| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ontgsucval | Structured version Visualization version GIF version | ||
| Description: The topology generated from a successor ordinal number is itself. (Contributed by Chen-Pang He, 11-Oct-2015.) |
| Ref | Expression |
|---|---|
| ontgsucval | ⊢ (𝐴 ∈ On → (topGen‘suc 𝐴) = suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsuc 7767 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
| 2 | ontgval 36392 | . . 3 ⊢ (suc 𝐴 ∈ On → (topGen‘suc 𝐴) = suc ∪ suc 𝐴) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ On → (topGen‘suc 𝐴) = suc ∪ suc 𝐴) |
| 4 | eloni 6330 | . . . 4 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 5 | ordunisuc 7787 | . . . 4 ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) |
| 7 | suceq 6388 | . . 3 ⊢ (∪ suc 𝐴 = 𝐴 → suc ∪ suc 𝐴 = suc 𝐴) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝐴 ∈ On → suc ∪ suc 𝐴 = suc 𝐴) |
| 9 | 3, 8 | eqtrd 2764 | 1 ⊢ (𝐴 ∈ On → (topGen‘suc 𝐴) = suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cuni 4867 Ord word 6319 Oncon0 6320 suc csuc 6322 ‘cfv 6499 topGenctg 17376 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fv 6507 df-topgen 17382 |
| This theorem is referenced by: onsuctop 36394 |
| Copyright terms: Public domain | W3C validator |