Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ontgsucval Structured version   Visualization version   GIF version

Theorem ontgsucval 36379
Description: The topology generated from a successor ordinal number is itself. (Contributed by Chen-Pang He, 11-Oct-2015.)
Assertion
Ref Expression
ontgsucval (𝐴 ∈ On → (topGen‘suc 𝐴) = suc 𝐴)

Proof of Theorem ontgsucval
StepHypRef Expression
1 onsuc 7800 . . 3 (𝐴 ∈ On → suc 𝐴 ∈ On)
2 ontgval 36378 . . 3 (suc 𝐴 ∈ On → (topGen‘suc 𝐴) = suc suc 𝐴)
31, 2syl 17 . 2 (𝐴 ∈ On → (topGen‘suc 𝐴) = suc suc 𝐴)
4 eloni 6360 . . . 4 (𝐴 ∈ On → Ord 𝐴)
5 ordunisuc 7821 . . . 4 (Ord 𝐴 suc 𝐴 = 𝐴)
64, 5syl 17 . . 3 (𝐴 ∈ On → suc 𝐴 = 𝐴)
7 suceq 6417 . . 3 ( suc 𝐴 = 𝐴 → suc suc 𝐴 = suc 𝐴)
86, 7syl 17 . 2 (𝐴 ∈ On → suc suc 𝐴 = suc 𝐴)
93, 8eqtrd 2769 1 (𝐴 ∈ On → (topGen‘suc 𝐴) = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107   cuni 4881  Ord word 6349  Oncon0 6350  suc csuc 6352  cfv 6528  topGenctg 17438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-ord 6353  df-on 6354  df-suc 6356  df-iota 6481  df-fun 6530  df-fv 6536  df-topgen 17444
This theorem is referenced by:  onsuctop  36380
  Copyright terms: Public domain W3C validator