Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coinflipspace Structured version   Visualization version   GIF version

Theorem coinflipspace 34494
Description: The space of our coin-flip probability. (Contributed by Thierry Arnoux, 15-Jan-2017.)
Hypotheses
Ref Expression
coinflip.h 𝐻 ∈ V
coinflip.t 𝑇 ∈ V
coinflip.th 𝐻𝑇
coinflip.2 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)
coinflip.3 𝑋 = {⟨𝐻, 1⟩, ⟨𝑇, 0⟩}
Assertion
Ref Expression
coinflipspace dom 𝑃 = 𝒫 {𝐻, 𝑇}

Proof of Theorem coinflipspace
StepHypRef Expression
1 coinflip.2 . . 3 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)
21dmeqi 5843 . 2 dom 𝑃 = dom ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)
3 coinflip.h . . 3 𝐻 ∈ V
4 hashresfn 14247 . . . . 5 (♯ ↾ 𝒫 {𝐻, 𝑇}) Fn 𝒫 {𝐻, 𝑇}
54a1i 11 . . . 4 (𝐻 ∈ V → (♯ ↾ 𝒫 {𝐻, 𝑇}) Fn 𝒫 {𝐻, 𝑇})
6 prex 5373 . . . . 5 {𝐻, 𝑇} ∈ V
7 pwexg 5314 . . . . 5 ({𝐻, 𝑇} ∈ V → 𝒫 {𝐻, 𝑇} ∈ V)
86, 7mp1i 13 . . . 4 (𝐻 ∈ V → 𝒫 {𝐻, 𝑇} ∈ V)
9 2re 12199 . . . . 5 2 ∈ ℝ
109a1i 11 . . . 4 (𝐻 ∈ V → 2 ∈ ℝ)
115, 8, 10ofcfn 34113 . . 3 (𝐻 ∈ V → ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) Fn 𝒫 {𝐻, 𝑇})
12 fndm 6584 . . 3 (((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) Fn 𝒫 {𝐻, 𝑇} → dom ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) = 𝒫 {𝐻, 𝑇})
133, 11, 12mp2b 10 . 2 dom ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) = 𝒫 {𝐻, 𝑇}
142, 13eqtri 2754 1 dom 𝑃 = 𝒫 {𝐻, 𝑇}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  𝒫 cpw 4547  {cpr 4575  cop 4579  dom cdm 5614  cres 5616   Fn wfn 6476  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   / cdiv 11774  2c2 12180  chash 14237  f/c cofc 34108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-hash 14238  df-ofc 34109
This theorem is referenced by:  coinflipuniv  34495  coinfliprv  34496  coinflippvt  34498
  Copyright terms: Public domain W3C validator