Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclunN Structured version   Visualization version   GIF version

Theorem pclunN 38572
Description: The projective subspace closure of the union of two sets of atoms equals the closure of their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclun.a 𝐴 = (Atoms‘𝐾)
pclun.p + = (+𝑃𝐾)
pclun.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclunN ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) = (𝑈‘(𝑋 + 𝑌)))

Proof of Theorem pclunN
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → 𝐾𝑉)
2 pclun.a . . . 4 𝐴 = (Atoms‘𝐾)
3 pclun.p . . . 4 + = (+𝑃𝐾)
42, 3paddunssN 38482 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ (𝑋 + 𝑌))
52, 3paddssat 38488 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ 𝐴)
6 pclun.c . . . 4 𝑈 = (PCl‘𝐾)
72, 6pclssN 38568 . . 3 ((𝐾𝑉 ∧ (𝑋𝑌) ⊆ (𝑋 + 𝑌) ∧ (𝑋 + 𝑌) ⊆ 𝐴) → (𝑈‘(𝑋𝑌)) ⊆ (𝑈‘(𝑋 + 𝑌)))
81, 4, 5, 7syl3anc 1371 . 2 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) ⊆ (𝑈‘(𝑋 + 𝑌)))
9 unss 4180 . . . . . . . . 9 ((𝑋𝐴𝑌𝐴) ↔ (𝑋𝑌) ⊆ 𝐴)
109biimpi 215 . . . . . . . 8 ((𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ 𝐴)
11103adant1 1130 . . . . . . 7 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ 𝐴)
122, 6pclssidN 38569 . . . . . . 7 ((𝐾𝑉 ∧ (𝑋𝑌) ⊆ 𝐴) → (𝑋𝑌) ⊆ (𝑈‘(𝑋𝑌)))
131, 11, 12syl2anc 584 . . . . . 6 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ (𝑈‘(𝑋𝑌)))
14 unss 4180 . . . . . 6 ((𝑋 ⊆ (𝑈‘(𝑋𝑌)) ∧ 𝑌 ⊆ (𝑈‘(𝑋𝑌))) ↔ (𝑋𝑌) ⊆ (𝑈‘(𝑋𝑌)))
1513, 14sylibr 233 . . . . 5 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋 ⊆ (𝑈‘(𝑋𝑌)) ∧ 𝑌 ⊆ (𝑈‘(𝑋𝑌))))
16 simp2 1137 . . . . . 6 ((𝐾𝑉𝑋𝐴𝑌𝐴) → 𝑋𝐴)
17 simp3 1138 . . . . . 6 ((𝐾𝑉𝑋𝐴𝑌𝐴) → 𝑌𝐴)
18 eqid 2731 . . . . . . . 8 (PSubSp‘𝐾) = (PSubSp‘𝐾)
192, 18, 6pclclN 38565 . . . . . . 7 ((𝐾𝑉 ∧ (𝑋𝑌) ⊆ 𝐴) → (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾))
201, 11, 19syl2anc 584 . . . . . 6 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾))
212, 18, 3paddss 38519 . . . . . 6 ((𝐾𝑉 ∧ (𝑋𝐴𝑌𝐴 ∧ (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾))) → ((𝑋 ⊆ (𝑈‘(𝑋𝑌)) ∧ 𝑌 ⊆ (𝑈‘(𝑋𝑌))) ↔ (𝑋 + 𝑌) ⊆ (𝑈‘(𝑋𝑌))))
221, 16, 17, 20, 21syl13anc 1372 . . . . 5 ((𝐾𝑉𝑋𝐴𝑌𝐴) → ((𝑋 ⊆ (𝑈‘(𝑋𝑌)) ∧ 𝑌 ⊆ (𝑈‘(𝑋𝑌))) ↔ (𝑋 + 𝑌) ⊆ (𝑈‘(𝑋𝑌))))
2315, 22mpbid 231 . . . 4 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ (𝑈‘(𝑋𝑌)))
242, 18psubssat 38428 . . . . 5 ((𝐾𝑉 ∧ (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾)) → (𝑈‘(𝑋𝑌)) ⊆ 𝐴)
251, 20, 24syl2anc 584 . . . 4 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) ⊆ 𝐴)
262, 6pclssN 38568 . . . 4 ((𝐾𝑉 ∧ (𝑋 + 𝑌) ⊆ (𝑈‘(𝑋𝑌)) ∧ (𝑈‘(𝑋𝑌)) ⊆ 𝐴) → (𝑈‘(𝑋 + 𝑌)) ⊆ (𝑈‘(𝑈‘(𝑋𝑌))))
271, 23, 25, 26syl3anc 1371 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋 + 𝑌)) ⊆ (𝑈‘(𝑈‘(𝑋𝑌))))
2818, 6pclidN 38570 . . . 4 ((𝐾𝑉 ∧ (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾)) → (𝑈‘(𝑈‘(𝑋𝑌))) = (𝑈‘(𝑋𝑌)))
291, 20, 28syl2anc 584 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑈‘(𝑋𝑌))) = (𝑈‘(𝑋𝑌)))
3027, 29sseqtrd 4018 . 2 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋 + 𝑌)) ⊆ (𝑈‘(𝑋𝑌)))
318, 30eqssd 3995 1 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) = (𝑈‘(𝑋 + 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  cun 3942  wss 3944  cfv 6532  (class class class)co 7393  Atomscatm 37936  PSubSpcpsubsp 38170  +𝑃cpadd 38469  PClcpclN 38561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-ov 7396  df-oprab 7397  df-mpo 7398  df-1st 7957  df-2nd 7958  df-psubsp 38177  df-padd 38470  df-pclN 38562
This theorem is referenced by:  pclun2N  38573
  Copyright terms: Public domain W3C validator