Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcfeqd2 Structured version   Visualization version   GIF version

Theorem ofcfeqd2 33094
Description: Equality theorem for function/constant operation value. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcfeqd2.1 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
ofcfeqd2.2 ((𝜑𝑦𝐵) → (𝑦𝑅𝐶) = (𝑦𝑃𝐶))
ofcfeqd2.3 (𝜑𝐹 Fn 𝐴)
ofcfeqd2.4 (𝜑𝐴𝑉)
ofcfeqd2.5 (𝜑𝐶𝑊)
Assertion
Ref Expression
ofcfeqd2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝐹f/c 𝑃𝐶))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐹,𝑦   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem ofcfeqd2
StepHypRef Expression
1 oveq1 7415 . . . . 5 (𝑦 = (𝐹𝑥) → (𝑦𝑅𝐶) = ((𝐹𝑥)𝑅𝐶))
2 oveq1 7415 . . . . 5 (𝑦 = (𝐹𝑥) → (𝑦𝑃𝐶) = ((𝐹𝑥)𝑃𝐶))
31, 2eqeq12d 2748 . . . 4 (𝑦 = (𝐹𝑥) → ((𝑦𝑅𝐶) = (𝑦𝑃𝐶) ↔ ((𝐹𝑥)𝑅𝐶) = ((𝐹𝑥)𝑃𝐶)))
4 ofcfeqd2.2 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦𝑅𝐶) = (𝑦𝑃𝐶))
54ralrimiva 3146 . . . . 5 (𝜑 → ∀𝑦𝐵 (𝑦𝑅𝐶) = (𝑦𝑃𝐶))
65adantr 481 . . . 4 ((𝜑𝑥𝐴) → ∀𝑦𝐵 (𝑦𝑅𝐶) = (𝑦𝑃𝐶))
7 ofcfeqd2.1 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
83, 6, 7rspcdva 3613 . . 3 ((𝜑𝑥𝐴) → ((𝐹𝑥)𝑅𝐶) = ((𝐹𝑥)𝑃𝐶))
98mpteq2dva 5248 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑃𝐶)))
10 ofcfeqd2.3 . . 3 (𝜑𝐹 Fn 𝐴)
11 ofcfeqd2.4 . . 3 (𝜑𝐴𝑉)
12 ofcfeqd2.5 . . 3 (𝜑𝐶𝑊)
13 eqidd 2733 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
1410, 11, 12, 13ofcfval 33091 . 2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)))
1510, 11, 12, 13ofcfval 33091 . 2 (𝜑 → (𝐹f/c 𝑃𝐶) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑃𝐶)))
169, 14, 153eqtr4d 2782 1 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝐹f/c 𝑃𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3061  cmpt 5231   Fn wfn 6538  cfv 6543  (class class class)co 7408  f/c cofc 33088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-ofc 33089
This theorem is referenced by:  coinfliplem  33472
  Copyright terms: Public domain W3C validator