Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclunN Structured version   Visualization version   GIF version

Theorem pclunN 39922
Description: The projective subspace closure of the union of two sets of atoms equals the closure of their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclun.a 𝐴 = (Atoms‘𝐾)
pclun.p + = (+𝑃𝐾)
pclun.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclunN ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) = (𝑈‘(𝑋 + 𝑌)))

Proof of Theorem pclunN
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → 𝐾𝑉)
2 pclun.a . . . 4 𝐴 = (Atoms‘𝐾)
3 pclun.p . . . 4 + = (+𝑃𝐾)
42, 3paddunssN 39832 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ (𝑋 + 𝑌))
52, 3paddssat 39838 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ 𝐴)
6 pclun.c . . . 4 𝑈 = (PCl‘𝐾)
72, 6pclssN 39918 . . 3 ((𝐾𝑉 ∧ (𝑋𝑌) ⊆ (𝑋 + 𝑌) ∧ (𝑋 + 𝑌) ⊆ 𝐴) → (𝑈‘(𝑋𝑌)) ⊆ (𝑈‘(𝑋 + 𝑌)))
81, 4, 5, 7syl3anc 1373 . 2 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) ⊆ (𝑈‘(𝑋 + 𝑌)))
9 unss 4170 . . . . . . . . 9 ((𝑋𝐴𝑌𝐴) ↔ (𝑋𝑌) ⊆ 𝐴)
109biimpi 216 . . . . . . . 8 ((𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ 𝐴)
11103adant1 1130 . . . . . . 7 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ 𝐴)
122, 6pclssidN 39919 . . . . . . 7 ((𝐾𝑉 ∧ (𝑋𝑌) ⊆ 𝐴) → (𝑋𝑌) ⊆ (𝑈‘(𝑋𝑌)))
131, 11, 12syl2anc 584 . . . . . 6 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ (𝑈‘(𝑋𝑌)))
14 unss 4170 . . . . . 6 ((𝑋 ⊆ (𝑈‘(𝑋𝑌)) ∧ 𝑌 ⊆ (𝑈‘(𝑋𝑌))) ↔ (𝑋𝑌) ⊆ (𝑈‘(𝑋𝑌)))
1513, 14sylibr 234 . . . . 5 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋 ⊆ (𝑈‘(𝑋𝑌)) ∧ 𝑌 ⊆ (𝑈‘(𝑋𝑌))))
16 simp2 1137 . . . . . 6 ((𝐾𝑉𝑋𝐴𝑌𝐴) → 𝑋𝐴)
17 simp3 1138 . . . . . 6 ((𝐾𝑉𝑋𝐴𝑌𝐴) → 𝑌𝐴)
18 eqid 2736 . . . . . . . 8 (PSubSp‘𝐾) = (PSubSp‘𝐾)
192, 18, 6pclclN 39915 . . . . . . 7 ((𝐾𝑉 ∧ (𝑋𝑌) ⊆ 𝐴) → (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾))
201, 11, 19syl2anc 584 . . . . . 6 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾))
212, 18, 3paddss 39869 . . . . . 6 ((𝐾𝑉 ∧ (𝑋𝐴𝑌𝐴 ∧ (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾))) → ((𝑋 ⊆ (𝑈‘(𝑋𝑌)) ∧ 𝑌 ⊆ (𝑈‘(𝑋𝑌))) ↔ (𝑋 + 𝑌) ⊆ (𝑈‘(𝑋𝑌))))
221, 16, 17, 20, 21syl13anc 1374 . . . . 5 ((𝐾𝑉𝑋𝐴𝑌𝐴) → ((𝑋 ⊆ (𝑈‘(𝑋𝑌)) ∧ 𝑌 ⊆ (𝑈‘(𝑋𝑌))) ↔ (𝑋 + 𝑌) ⊆ (𝑈‘(𝑋𝑌))))
2315, 22mpbid 232 . . . 4 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ (𝑈‘(𝑋𝑌)))
242, 18psubssat 39778 . . . . 5 ((𝐾𝑉 ∧ (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾)) → (𝑈‘(𝑋𝑌)) ⊆ 𝐴)
251, 20, 24syl2anc 584 . . . 4 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) ⊆ 𝐴)
262, 6pclssN 39918 . . . 4 ((𝐾𝑉 ∧ (𝑋 + 𝑌) ⊆ (𝑈‘(𝑋𝑌)) ∧ (𝑈‘(𝑋𝑌)) ⊆ 𝐴) → (𝑈‘(𝑋 + 𝑌)) ⊆ (𝑈‘(𝑈‘(𝑋𝑌))))
271, 23, 25, 26syl3anc 1373 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋 + 𝑌)) ⊆ (𝑈‘(𝑈‘(𝑋𝑌))))
2818, 6pclidN 39920 . . . 4 ((𝐾𝑉 ∧ (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾)) → (𝑈‘(𝑈‘(𝑋𝑌))) = (𝑈‘(𝑋𝑌)))
291, 20, 28syl2anc 584 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑈‘(𝑋𝑌))) = (𝑈‘(𝑋𝑌)))
3027, 29sseqtrd 4000 . 2 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋 + 𝑌)) ⊆ (𝑈‘(𝑋𝑌)))
318, 30eqssd 3981 1 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) = (𝑈‘(𝑋 + 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cun 3929  wss 3931  cfv 6536  (class class class)co 7410  Atomscatm 39286  PSubSpcpsubsp 39520  +𝑃cpadd 39819  PClcpclN 39911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-psubsp 39527  df-padd 39820  df-pclN 39912
This theorem is referenced by:  pclun2N  39923
  Copyright terms: Public domain W3C validator