Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclunN Structured version   Visualization version   GIF version

Theorem pclunN 39899
Description: The projective subspace closure of the union of two sets of atoms equals the closure of their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclun.a 𝐴 = (Atoms‘𝐾)
pclun.p + = (+𝑃𝐾)
pclun.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclunN ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) = (𝑈‘(𝑋 + 𝑌)))

Proof of Theorem pclunN
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → 𝐾𝑉)
2 pclun.a . . . 4 𝐴 = (Atoms‘𝐾)
3 pclun.p . . . 4 + = (+𝑃𝐾)
42, 3paddunssN 39809 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ (𝑋 + 𝑌))
52, 3paddssat 39815 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ 𝐴)
6 pclun.c . . . 4 𝑈 = (PCl‘𝐾)
72, 6pclssN 39895 . . 3 ((𝐾𝑉 ∧ (𝑋𝑌) ⊆ (𝑋 + 𝑌) ∧ (𝑋 + 𝑌) ⊆ 𝐴) → (𝑈‘(𝑋𝑌)) ⊆ (𝑈‘(𝑋 + 𝑌)))
81, 4, 5, 7syl3anc 1373 . 2 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) ⊆ (𝑈‘(𝑋 + 𝑌)))
9 unss 4156 . . . . . . . . 9 ((𝑋𝐴𝑌𝐴) ↔ (𝑋𝑌) ⊆ 𝐴)
109biimpi 216 . . . . . . . 8 ((𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ 𝐴)
11103adant1 1130 . . . . . . 7 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ 𝐴)
122, 6pclssidN 39896 . . . . . . 7 ((𝐾𝑉 ∧ (𝑋𝑌) ⊆ 𝐴) → (𝑋𝑌) ⊆ (𝑈‘(𝑋𝑌)))
131, 11, 12syl2anc 584 . . . . . 6 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ (𝑈‘(𝑋𝑌)))
14 unss 4156 . . . . . 6 ((𝑋 ⊆ (𝑈‘(𝑋𝑌)) ∧ 𝑌 ⊆ (𝑈‘(𝑋𝑌))) ↔ (𝑋𝑌) ⊆ (𝑈‘(𝑋𝑌)))
1513, 14sylibr 234 . . . . 5 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋 ⊆ (𝑈‘(𝑋𝑌)) ∧ 𝑌 ⊆ (𝑈‘(𝑋𝑌))))
16 simp2 1137 . . . . . 6 ((𝐾𝑉𝑋𝐴𝑌𝐴) → 𝑋𝐴)
17 simp3 1138 . . . . . 6 ((𝐾𝑉𝑋𝐴𝑌𝐴) → 𝑌𝐴)
18 eqid 2730 . . . . . . . 8 (PSubSp‘𝐾) = (PSubSp‘𝐾)
192, 18, 6pclclN 39892 . . . . . . 7 ((𝐾𝑉 ∧ (𝑋𝑌) ⊆ 𝐴) → (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾))
201, 11, 19syl2anc 584 . . . . . 6 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾))
212, 18, 3paddss 39846 . . . . . 6 ((𝐾𝑉 ∧ (𝑋𝐴𝑌𝐴 ∧ (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾))) → ((𝑋 ⊆ (𝑈‘(𝑋𝑌)) ∧ 𝑌 ⊆ (𝑈‘(𝑋𝑌))) ↔ (𝑋 + 𝑌) ⊆ (𝑈‘(𝑋𝑌))))
221, 16, 17, 20, 21syl13anc 1374 . . . . 5 ((𝐾𝑉𝑋𝐴𝑌𝐴) → ((𝑋 ⊆ (𝑈‘(𝑋𝑌)) ∧ 𝑌 ⊆ (𝑈‘(𝑋𝑌))) ↔ (𝑋 + 𝑌) ⊆ (𝑈‘(𝑋𝑌))))
2315, 22mpbid 232 . . . 4 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ (𝑈‘(𝑋𝑌)))
242, 18psubssat 39755 . . . . 5 ((𝐾𝑉 ∧ (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾)) → (𝑈‘(𝑋𝑌)) ⊆ 𝐴)
251, 20, 24syl2anc 584 . . . 4 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) ⊆ 𝐴)
262, 6pclssN 39895 . . . 4 ((𝐾𝑉 ∧ (𝑋 + 𝑌) ⊆ (𝑈‘(𝑋𝑌)) ∧ (𝑈‘(𝑋𝑌)) ⊆ 𝐴) → (𝑈‘(𝑋 + 𝑌)) ⊆ (𝑈‘(𝑈‘(𝑋𝑌))))
271, 23, 25, 26syl3anc 1373 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋 + 𝑌)) ⊆ (𝑈‘(𝑈‘(𝑋𝑌))))
2818, 6pclidN 39897 . . . 4 ((𝐾𝑉 ∧ (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾)) → (𝑈‘(𝑈‘(𝑋𝑌))) = (𝑈‘(𝑋𝑌)))
291, 20, 28syl2anc 584 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑈‘(𝑋𝑌))) = (𝑈‘(𝑋𝑌)))
3027, 29sseqtrd 3986 . 2 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋 + 𝑌)) ⊆ (𝑈‘(𝑋𝑌)))
318, 30eqssd 3967 1 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) = (𝑈‘(𝑋 + 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cun 3915  wss 3917  cfv 6514  (class class class)co 7390  Atomscatm 39263  PSubSpcpsubsp 39497  +𝑃cpadd 39796  PClcpclN 39888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-psubsp 39504  df-padd 39797  df-pclN 39889
This theorem is referenced by:  pclun2N  39900
  Copyright terms: Public domain W3C validator