| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elbasov | Structured version Visualization version GIF version | ||
| Description: Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015.) |
| Ref | Expression |
|---|---|
| elbasov.o | ⊢ Rel dom 𝑂 |
| elbasov.s | ⊢ 𝑆 = (𝑋𝑂𝑌) |
| elbasov.b | ⊢ 𝐵 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| elbasov | ⊢ (𝐴 ∈ 𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4293 | . 2 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐵 = ∅) | |
| 2 | elbasov.s | . . . . 5 ⊢ 𝑆 = (𝑋𝑂𝑌) | |
| 3 | elbasov.o | . . . . . 6 ⊢ Rel dom 𝑂 | |
| 4 | 3 | ovprc 7391 | . . . . 5 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋𝑂𝑌) = ∅) |
| 5 | 2, 4 | eqtrid 2776 | . . . 4 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑆 = ∅) |
| 6 | 5 | fveq2d 6830 | . . 3 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (Base‘𝑆) = (Base‘∅)) |
| 7 | elbasov.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 8 | base0 17143 | . . 3 ⊢ ∅ = (Base‘∅) | |
| 9 | 6, 7, 8 | 3eqtr4g 2789 | . 2 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝐵 = ∅) |
| 10 | 1, 9 | nsyl2 141 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∅c0 4286 dom cdm 5623 Rel wrel 5628 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-slot 17111 df-ndx 17123 df-base 17139 |
| This theorem is referenced by: strov2rcl 17146 psrelbas 21859 psraddcl 21863 psraddclOLD 21864 psrmulcllem 21870 psrvscafval 21873 psrvscacl 21876 resspsradd 21900 resspsrmul 21901 selvval 22038 ismhp 22043 psdval 22062 psdpw 22073 cphsubrglem 25093 mhmcopsr 42522 elxpcbasex2 49236 |
| Copyright terms: Public domain | W3C validator |