Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcfeqd2 Structured version   Visualization version   GIF version

Theorem ofcfeqd2 34065
Description: Equality theorem for function/constant operation value. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcfeqd2.1 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
ofcfeqd2.2 ((𝜑𝑦𝐵) → (𝑦𝑅𝐶) = (𝑦𝑃𝐶))
ofcfeqd2.3 (𝜑𝐹 Fn 𝐴)
ofcfeqd2.4 (𝜑𝐴𝑉)
ofcfeqd2.5 (𝜑𝐶𝑊)
Assertion
Ref Expression
ofcfeqd2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝐹f/c 𝑃𝐶))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐹,𝑦   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem ofcfeqd2
StepHypRef Expression
1 oveq1 7455 . . . . 5 (𝑦 = (𝐹𝑥) → (𝑦𝑅𝐶) = ((𝐹𝑥)𝑅𝐶))
2 oveq1 7455 . . . . 5 (𝑦 = (𝐹𝑥) → (𝑦𝑃𝐶) = ((𝐹𝑥)𝑃𝐶))
31, 2eqeq12d 2756 . . . 4 (𝑦 = (𝐹𝑥) → ((𝑦𝑅𝐶) = (𝑦𝑃𝐶) ↔ ((𝐹𝑥)𝑅𝐶) = ((𝐹𝑥)𝑃𝐶)))
4 ofcfeqd2.2 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦𝑅𝐶) = (𝑦𝑃𝐶))
54ralrimiva 3152 . . . . 5 (𝜑 → ∀𝑦𝐵 (𝑦𝑅𝐶) = (𝑦𝑃𝐶))
65adantr 480 . . . 4 ((𝜑𝑥𝐴) → ∀𝑦𝐵 (𝑦𝑅𝐶) = (𝑦𝑃𝐶))
7 ofcfeqd2.1 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
83, 6, 7rspcdva 3636 . . 3 ((𝜑𝑥𝐴) → ((𝐹𝑥)𝑅𝐶) = ((𝐹𝑥)𝑃𝐶))
98mpteq2dva 5266 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑃𝐶)))
10 ofcfeqd2.3 . . 3 (𝜑𝐹 Fn 𝐴)
11 ofcfeqd2.4 . . 3 (𝜑𝐴𝑉)
12 ofcfeqd2.5 . . 3 (𝜑𝐶𝑊)
13 eqidd 2741 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
1410, 11, 12, 13ofcfval 34062 . 2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)))
1510, 11, 12, 13ofcfval 34062 . 2 (𝜑 → (𝐹f/c 𝑃𝐶) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑃𝐶)))
169, 14, 153eqtr4d 2790 1 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝐹f/c 𝑃𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  cmpt 5249   Fn wfn 6568  cfv 6573  (class class class)co 7448  f/c cofc 34059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-ofc 34060
This theorem is referenced by:  coinfliplem  34443
  Copyright terms: Public domain W3C validator