MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elbasov Structured version   Visualization version   GIF version

Theorem elbasov 17222
Description: Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
elbasov.o Rel dom 𝑂
elbasov.s 𝑆 = (𝑋𝑂𝑌)
elbasov.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
elbasov (𝐴𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V))

Proof of Theorem elbasov
StepHypRef Expression
1 n0i 4336 . 2 (𝐴𝐵 → ¬ 𝐵 = ∅)
2 elbasov.s . . . . 5 𝑆 = (𝑋𝑂𝑌)
3 elbasov.o . . . . . 6 Rel dom 𝑂
43ovprc 7464 . . . . 5 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋𝑂𝑌) = ∅)
52, 4eqtrid 2778 . . . 4 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑆 = ∅)
65fveq2d 6907 . . 3 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (Base‘𝑆) = (Base‘∅))
7 elbasov.b . . 3 𝐵 = (Base‘𝑆)
8 base0 17220 . . 3 ∅ = (Base‘∅)
96, 7, 83eqtr4g 2791 . 2 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝐵 = ∅)
101, 9nsyl2 141 1 (𝐴𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1534  wcel 2099  Vcvv 3462  c0 4325  dom cdm 5684  Rel wrel 5689  cfv 6556  (class class class)co 7426  Basecbs 17215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-1cn 11218  ax-addcl 11220
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-ov 7429  df-om 7879  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-nn 12267  df-slot 17186  df-ndx 17198  df-base 17216
This theorem is referenced by:  strov2rcl  17223  psrelbas  21945  psraddcl  21949  psraddclOLD  21950  psrmulcllem  21956  psrvscafval  21959  psrvscacl  21962  resspsradd  21986  resspsrmul  21987  cphsubrglem  25199  mdegcl  26099  mhmcopsr  42219
  Copyright terms: Public domain W3C validator