Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclbtwnN Structured version   Visualization version   GIF version

Theorem pclbtwnN 37597
Description: A projective subspace sandwiched between a set of atoms and the set's projective subspace closure equals the closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclid.s 𝑆 = (PSubSp‘𝐾)
pclid.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclbtwnN (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → 𝑋 = (𝑈𝑌))

Proof of Theorem pclbtwnN
StepHypRef Expression
1 simprr 773 . 2 (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → 𝑋 ⊆ (𝑈𝑌))
2 simpll 767 . . . 4 (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → 𝐾𝑉)
3 simprl 771 . . . 4 (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → 𝑌𝑋)
4 eqid 2736 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
5 pclid.s . . . . . 6 𝑆 = (PSubSp‘𝐾)
64, 5psubssat 37454 . . . . 5 ((𝐾𝑉𝑋𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
76adantr 484 . . . 4 (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → 𝑋 ⊆ (Atoms‘𝐾))
8 pclid.c . . . . 5 𝑈 = (PCl‘𝐾)
94, 8pclssN 37594 . . . 4 ((𝐾𝑉𝑌𝑋𝑋 ⊆ (Atoms‘𝐾)) → (𝑈𝑌) ⊆ (𝑈𝑋))
102, 3, 7, 9syl3anc 1373 . . 3 (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → (𝑈𝑌) ⊆ (𝑈𝑋))
115, 8pclidN 37596 . . . 4 ((𝐾𝑉𝑋𝑆) → (𝑈𝑋) = 𝑋)
1211adantr 484 . . 3 (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → (𝑈𝑋) = 𝑋)
1310, 12sseqtrd 3927 . 2 (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → (𝑈𝑌) ⊆ 𝑋)
141, 13eqssd 3904 1 (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → 𝑋 = (𝑈𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wss 3853  cfv 6358  Atomscatm 36963  PSubSpcpsubsp 37196  PClcpclN 37587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-psubsp 37203  df-pclN 37588
This theorem is referenced by:  pclfinN  37600
  Copyright terms: Public domain W3C validator