Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclbtwnN Structured version   Visualization version   GIF version

Theorem pclbtwnN 37911
Description: A projective subspace sandwiched between a set of atoms and the set's projective subspace closure equals the closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclid.s 𝑆 = (PSubSp‘𝐾)
pclid.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclbtwnN (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → 𝑋 = (𝑈𝑌))

Proof of Theorem pclbtwnN
StepHypRef Expression
1 simprr 770 . 2 (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → 𝑋 ⊆ (𝑈𝑌))
2 simpll 764 . . . 4 (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → 𝐾𝑉)
3 simprl 768 . . . 4 (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → 𝑌𝑋)
4 eqid 2738 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
5 pclid.s . . . . . 6 𝑆 = (PSubSp‘𝐾)
64, 5psubssat 37768 . . . . 5 ((𝐾𝑉𝑋𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
76adantr 481 . . . 4 (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → 𝑋 ⊆ (Atoms‘𝐾))
8 pclid.c . . . . 5 𝑈 = (PCl‘𝐾)
94, 8pclssN 37908 . . . 4 ((𝐾𝑉𝑌𝑋𝑋 ⊆ (Atoms‘𝐾)) → (𝑈𝑌) ⊆ (𝑈𝑋))
102, 3, 7, 9syl3anc 1370 . . 3 (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → (𝑈𝑌) ⊆ (𝑈𝑋))
115, 8pclidN 37910 . . . 4 ((𝐾𝑉𝑋𝑆) → (𝑈𝑋) = 𝑋)
1211adantr 481 . . 3 (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → (𝑈𝑋) = 𝑋)
1310, 12sseqtrd 3961 . 2 (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → (𝑈𝑌) ⊆ 𝑋)
141, 13eqssd 3938 1 (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → 𝑋 = (𝑈𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wss 3887  cfv 6433  Atomscatm 37277  PSubSpcpsubsp 37510  PClcpclN 37901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-psubsp 37517  df-pclN 37902
This theorem is referenced by:  pclfinN  37914
  Copyright terms: Public domain W3C validator