Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signshf Structured version   Visualization version   GIF version

Theorem signshf 32467
Description: 𝐻, corresponding to the word 𝐹 multiplied by (𝑥𝐶), as a function. (Contributed by Thierry Arnoux, 29-Sep-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signs.h 𝐻 = ((⟨“0”⟩ ++ 𝐹) ∘f − ((𝐹 ++ ⟨“0”⟩) ∘f/c · 𝐶))
Assertion
Ref Expression
signshf ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ)
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛
Allowed substitution hints:   𝐶(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝐻(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signshf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resubcl 11215 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
21adantl 481 . . 3 (((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦) ∈ ℝ)
3 0re 10908 . . . . . . . 8 0 ∈ ℝ
4 s1cl 14235 . . . . . . . 8 (0 ∈ ℝ → ⟨“0”⟩ ∈ Word ℝ)
53, 4ax-mp 5 . . . . . . 7 ⟨“0”⟩ ∈ Word ℝ
6 ccatcl 14205 . . . . . . 7 ((⟨“0”⟩ ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ) → (⟨“0”⟩ ++ 𝐹) ∈ Word ℝ)
75, 6mpan 686 . . . . . 6 (𝐹 ∈ Word ℝ → (⟨“0”⟩ ++ 𝐹) ∈ Word ℝ)
8 wrdf 14150 . . . . . 6 ((⟨“0”⟩ ++ 𝐹) ∈ Word ℝ → (⟨“0”⟩ ++ 𝐹):(0..^(♯‘(⟨“0”⟩ ++ 𝐹)))⟶ℝ)
97, 8syl 17 . . . . 5 (𝐹 ∈ Word ℝ → (⟨“0”⟩ ++ 𝐹):(0..^(♯‘(⟨“0”⟩ ++ 𝐹)))⟶ℝ)
10 1cnd 10901 . . . . . . . 8 (𝐹 ∈ Word ℝ → 1 ∈ ℂ)
11 lencl 14164 . . . . . . . . 9 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0)
1211nn0cnd 12225 . . . . . . . 8 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℂ)
13 ccatlen 14206 . . . . . . . . . 10 ((⟨“0”⟩ ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ) → (♯‘(⟨“0”⟩ ++ 𝐹)) = ((♯‘⟨“0”⟩) + (♯‘𝐹)))
145, 13mpan 686 . . . . . . . . 9 (𝐹 ∈ Word ℝ → (♯‘(⟨“0”⟩ ++ 𝐹)) = ((♯‘⟨“0”⟩) + (♯‘𝐹)))
15 s1len 14239 . . . . . . . . . 10 (♯‘⟨“0”⟩) = 1
1615oveq1i 7265 . . . . . . . . 9 ((♯‘⟨“0”⟩) + (♯‘𝐹)) = (1 + (♯‘𝐹))
1714, 16eqtrdi 2795 . . . . . . . 8 (𝐹 ∈ Word ℝ → (♯‘(⟨“0”⟩ ++ 𝐹)) = (1 + (♯‘𝐹)))
1810, 12, 17comraddd 11119 . . . . . . 7 (𝐹 ∈ Word ℝ → (♯‘(⟨“0”⟩ ++ 𝐹)) = ((♯‘𝐹) + 1))
1918oveq2d 7271 . . . . . 6 (𝐹 ∈ Word ℝ → (0..^(♯‘(⟨“0”⟩ ++ 𝐹))) = (0..^((♯‘𝐹) + 1)))
2019feq2d 6570 . . . . 5 (𝐹 ∈ Word ℝ → ((⟨“0”⟩ ++ 𝐹):(0..^(♯‘(⟨“0”⟩ ++ 𝐹)))⟶ℝ ↔ (⟨“0”⟩ ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ))
219, 20mpbid 231 . . . 4 (𝐹 ∈ Word ℝ → (⟨“0”⟩ ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ)
2221adantr 480 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (⟨“0”⟩ ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ)
23 remulcl 10887 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
2423adantl 481 . . . 4 (((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
25 ccatcl 14205 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ ⟨“0”⟩ ∈ Word ℝ) → (𝐹 ++ ⟨“0”⟩) ∈ Word ℝ)
265, 25mpan2 687 . . . . . . 7 (𝐹 ∈ Word ℝ → (𝐹 ++ ⟨“0”⟩) ∈ Word ℝ)
27 wrdf 14150 . . . . . . 7 ((𝐹 ++ ⟨“0”⟩) ∈ Word ℝ → (𝐹 ++ ⟨“0”⟩):(0..^(♯‘(𝐹 ++ ⟨“0”⟩)))⟶ℝ)
2826, 27syl 17 . . . . . 6 (𝐹 ∈ Word ℝ → (𝐹 ++ ⟨“0”⟩):(0..^(♯‘(𝐹 ++ ⟨“0”⟩)))⟶ℝ)
29 ccatws1len 14253 . . . . . . . 8 (𝐹 ∈ Word ℝ → (♯‘(𝐹 ++ ⟨“0”⟩)) = ((♯‘𝐹) + 1))
3029oveq2d 7271 . . . . . . 7 (𝐹 ∈ Word ℝ → (0..^(♯‘(𝐹 ++ ⟨“0”⟩))) = (0..^((♯‘𝐹) + 1)))
3130feq2d 6570 . . . . . 6 (𝐹 ∈ Word ℝ → ((𝐹 ++ ⟨“0”⟩):(0..^(♯‘(𝐹 ++ ⟨“0”⟩)))⟶ℝ ↔ (𝐹 ++ ⟨“0”⟩):(0..^((♯‘𝐹) + 1))⟶ℝ))
3228, 31mpbid 231 . . . . 5 (𝐹 ∈ Word ℝ → (𝐹 ++ ⟨“0”⟩):(0..^((♯‘𝐹) + 1))⟶ℝ)
3332adantr 480 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (𝐹 ++ ⟨“0”⟩):(0..^((♯‘𝐹) + 1))⟶ℝ)
34 ovexd 7290 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (0..^((♯‘𝐹) + 1)) ∈ V)
35 rpre 12667 . . . . 5 (𝐶 ∈ ℝ+𝐶 ∈ ℝ)
3635adantl 481 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
3724, 33, 34, 36ofcf 31971 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐹 ++ ⟨“0”⟩) ∘f/c · 𝐶):(0..^((♯‘𝐹) + 1))⟶ℝ)
38 inidm 4149 . . 3 ((0..^((♯‘𝐹) + 1)) ∩ (0..^((♯‘𝐹) + 1))) = (0..^((♯‘𝐹) + 1))
392, 22, 37, 34, 34, 38off 7529 . 2 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((⟨“0”⟩ ++ 𝐹) ∘f − ((𝐹 ++ ⟨“0”⟩) ∘f/c · 𝐶)):(0..^((♯‘𝐹) + 1))⟶ℝ)
40 signs.h . . 3 𝐻 = ((⟨“0”⟩ ++ 𝐹) ∘f − ((𝐹 ++ ⟨“0”⟩) ∘f/c · 𝐶))
4140feq1i 6575 . 2 (𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ ↔ ((⟨“0”⟩ ++ 𝐹) ∘f − ((𝐹 ++ ⟨“0”⟩) ∘f/c · 𝐶)):(0..^((♯‘𝐹) + 1))⟶ℝ)
4239, 41sylibr 233 1 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  ifcif 4456  {cpr 4560  {ctp 4562  cop 4564  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  f cof 7509  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  -cneg 11136  +crp 12659  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145   ++ cconcat 14201  ⟨“cs1 14228  sgncsgn 14725  Σcsu 15325  ndxcnx 16822  Basecbs 16840  +gcplusg 16888   Σg cgsu 17068  f/c cofc 31963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-ofc 31964
This theorem is referenced by:  signshwrd  32468  signshlen  32469
  Copyright terms: Public domain W3C validator