![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pclbtwnN | Structured version Visualization version GIF version |
Description: A projective subspace sandwiched between a set of atoms and the set's projective subspace closure equals the closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclid.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
pclid.c | ⊢ 𝑈 = (PCl‘𝐾) |
Ref | Expression |
---|---|
pclbtwnN | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → 𝑋 = (𝑈‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 772 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → 𝑋 ⊆ (𝑈‘𝑌)) | |
2 | simpll 766 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → 𝐾 ∈ 𝑉) | |
3 | simprl 770 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → 𝑌 ⊆ 𝑋) | |
4 | eqid 2733 | . . . . . 6 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
5 | pclid.s | . . . . . 6 ⊢ 𝑆 = (PSubSp‘𝐾) | |
6 | 4, 5 | psubssat 38531 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) → 𝑋 ⊆ (Atoms‘𝐾)) |
7 | 6 | adantr 482 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → 𝑋 ⊆ (Atoms‘𝐾)) |
8 | pclid.c | . . . . 5 ⊢ 𝑈 = (PCl‘𝐾) | |
9 | 4, 8 | pclssN 38671 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (Atoms‘𝐾)) → (𝑈‘𝑌) ⊆ (𝑈‘𝑋)) |
10 | 2, 3, 7, 9 | syl3anc 1372 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → (𝑈‘𝑌) ⊆ (𝑈‘𝑋)) |
11 | 5, 8 | pclidN 38673 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) → (𝑈‘𝑋) = 𝑋) |
12 | 11 | adantr 482 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → (𝑈‘𝑋) = 𝑋) |
13 | 10, 12 | sseqtrd 4020 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → (𝑈‘𝑌) ⊆ 𝑋) |
14 | 1, 13 | eqssd 3997 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → 𝑋 = (𝑈‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ⊆ wss 3946 ‘cfv 6535 Atomscatm 38039 PSubSpcpsubsp 38273 PClcpclN 38664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-int 4947 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-ov 7399 df-psubsp 38280 df-pclN 38665 |
This theorem is referenced by: pclfinN 38677 |
Copyright terms: Public domain | W3C validator |