| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ontgsucval | Structured version Visualization version GIF version | ||
| Description: The topology generated from a successor ordinal number is itself. (Contributed by Chen-Pang He, 11-Oct-2015.) |
| Ref | Expression |
|---|---|
| ontgsucval | ⊢ (𝐴 ∈ On → (topGen‘suc 𝐴) = suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsuc 7800 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
| 2 | ontgval 36378 | . . 3 ⊢ (suc 𝐴 ∈ On → (topGen‘suc 𝐴) = suc ∪ suc 𝐴) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ On → (topGen‘suc 𝐴) = suc ∪ suc 𝐴) |
| 4 | eloni 6360 | . . . 4 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 5 | ordunisuc 7821 | . . . 4 ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) |
| 7 | suceq 6417 | . . 3 ⊢ (∪ suc 𝐴 = 𝐴 → suc ∪ suc 𝐴 = suc 𝐴) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝐴 ∈ On → suc ∪ suc 𝐴 = suc 𝐴) |
| 9 | 3, 8 | eqtrd 2769 | 1 ⊢ (𝐴 ∈ On → (topGen‘suc 𝐴) = suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∪ cuni 4881 Ord word 6349 Oncon0 6350 suc csuc 6352 ‘cfv 6528 topGenctg 17438 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-ord 6353 df-on 6354 df-suc 6356 df-iota 6481 df-fun 6530 df-fv 6536 df-topgen 17444 |
| This theorem is referenced by: onsuctop 36380 |
| Copyright terms: Public domain | W3C validator |