| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcfeqd2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for function/constant operation value. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
| Ref | Expression |
|---|---|
| ofcfeqd2.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
| ofcfeqd2.2 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦𝑅𝐶) = (𝑦𝑃𝐶)) |
| ofcfeqd2.3 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| ofcfeqd2.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ofcfeqd2.5 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| ofcfeqd2 | ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝐹 ∘f/c 𝑃𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7412 | . . . . 5 ⊢ (𝑦 = (𝐹‘𝑥) → (𝑦𝑅𝐶) = ((𝐹‘𝑥)𝑅𝐶)) | |
| 2 | oveq1 7412 | . . . . 5 ⊢ (𝑦 = (𝐹‘𝑥) → (𝑦𝑃𝐶) = ((𝐹‘𝑥)𝑃𝐶)) | |
| 3 | 1, 2 | eqeq12d 2751 | . . . 4 ⊢ (𝑦 = (𝐹‘𝑥) → ((𝑦𝑅𝐶) = (𝑦𝑃𝐶) ↔ ((𝐹‘𝑥)𝑅𝐶) = ((𝐹‘𝑥)𝑃𝐶))) |
| 4 | ofcfeqd2.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦𝑅𝐶) = (𝑦𝑃𝐶)) | |
| 5 | 4 | ralrimiva 3132 | . . . . 5 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝑦𝑅𝐶) = (𝑦𝑃𝐶)) |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 (𝑦𝑅𝐶) = (𝑦𝑃𝐶)) |
| 7 | ofcfeqd2.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
| 8 | 3, 6, 7 | rspcdva 3602 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥)𝑅𝐶) = ((𝐹‘𝑥)𝑃𝐶)) |
| 9 | 8 | mpteq2dva 5214 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶)) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑃𝐶))) |
| 10 | ofcfeqd2.3 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 11 | ofcfeqd2.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 12 | ofcfeqd2.5 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 13 | eqidd 2736 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 14 | 10, 11, 12, 13 | ofcfval 34129 | . 2 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
| 15 | 10, 11, 12, 13 | ofcfval 34129 | . 2 ⊢ (𝜑 → (𝐹 ∘f/c 𝑃𝐶) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑃𝐶))) |
| 16 | 9, 14, 15 | 3eqtr4d 2780 | 1 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝐹 ∘f/c 𝑃𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ↦ cmpt 5201 Fn wfn 6526 ‘cfv 6531 (class class class)co 7405 ∘f/c cofc 34126 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-ofc 34127 |
| This theorem is referenced by: coinfliplem 34511 |
| Copyright terms: Public domain | W3C validator |