Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcfeqd2 Structured version   Visualization version   GIF version

Theorem ofcfeqd2 32740
Description: Equality theorem for function/constant operation value. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcfeqd2.1 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
ofcfeqd2.2 ((𝜑𝑦𝐵) → (𝑦𝑅𝐶) = (𝑦𝑃𝐶))
ofcfeqd2.3 (𝜑𝐹 Fn 𝐴)
ofcfeqd2.4 (𝜑𝐴𝑉)
ofcfeqd2.5 (𝜑𝐶𝑊)
Assertion
Ref Expression
ofcfeqd2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝐹f/c 𝑃𝐶))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐹,𝑦   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem ofcfeqd2
StepHypRef Expression
1 oveq1 7369 . . . . 5 (𝑦 = (𝐹𝑥) → (𝑦𝑅𝐶) = ((𝐹𝑥)𝑅𝐶))
2 oveq1 7369 . . . . 5 (𝑦 = (𝐹𝑥) → (𝑦𝑃𝐶) = ((𝐹𝑥)𝑃𝐶))
31, 2eqeq12d 2753 . . . 4 (𝑦 = (𝐹𝑥) → ((𝑦𝑅𝐶) = (𝑦𝑃𝐶) ↔ ((𝐹𝑥)𝑅𝐶) = ((𝐹𝑥)𝑃𝐶)))
4 ofcfeqd2.2 . . . . . 6 ((𝜑𝑦𝐵) → (𝑦𝑅𝐶) = (𝑦𝑃𝐶))
54ralrimiva 3144 . . . . 5 (𝜑 → ∀𝑦𝐵 (𝑦𝑅𝐶) = (𝑦𝑃𝐶))
65adantr 482 . . . 4 ((𝜑𝑥𝐴) → ∀𝑦𝐵 (𝑦𝑅𝐶) = (𝑦𝑃𝐶))
7 ofcfeqd2.1 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
83, 6, 7rspcdva 3585 . . 3 ((𝜑𝑥𝐴) → ((𝐹𝑥)𝑅𝐶) = ((𝐹𝑥)𝑃𝐶))
98mpteq2dva 5210 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑃𝐶)))
10 ofcfeqd2.3 . . 3 (𝜑𝐹 Fn 𝐴)
11 ofcfeqd2.4 . . 3 (𝜑𝐴𝑉)
12 ofcfeqd2.5 . . 3 (𝜑𝐶𝑊)
13 eqidd 2738 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
1410, 11, 12, 13ofcfval 32737 . 2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)))
1510, 11, 12, 13ofcfval 32737 . 2 (𝜑 → (𝐹f/c 𝑃𝐶) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑃𝐶)))
169, 14, 153eqtr4d 2787 1 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝐹f/c 𝑃𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3065  cmpt 5193   Fn wfn 6496  cfv 6501  (class class class)co 7362  f/c cofc 32734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-ofc 32735
This theorem is referenced by:  coinfliplem  33118
  Copyright terms: Public domain W3C validator