| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ontgsucval | Structured version Visualization version GIF version | ||
| Description: The topology generated from a successor ordinal number is itself. (Contributed by Chen-Pang He, 11-Oct-2015.) |
| Ref | Expression |
|---|---|
| ontgsucval | ⊢ (𝐴 ∈ On → (topGen‘suc 𝐴) = suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsuc 7743 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
| 2 | ontgval 36475 | . . 3 ⊢ (suc 𝐴 ∈ On → (topGen‘suc 𝐴) = suc ∪ suc 𝐴) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ On → (topGen‘suc 𝐴) = suc ∪ suc 𝐴) |
| 4 | eloni 6316 | . . . 4 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 5 | ordunisuc 7762 | . . . 4 ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) |
| 7 | suceq 6374 | . . 3 ⊢ (∪ suc 𝐴 = 𝐴 → suc ∪ suc 𝐴 = suc 𝐴) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝐴 ∈ On → suc ∪ suc 𝐴 = suc 𝐴) |
| 9 | 3, 8 | eqtrd 2766 | 1 ⊢ (𝐴 ∈ On → (topGen‘suc 𝐴) = suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∪ cuni 4856 Ord word 6305 Oncon0 6306 suc csuc 6308 ‘cfv 6481 topGenctg 17341 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fv 6489 df-topgen 17347 |
| This theorem is referenced by: onsuctop 36477 |
| Copyright terms: Public domain | W3C validator |