| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pclbtwnN | Structured version Visualization version GIF version | ||
| Description: A projective subspace sandwiched between a set of atoms and the set's projective subspace closure equals the closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pclid.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| pclid.c | ⊢ 𝑈 = (PCl‘𝐾) |
| Ref | Expression |
|---|---|
| pclbtwnN | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → 𝑋 = (𝑈‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → 𝑋 ⊆ (𝑈‘𝑌)) | |
| 2 | simpll 766 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → 𝐾 ∈ 𝑉) | |
| 3 | simprl 770 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → 𝑌 ⊆ 𝑋) | |
| 4 | eqid 2729 | . . . . . 6 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 5 | pclid.s | . . . . . 6 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 6 | 4, 5 | psubssat 39748 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) → 𝑋 ⊆ (Atoms‘𝐾)) |
| 7 | 6 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → 𝑋 ⊆ (Atoms‘𝐾)) |
| 8 | pclid.c | . . . . 5 ⊢ 𝑈 = (PCl‘𝐾) | |
| 9 | 4, 8 | pclssN 39888 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (Atoms‘𝐾)) → (𝑈‘𝑌) ⊆ (𝑈‘𝑋)) |
| 10 | 2, 3, 7, 9 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → (𝑈‘𝑌) ⊆ (𝑈‘𝑋)) |
| 11 | 5, 8 | pclidN 39890 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) → (𝑈‘𝑋) = 𝑋) |
| 12 | 11 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → (𝑈‘𝑋) = 𝑋) |
| 13 | 10, 12 | sseqtrd 3983 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → (𝑈‘𝑌) ⊆ 𝑋) |
| 14 | 1, 13 | eqssd 3964 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → 𝑋 = (𝑈‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ‘cfv 6511 Atomscatm 39256 PSubSpcpsubsp 39490 PClcpclN 39881 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-psubsp 39497 df-pclN 39882 |
| This theorem is referenced by: pclfinN 39894 |
| Copyright terms: Public domain | W3C validator |