![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elbasov | Structured version Visualization version GIF version |
Description: Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015.) |
Ref | Expression |
---|---|
elbasov.o | ⊢ Rel dom 𝑂 |
elbasov.s | ⊢ 𝑆 = (𝑋𝑂𝑌) |
elbasov.b | ⊢ 𝐵 = (Base‘𝑆) |
Ref | Expression |
---|---|
elbasov | ⊢ (𝐴 ∈ 𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4363 | . 2 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐵 = ∅) | |
2 | elbasov.s | . . . . 5 ⊢ 𝑆 = (𝑋𝑂𝑌) | |
3 | elbasov.o | . . . . . 6 ⊢ Rel dom 𝑂 | |
4 | 3 | ovprc 7486 | . . . . 5 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋𝑂𝑌) = ∅) |
5 | 2, 4 | eqtrid 2792 | . . . 4 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑆 = ∅) |
6 | 5 | fveq2d 6924 | . . 3 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (Base‘𝑆) = (Base‘∅)) |
7 | elbasov.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
8 | base0 17263 | . . 3 ⊢ ∅ = (Base‘∅) | |
9 | 6, 7, 8 | 3eqtr4g 2805 | . 2 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝐵 = ∅) |
10 | 1, 9 | nsyl2 141 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 dom cdm 5700 Rel wrel 5705 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-slot 17229 df-ndx 17241 df-base 17259 |
This theorem is referenced by: strov2rcl 17266 psrelbas 21977 psraddcl 21981 psraddclOLD 21982 psrmulcllem 21988 psrvscafval 21991 psrvscacl 21994 resspsradd 22018 resspsrmul 22019 cphsubrglem 25230 mdegcl 26128 mhmcopsr 42504 |
Copyright terms: Public domain | W3C validator |