Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elbasov | Structured version Visualization version GIF version |
Description: Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015.) |
Ref | Expression |
---|---|
elbasov.o | ⊢ Rel dom 𝑂 |
elbasov.s | ⊢ 𝑆 = (𝑋𝑂𝑌) |
elbasov.b | ⊢ 𝐵 = (Base‘𝑆) |
Ref | Expression |
---|---|
elbasov | ⊢ (𝐴 ∈ 𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4267 | . 2 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐵 = ∅) | |
2 | elbasov.s | . . . . 5 ⊢ 𝑆 = (𝑋𝑂𝑌) | |
3 | elbasov.o | . . . . . 6 ⊢ Rel dom 𝑂 | |
4 | 3 | ovprc 7313 | . . . . 5 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋𝑂𝑌) = ∅) |
5 | 2, 4 | eqtrid 2790 | . . . 4 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑆 = ∅) |
6 | 5 | fveq2d 6778 | . . 3 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (Base‘𝑆) = (Base‘∅)) |
7 | elbasov.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
8 | base0 16917 | . . 3 ⊢ ∅ = (Base‘∅) | |
9 | 6, 7, 8 | 3eqtr4g 2803 | . 2 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝐵 = ∅) |
10 | 1, 9 | nsyl2 141 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 dom cdm 5589 Rel wrel 5594 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-slot 16883 df-ndx 16895 df-base 16913 |
This theorem is referenced by: strov2rcl 16920 psrelbas 21148 psraddcl 21152 psrmulcllem 21156 psrvscafval 21159 psrvscacl 21162 resspsradd 21185 resspsrmul 21186 cphsubrglem 24341 mdegcl 25234 |
Copyright terms: Public domain | W3C validator |