Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elbasov | Structured version Visualization version GIF version |
Description: Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015.) |
Ref | Expression |
---|---|
elbasov.o | ⊢ Rel dom 𝑂 |
elbasov.s | ⊢ 𝑆 = (𝑋𝑂𝑌) |
elbasov.b | ⊢ 𝐵 = (Base‘𝑆) |
Ref | Expression |
---|---|
elbasov | ⊢ (𝐴 ∈ 𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4273 | . 2 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐵 = ∅) | |
2 | elbasov.s | . . . . 5 ⊢ 𝑆 = (𝑋𝑂𝑌) | |
3 | elbasov.o | . . . . . 6 ⊢ Rel dom 𝑂 | |
4 | 3 | ovprc 7307 | . . . . 5 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋𝑂𝑌) = ∅) |
5 | 2, 4 | eqtrid 2792 | . . . 4 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑆 = ∅) |
6 | 5 | fveq2d 6773 | . . 3 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (Base‘𝑆) = (Base‘∅)) |
7 | elbasov.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
8 | base0 16913 | . . 3 ⊢ ∅ = (Base‘∅) | |
9 | 6, 7, 8 | 3eqtr4g 2805 | . 2 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝐵 = ∅) |
10 | 1, 9 | nsyl2 141 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ∅c0 4262 dom cdm 5589 Rel wrel 5594 ‘cfv 6431 (class class class)co 7269 Basecbs 16908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10926 ax-1cn 10928 ax-addcl 10930 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-ov 7272 df-om 7705 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-nn 11972 df-slot 16879 df-ndx 16891 df-base 16909 |
This theorem is referenced by: strov2rcl 16916 psrelbas 21144 psraddcl 21148 psrmulcllem 21152 psrvscafval 21155 psrvscacl 21158 resspsradd 21181 resspsrmul 21182 cphsubrglem 24337 mdegcl 25230 |
Copyright terms: Public domain | W3C validator |