![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pclbtwnN | Structured version Visualization version GIF version |
Description: A projective subspace sandwiched between a set of atoms and the set's projective subspace closure equals the closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclid.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
pclid.c | ⊢ 𝑈 = (PCl‘𝐾) |
Ref | Expression |
---|---|
pclbtwnN | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → 𝑋 = (𝑈‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 790 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → 𝑋 ⊆ (𝑈‘𝑌)) | |
2 | simpll 784 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → 𝐾 ∈ 𝑉) | |
3 | simprl 788 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → 𝑌 ⊆ 𝑋) | |
4 | eqid 2799 | . . . . . 6 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
5 | pclid.s | . . . . . 6 ⊢ 𝑆 = (PSubSp‘𝐾) | |
6 | 4, 5 | psubssat 35775 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) → 𝑋 ⊆ (Atoms‘𝐾)) |
7 | 6 | adantr 473 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → 𝑋 ⊆ (Atoms‘𝐾)) |
8 | pclid.c | . . . . 5 ⊢ 𝑈 = (PCl‘𝐾) | |
9 | 4, 8 | pclssN 35915 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (Atoms‘𝐾)) → (𝑈‘𝑌) ⊆ (𝑈‘𝑋)) |
10 | 2, 3, 7, 9 | syl3anc 1491 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → (𝑈‘𝑌) ⊆ (𝑈‘𝑋)) |
11 | 5, 8 | pclidN 35917 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) → (𝑈‘𝑋) = 𝑋) |
12 | 11 | adantr 473 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → (𝑈‘𝑋) = 𝑋) |
13 | 10, 12 | sseqtrd 3837 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → (𝑈‘𝑌) ⊆ 𝑋) |
14 | 1, 13 | eqssd 3815 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → 𝑋 = (𝑈‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ⊆ wss 3769 ‘cfv 6101 Atomscatm 35284 PSubSpcpsubsp 35517 PClcpclN 35908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-psubsp 35524 df-pclN 35909 |
This theorem is referenced by: pclfinN 35921 |
Copyright terms: Public domain | W3C validator |