![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pclbtwnN | Structured version Visualization version GIF version |
Description: A projective subspace sandwiched between a set of atoms and the set's projective subspace closure equals the closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclid.s | β’ π = (PSubSpβπΎ) |
pclid.c | β’ π = (PClβπΎ) |
Ref | Expression |
---|---|
pclbtwnN | β’ (((πΎ β π β§ π β π) β§ (π β π β§ π β (πβπ))) β π = (πβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 770 | . 2 β’ (((πΎ β π β§ π β π) β§ (π β π β§ π β (πβπ))) β π β (πβπ)) | |
2 | simpll 764 | . . . 4 β’ (((πΎ β π β§ π β π) β§ (π β π β§ π β (πβπ))) β πΎ β π) | |
3 | simprl 768 | . . . 4 β’ (((πΎ β π β§ π β π) β§ (π β π β§ π β (πβπ))) β π β π) | |
4 | eqid 2726 | . . . . . 6 β’ (AtomsβπΎ) = (AtomsβπΎ) | |
5 | pclid.s | . . . . . 6 β’ π = (PSubSpβπΎ) | |
6 | 4, 5 | psubssat 39138 | . . . . 5 β’ ((πΎ β π β§ π β π) β π β (AtomsβπΎ)) |
7 | 6 | adantr 480 | . . . 4 β’ (((πΎ β π β§ π β π) β§ (π β π β§ π β (πβπ))) β π β (AtomsβπΎ)) |
8 | pclid.c | . . . . 5 β’ π = (PClβπΎ) | |
9 | 4, 8 | pclssN 39278 | . . . 4 β’ ((πΎ β π β§ π β π β§ π β (AtomsβπΎ)) β (πβπ) β (πβπ)) |
10 | 2, 3, 7, 9 | syl3anc 1368 | . . 3 β’ (((πΎ β π β§ π β π) β§ (π β π β§ π β (πβπ))) β (πβπ) β (πβπ)) |
11 | 5, 8 | pclidN 39280 | . . . 4 β’ ((πΎ β π β§ π β π) β (πβπ) = π) |
12 | 11 | adantr 480 | . . 3 β’ (((πΎ β π β§ π β π) β§ (π β π β§ π β (πβπ))) β (πβπ) = π) |
13 | 10, 12 | sseqtrd 4017 | . 2 β’ (((πΎ β π β§ π β π) β§ (π β π β§ π β (πβπ))) β (πβπ) β π) |
14 | 1, 13 | eqssd 3994 | 1 β’ (((πΎ β π β§ π β π) β§ (π β π β§ π β (πβπ))) β π = (πβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β wss 3943 βcfv 6537 Atomscatm 38646 PSubSpcpsubsp 38880 PClcpclN 39271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-psubsp 38887 df-pclN 39272 |
This theorem is referenced by: pclfinN 39284 |
Copyright terms: Public domain | W3C validator |