MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elbasov Structured version   Visualization version   GIF version

Theorem elbasov 16847
Description: Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
elbasov.o Rel dom 𝑂
elbasov.s 𝑆 = (𝑋𝑂𝑌)
elbasov.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
elbasov (𝐴𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V))

Proof of Theorem elbasov
StepHypRef Expression
1 n0i 4264 . 2 (𝐴𝐵 → ¬ 𝐵 = ∅)
2 elbasov.s . . . . 5 𝑆 = (𝑋𝑂𝑌)
3 elbasov.o . . . . . 6 Rel dom 𝑂
43ovprc 7293 . . . . 5 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋𝑂𝑌) = ∅)
52, 4eqtrid 2790 . . . 4 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑆 = ∅)
65fveq2d 6760 . . 3 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (Base‘𝑆) = (Base‘∅))
7 elbasov.b . . 3 𝐵 = (Base‘𝑆)
8 base0 16845 . . 3 ∅ = (Base‘∅)
96, 7, 83eqtr4g 2804 . 2 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝐵 = ∅)
101, 9nsyl2 141 1 (𝐴𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  dom cdm 5580  Rel wrel 5585  cfv 6418  (class class class)co 7255  Basecbs 16840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-1cn 10860  ax-addcl 10862
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-nn 11904  df-slot 16811  df-ndx 16823  df-base 16841
This theorem is referenced by:  strov2rcl  16848  psrelbas  21058  psraddcl  21062  psrmulcllem  21066  psrvscafval  21069  psrvscacl  21072  resspsradd  21095  resspsrmul  21096  cphsubrglem  24246  mdegcl  25139
  Copyright terms: Public domain W3C validator