Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclunN Structured version   Visualization version   GIF version

Theorem pclunN 40020
Description: The projective subspace closure of the union of two sets of atoms equals the closure of their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclun.a 𝐴 = (Atoms‘𝐾)
pclun.p + = (+𝑃𝐾)
pclun.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclunN ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) = (𝑈‘(𝑋 + 𝑌)))

Proof of Theorem pclunN
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → 𝐾𝑉)
2 pclun.a . . . 4 𝐴 = (Atoms‘𝐾)
3 pclun.p . . . 4 + = (+𝑃𝐾)
42, 3paddunssN 39930 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ (𝑋 + 𝑌))
52, 3paddssat 39936 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ 𝐴)
6 pclun.c . . . 4 𝑈 = (PCl‘𝐾)
72, 6pclssN 40016 . . 3 ((𝐾𝑉 ∧ (𝑋𝑌) ⊆ (𝑋 + 𝑌) ∧ (𝑋 + 𝑌) ⊆ 𝐴) → (𝑈‘(𝑋𝑌)) ⊆ (𝑈‘(𝑋 + 𝑌)))
81, 4, 5, 7syl3anc 1373 . 2 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) ⊆ (𝑈‘(𝑋 + 𝑌)))
9 unss 4139 . . . . . . . . 9 ((𝑋𝐴𝑌𝐴) ↔ (𝑋𝑌) ⊆ 𝐴)
109biimpi 216 . . . . . . . 8 ((𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ 𝐴)
11103adant1 1130 . . . . . . 7 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ 𝐴)
122, 6pclssidN 40017 . . . . . . 7 ((𝐾𝑉 ∧ (𝑋𝑌) ⊆ 𝐴) → (𝑋𝑌) ⊆ (𝑈‘(𝑋𝑌)))
131, 11, 12syl2anc 584 . . . . . 6 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ (𝑈‘(𝑋𝑌)))
14 unss 4139 . . . . . 6 ((𝑋 ⊆ (𝑈‘(𝑋𝑌)) ∧ 𝑌 ⊆ (𝑈‘(𝑋𝑌))) ↔ (𝑋𝑌) ⊆ (𝑈‘(𝑋𝑌)))
1513, 14sylibr 234 . . . . 5 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋 ⊆ (𝑈‘(𝑋𝑌)) ∧ 𝑌 ⊆ (𝑈‘(𝑋𝑌))))
16 simp2 1137 . . . . . 6 ((𝐾𝑉𝑋𝐴𝑌𝐴) → 𝑋𝐴)
17 simp3 1138 . . . . . 6 ((𝐾𝑉𝑋𝐴𝑌𝐴) → 𝑌𝐴)
18 eqid 2733 . . . . . . . 8 (PSubSp‘𝐾) = (PSubSp‘𝐾)
192, 18, 6pclclN 40013 . . . . . . 7 ((𝐾𝑉 ∧ (𝑋𝑌) ⊆ 𝐴) → (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾))
201, 11, 19syl2anc 584 . . . . . 6 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾))
212, 18, 3paddss 39967 . . . . . 6 ((𝐾𝑉 ∧ (𝑋𝐴𝑌𝐴 ∧ (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾))) → ((𝑋 ⊆ (𝑈‘(𝑋𝑌)) ∧ 𝑌 ⊆ (𝑈‘(𝑋𝑌))) ↔ (𝑋 + 𝑌) ⊆ (𝑈‘(𝑋𝑌))))
221, 16, 17, 20, 21syl13anc 1374 . . . . 5 ((𝐾𝑉𝑋𝐴𝑌𝐴) → ((𝑋 ⊆ (𝑈‘(𝑋𝑌)) ∧ 𝑌 ⊆ (𝑈‘(𝑋𝑌))) ↔ (𝑋 + 𝑌) ⊆ (𝑈‘(𝑋𝑌))))
2315, 22mpbid 232 . . . 4 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ (𝑈‘(𝑋𝑌)))
242, 18psubssat 39876 . . . . 5 ((𝐾𝑉 ∧ (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾)) → (𝑈‘(𝑋𝑌)) ⊆ 𝐴)
251, 20, 24syl2anc 584 . . . 4 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) ⊆ 𝐴)
262, 6pclssN 40016 . . . 4 ((𝐾𝑉 ∧ (𝑋 + 𝑌) ⊆ (𝑈‘(𝑋𝑌)) ∧ (𝑈‘(𝑋𝑌)) ⊆ 𝐴) → (𝑈‘(𝑋 + 𝑌)) ⊆ (𝑈‘(𝑈‘(𝑋𝑌))))
271, 23, 25, 26syl3anc 1373 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋 + 𝑌)) ⊆ (𝑈‘(𝑈‘(𝑋𝑌))))
2818, 6pclidN 40018 . . . 4 ((𝐾𝑉 ∧ (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾)) → (𝑈‘(𝑈‘(𝑋𝑌))) = (𝑈‘(𝑋𝑌)))
291, 20, 28syl2anc 584 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑈‘(𝑋𝑌))) = (𝑈‘(𝑋𝑌)))
3027, 29sseqtrd 3967 . 2 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋 + 𝑌)) ⊆ (𝑈‘(𝑋𝑌)))
318, 30eqssd 3948 1 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) = (𝑈‘(𝑋 + 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  cun 3896  wss 3898  cfv 6488  (class class class)co 7354  Atomscatm 39385  PSubSpcpsubsp 39618  +𝑃cpadd 39917  PClcpclN 40009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-1st 7929  df-2nd 7930  df-psubsp 39625  df-padd 39918  df-pclN 40010
This theorem is referenced by:  pclun2N  40021
  Copyright terms: Public domain W3C validator