Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcfeqd2 Structured version   Visualization version   GIF version

Theorem ofcfeqd2 34082
Description: Equality theorem for function/constant operation value. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcfeqd2.1 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
ofcfeqd2.2 ((𝜑𝑦𝐵) → (𝑦𝑅𝐶) = (𝑦𝑃𝐶))
ofcfeqd2.3 (𝜑𝐹 Fn 𝐴)
ofcfeqd2.4 (𝜑𝐴𝑉)
ofcfeqd2.5 (𝜑𝐶𝑊)
Assertion
Ref Expression
ofcfeqd2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝐹f/c 𝑃𝐶))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐹,𝑦   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem ofcfeqd2
StepHypRef Expression
1 oveq1 7438 . . . . 5 (𝑦 = (𝐹𝑥) → (𝑦𝑅𝐶) = ((𝐹𝑥)𝑅𝐶))
2 oveq1 7438 . . . . 5 (𝑦 = (𝐹𝑥) → (𝑦𝑃𝐶) = ((𝐹𝑥)𝑃𝐶))
31, 2eqeq12d 2751 . . . 4 (𝑦 = (𝐹𝑥) → ((𝑦𝑅𝐶) = (𝑦𝑃𝐶) ↔ ((𝐹𝑥)𝑅𝐶) = ((𝐹𝑥)𝑃𝐶)))
4 ofcfeqd2.2 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦𝑅𝐶) = (𝑦𝑃𝐶))
54ralrimiva 3144 . . . . 5 (𝜑 → ∀𝑦𝐵 (𝑦𝑅𝐶) = (𝑦𝑃𝐶))
65adantr 480 . . . 4 ((𝜑𝑥𝐴) → ∀𝑦𝐵 (𝑦𝑅𝐶) = (𝑦𝑃𝐶))
7 ofcfeqd2.1 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
83, 6, 7rspcdva 3623 . . 3 ((𝜑𝑥𝐴) → ((𝐹𝑥)𝑅𝐶) = ((𝐹𝑥)𝑃𝐶))
98mpteq2dva 5248 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑃𝐶)))
10 ofcfeqd2.3 . . 3 (𝜑𝐹 Fn 𝐴)
11 ofcfeqd2.4 . . 3 (𝜑𝐴𝑉)
12 ofcfeqd2.5 . . 3 (𝜑𝐶𝑊)
13 eqidd 2736 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
1410, 11, 12, 13ofcfval 34079 . 2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)))
1510, 11, 12, 13ofcfval 34079 . 2 (𝜑 → (𝐹f/c 𝑃𝐶) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑃𝐶)))
169, 14, 153eqtr4d 2785 1 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝐹f/c 𝑃𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  cmpt 5231   Fn wfn 6558  cfv 6563  (class class class)co 7431  f/c cofc 34076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-ofc 34077
This theorem is referenced by:  coinfliplem  34460
  Copyright terms: Public domain W3C validator