| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elbasov | Structured version Visualization version GIF version | ||
| Description: Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015.) |
| Ref | Expression |
|---|---|
| elbasov.o | ⊢ Rel dom 𝑂 |
| elbasov.s | ⊢ 𝑆 = (𝑋𝑂𝑌) |
| elbasov.b | ⊢ 𝐵 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| elbasov | ⊢ (𝐴 ∈ 𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4290 | . 2 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐵 = ∅) | |
| 2 | elbasov.s | . . . . 5 ⊢ 𝑆 = (𝑋𝑂𝑌) | |
| 3 | elbasov.o | . . . . . 6 ⊢ Rel dom 𝑂 | |
| 4 | 3 | ovprc 7384 | . . . . 5 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋𝑂𝑌) = ∅) |
| 5 | 2, 4 | eqtrid 2778 | . . . 4 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑆 = ∅) |
| 6 | 5 | fveq2d 6826 | . . 3 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (Base‘𝑆) = (Base‘∅)) |
| 7 | elbasov.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 8 | base0 17122 | . . 3 ⊢ ∅ = (Base‘∅) | |
| 9 | 6, 7, 8 | 3eqtr4g 2791 | . 2 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝐵 = ∅) |
| 10 | 1, 9 | nsyl2 141 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 dom cdm 5616 Rel wrel 5621 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-1cn 11061 ax-addcl 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12123 df-slot 17090 df-ndx 17102 df-base 17118 |
| This theorem is referenced by: strov2rcl 17125 psrelbas 21869 psraddcl 21873 psraddclOLD 21874 psrmulcllem 21880 psrvscafval 21883 psrvscacl 21886 resspsradd 21910 resspsrmul 21911 selvval 22048 ismhp 22053 psdval 22072 psdpw 22083 cphsubrglem 25102 mhmcopsr 42581 elxpcbasex2 49281 |
| Copyright terms: Public domain | W3C validator |