| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > coinflipspace | Structured version Visualization version GIF version | ||
| Description: The space of our coin-flip probability. (Contributed by Thierry Arnoux, 15-Jan-2017.) |
| Ref | Expression |
|---|---|
| coinflip.h | ⊢ 𝐻 ∈ V |
| coinflip.t | ⊢ 𝑇 ∈ V |
| coinflip.th | ⊢ 𝐻 ≠ 𝑇 |
| coinflip.2 | ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) |
| coinflip.3 | ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} |
| Ref | Expression |
|---|---|
| coinflipspace | ⊢ dom 𝑃 = 𝒫 {𝐻, 𝑇} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coinflip.2 | . . 3 ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) | |
| 2 | 1 | dmeqi 5847 | . 2 ⊢ dom 𝑃 = dom ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) |
| 3 | coinflip.h | . . 3 ⊢ 𝐻 ∈ V | |
| 4 | hashresfn 14247 | . . . . 5 ⊢ (♯ ↾ 𝒫 {𝐻, 𝑇}) Fn 𝒫 {𝐻, 𝑇} | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝐻 ∈ V → (♯ ↾ 𝒫 {𝐻, 𝑇}) Fn 𝒫 {𝐻, 𝑇}) |
| 6 | prex 5376 | . . . . 5 ⊢ {𝐻, 𝑇} ∈ V | |
| 7 | pwexg 5317 | . . . . 5 ⊢ ({𝐻, 𝑇} ∈ V → 𝒫 {𝐻, 𝑇} ∈ V) | |
| 8 | 6, 7 | mp1i 13 | . . . 4 ⊢ (𝐻 ∈ V → 𝒫 {𝐻, 𝑇} ∈ V) |
| 9 | 2re 12202 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (𝐻 ∈ V → 2 ∈ ℝ) |
| 11 | 5, 8, 10 | ofcfn 34067 | . . 3 ⊢ (𝐻 ∈ V → ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) Fn 𝒫 {𝐻, 𝑇}) |
| 12 | fndm 6585 | . . 3 ⊢ (((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) Fn 𝒫 {𝐻, 𝑇} → dom ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) = 𝒫 {𝐻, 𝑇}) | |
| 13 | 3, 11, 12 | mp2b 10 | . 2 ⊢ dom ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) = 𝒫 {𝐻, 𝑇} |
| 14 | 2, 13 | eqtri 2752 | 1 ⊢ dom 𝑃 = 𝒫 {𝐻, 𝑇} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3436 𝒫 cpw 4551 {cpr 4579 〈cop 4583 dom cdm 5619 ↾ cres 5621 Fn wfn 6477 (class class class)co 7349 ℝcr 11008 0cc0 11009 1c1 11010 / cdiv 11777 2c2 12183 ♯chash 14237 ∘f/c cofc 34062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-hash 14238 df-ofc 34063 |
| This theorem is referenced by: coinflipuniv 34450 coinfliprv 34451 coinflippvt 34453 |
| Copyright terms: Public domain | W3C validator |