| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcfeqd2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for function/constant operation value. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
| Ref | Expression |
|---|---|
| ofcfeqd2.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
| ofcfeqd2.2 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦𝑅𝐶) = (𝑦𝑃𝐶)) |
| ofcfeqd2.3 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| ofcfeqd2.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ofcfeqd2.5 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| ofcfeqd2 | ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝐹 ∘f/c 𝑃𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7397 | . . . . 5 ⊢ (𝑦 = (𝐹‘𝑥) → (𝑦𝑅𝐶) = ((𝐹‘𝑥)𝑅𝐶)) | |
| 2 | oveq1 7397 | . . . . 5 ⊢ (𝑦 = (𝐹‘𝑥) → (𝑦𝑃𝐶) = ((𝐹‘𝑥)𝑃𝐶)) | |
| 3 | 1, 2 | eqeq12d 2746 | . . . 4 ⊢ (𝑦 = (𝐹‘𝑥) → ((𝑦𝑅𝐶) = (𝑦𝑃𝐶) ↔ ((𝐹‘𝑥)𝑅𝐶) = ((𝐹‘𝑥)𝑃𝐶))) |
| 4 | ofcfeqd2.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦𝑅𝐶) = (𝑦𝑃𝐶)) | |
| 5 | 4 | ralrimiva 3126 | . . . . 5 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝑦𝑅𝐶) = (𝑦𝑃𝐶)) |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 (𝑦𝑅𝐶) = (𝑦𝑃𝐶)) |
| 7 | ofcfeqd2.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
| 8 | 3, 6, 7 | rspcdva 3592 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥)𝑅𝐶) = ((𝐹‘𝑥)𝑃𝐶)) |
| 9 | 8 | mpteq2dva 5203 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶)) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑃𝐶))) |
| 10 | ofcfeqd2.3 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 11 | ofcfeqd2.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 12 | ofcfeqd2.5 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 13 | eqidd 2731 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 14 | 10, 11, 12, 13 | ofcfval 34095 | . 2 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
| 15 | 10, 11, 12, 13 | ofcfval 34095 | . 2 ⊢ (𝜑 → (𝐹 ∘f/c 𝑃𝐶) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑃𝐶))) |
| 16 | 9, 14, 15 | 3eqtr4d 2775 | 1 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝐹 ∘f/c 𝑃𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ↦ cmpt 5191 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 ∘f/c cofc 34092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-ofc 34093 |
| This theorem is referenced by: coinfliplem 34477 |
| Copyright terms: Public domain | W3C validator |