔ ((〈“0”〉 ++ 𝐹) ∘f − ((𝐹 ++ 〈“0”〉) ∘f/c · 𝐶)):(0..^((♯‘𝐹) + 1))⟶ℝ) | 
| 42 | 39, 41 | sylibr 234 | 1 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 Vcvv 3479 ifcif 4524 {cpr 4627 {ctp 4629 〈cop 4631 ↦ cmpt 5224 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 ∈ cmpo 7434 ∘f cof 7696 ℝcr 11155 0cc0 11156 1c1 11157 + caddc 11159 · cmul 11161 − cmin 11493 -cneg 11494 ℝ+crp 13035 ...cfz 13548 ..^cfzo 13695 ♯chash 14370 Word cword 14553 ++ cconcat 14609 〈“cs1 14634 sgncsgn 15126 Σcsu 15723 ndxcnx 17231 Basecbs 17248 +gcplusg 17298 Σg cgsu 17486 ∘f/c cofc 34097 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-n0 12529 df-z 12616 df-uz 12880 df-rp 13036 df-fz 13549 df-fzo 13696 df-hash 14371 df-word 14554 df-concat 14610 df-s1 14635 df-ofc 34098 | 
| This theorem is referenced by: signshwrd 34605 signshlen 34606 | 
| Copyright terms: Public domain | W3C validator |