Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcfeqd2 Structured version   Visualization version   GIF version

Theorem ofcfeqd2 32175
Description: Equality theorem for function/constant operation value. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcfeqd2.1 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
ofcfeqd2.2 ((𝜑𝑦𝐵) → (𝑦𝑅𝐶) = (𝑦𝑃𝐶))
ofcfeqd2.3 (𝜑𝐹 Fn 𝐴)
ofcfeqd2.4 (𝜑𝐴𝑉)
ofcfeqd2.5 (𝜑𝐶𝑊)
Assertion
Ref Expression
ofcfeqd2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝐹f/c 𝑃𝐶))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐹,𝑦   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem ofcfeqd2
StepHypRef Expression
1 oveq1 7320 . . . . 5 (𝑦 = (𝐹𝑥) → (𝑦𝑅𝐶) = ((𝐹𝑥)𝑅𝐶))
2 oveq1 7320 . . . . 5 (𝑦 = (𝐹𝑥) → (𝑦𝑃𝐶) = ((𝐹𝑥)𝑃𝐶))
31, 2eqeq12d 2753 . . . 4 (𝑦 = (𝐹𝑥) → ((𝑦𝑅𝐶) = (𝑦𝑃𝐶) ↔ ((𝐹𝑥)𝑅𝐶) = ((𝐹𝑥)𝑃𝐶)))
4 ofcfeqd2.2 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦𝑅𝐶) = (𝑦𝑃𝐶))
54ralrimiva 3140 . . . . 5 (𝜑 → ∀𝑦𝐵 (𝑦𝑅𝐶) = (𝑦𝑃𝐶))
65adantr 481 . . . 4 ((𝜑𝑥𝐴) → ∀𝑦𝐵 (𝑦𝑅𝐶) = (𝑦𝑃𝐶))
7 ofcfeqd2.1 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
83, 6, 7rspcdva 3571 . . 3 ((𝜑𝑥𝐴) → ((𝐹𝑥)𝑅𝐶) = ((𝐹𝑥)𝑃𝐶))
98mpteq2dva 5185 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑃𝐶)))
10 ofcfeqd2.3 . . 3 (𝜑𝐹 Fn 𝐴)
11 ofcfeqd2.4 . . 3 (𝜑𝐴𝑉)
12 ofcfeqd2.5 . . 3 (𝜑𝐶𝑊)
13 eqidd 2738 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
1410, 11, 12, 13ofcfval 32172 . 2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)))
1510, 11, 12, 13ofcfval 32172 . 2 (𝜑 → (𝐹f/c 𝑃𝐶) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑃𝐶)))
169, 14, 153eqtr4d 2787 1 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝐹f/c 𝑃𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wral 3062  cmpt 5168   Fn wfn 6458  cfv 6463  (class class class)co 7313  f/c cofc 32169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pr 5365
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-id 5505  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-ov 7316  df-oprab 7317  df-mpo 7318  df-ofc 32170
This theorem is referenced by:  coinfliplem  32551
  Copyright terms: Public domain W3C validator