Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ontgsucval | Structured version Visualization version GIF version |
Description: The topology generated from a successor ordinal number is itself. (Contributed by Chen-Pang He, 11-Oct-2015.) |
Ref | Expression |
---|---|
ontgsucval | ⊢ (𝐴 ∈ On → (topGen‘suc 𝐴) = suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suceloni 7659 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
2 | ontgval 34620 | . . 3 ⊢ (suc 𝐴 ∈ On → (topGen‘suc 𝐴) = suc ∪ suc 𝐴) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ On → (topGen‘suc 𝐴) = suc ∪ suc 𝐴) |
4 | eloni 6276 | . . . 4 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
5 | ordunisuc 7679 | . . . 4 ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) |
7 | suceq 6331 | . . 3 ⊢ (∪ suc 𝐴 = 𝐴 → suc ∪ suc 𝐴 = suc 𝐴) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝐴 ∈ On → suc ∪ suc 𝐴 = suc 𝐴) |
9 | 3, 8 | eqtrd 2778 | 1 ⊢ (𝐴 ∈ On → (topGen‘suc 𝐴) = suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∪ cuni 4839 Ord word 6265 Oncon0 6266 suc csuc 6268 ‘cfv 6433 topGenctg 17148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fv 6441 df-topgen 17154 |
This theorem is referenced by: onsuctop 34622 |
Copyright terms: Public domain | W3C validator |