![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcfeqd2 | Structured version Visualization version GIF version |
Description: Equality theorem for function/constant operation value. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
Ref | Expression |
---|---|
ofcfeqd2.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
ofcfeqd2.2 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦𝑅𝐶) = (𝑦𝑃𝐶)) |
ofcfeqd2.3 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
ofcfeqd2.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofcfeqd2.5 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
ofcfeqd2 | ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝐹 ∘f/c 𝑃𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7455 | . . . . 5 ⊢ (𝑦 = (𝐹‘𝑥) → (𝑦𝑅𝐶) = ((𝐹‘𝑥)𝑅𝐶)) | |
2 | oveq1 7455 | . . . . 5 ⊢ (𝑦 = (𝐹‘𝑥) → (𝑦𝑃𝐶) = ((𝐹‘𝑥)𝑃𝐶)) | |
3 | 1, 2 | eqeq12d 2756 | . . . 4 ⊢ (𝑦 = (𝐹‘𝑥) → ((𝑦𝑅𝐶) = (𝑦𝑃𝐶) ↔ ((𝐹‘𝑥)𝑅𝐶) = ((𝐹‘𝑥)𝑃𝐶))) |
4 | ofcfeqd2.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦𝑅𝐶) = (𝑦𝑃𝐶)) | |
5 | 4 | ralrimiva 3152 | . . . . 5 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝑦𝑅𝐶) = (𝑦𝑃𝐶)) |
6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐵 (𝑦𝑅𝐶) = (𝑦𝑃𝐶)) |
7 | ofcfeqd2.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
8 | 3, 6, 7 | rspcdva 3636 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥)𝑅𝐶) = ((𝐹‘𝑥)𝑃𝐶)) |
9 | 8 | mpteq2dva 5266 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶)) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑃𝐶))) |
10 | ofcfeqd2.3 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
11 | ofcfeqd2.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
12 | ofcfeqd2.5 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
13 | eqidd 2741 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
14 | 10, 11, 12, 13 | ofcfval 34062 | . 2 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
15 | 10, 11, 12, 13 | ofcfval 34062 | . 2 ⊢ (𝜑 → (𝐹 ∘f/c 𝑃𝐶) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑃𝐶))) |
16 | 9, 14, 15 | 3eqtr4d 2790 | 1 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝐹 ∘f/c 𝑃𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ↦ cmpt 5249 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 ∘f/c cofc 34059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-ofc 34060 |
This theorem is referenced by: coinfliplem 34443 |
Copyright terms: Public domain | W3C validator |