Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclunN Structured version   Visualization version   GIF version

Theorem pclunN 39881
Description: The projective subspace closure of the union of two sets of atoms equals the closure of their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclun.a 𝐴 = (Atoms‘𝐾)
pclun.p + = (+𝑃𝐾)
pclun.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclunN ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) = (𝑈‘(𝑋 + 𝑌)))

Proof of Theorem pclunN
StepHypRef Expression
1 simp1 1135 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → 𝐾𝑉)
2 pclun.a . . . 4 𝐴 = (Atoms‘𝐾)
3 pclun.p . . . 4 + = (+𝑃𝐾)
42, 3paddunssN 39791 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ (𝑋 + 𝑌))
52, 3paddssat 39797 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ 𝐴)
6 pclun.c . . . 4 𝑈 = (PCl‘𝐾)
72, 6pclssN 39877 . . 3 ((𝐾𝑉 ∧ (𝑋𝑌) ⊆ (𝑋 + 𝑌) ∧ (𝑋 + 𝑌) ⊆ 𝐴) → (𝑈‘(𝑋𝑌)) ⊆ (𝑈‘(𝑋 + 𝑌)))
81, 4, 5, 7syl3anc 1370 . 2 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) ⊆ (𝑈‘(𝑋 + 𝑌)))
9 unss 4200 . . . . . . . . 9 ((𝑋𝐴𝑌𝐴) ↔ (𝑋𝑌) ⊆ 𝐴)
109biimpi 216 . . . . . . . 8 ((𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ 𝐴)
11103adant1 1129 . . . . . . 7 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ 𝐴)
122, 6pclssidN 39878 . . . . . . 7 ((𝐾𝑉 ∧ (𝑋𝑌) ⊆ 𝐴) → (𝑋𝑌) ⊆ (𝑈‘(𝑋𝑌)))
131, 11, 12syl2anc 584 . . . . . 6 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ (𝑈‘(𝑋𝑌)))
14 unss 4200 . . . . . 6 ((𝑋 ⊆ (𝑈‘(𝑋𝑌)) ∧ 𝑌 ⊆ (𝑈‘(𝑋𝑌))) ↔ (𝑋𝑌) ⊆ (𝑈‘(𝑋𝑌)))
1513, 14sylibr 234 . . . . 5 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋 ⊆ (𝑈‘(𝑋𝑌)) ∧ 𝑌 ⊆ (𝑈‘(𝑋𝑌))))
16 simp2 1136 . . . . . 6 ((𝐾𝑉𝑋𝐴𝑌𝐴) → 𝑋𝐴)
17 simp3 1137 . . . . . 6 ((𝐾𝑉𝑋𝐴𝑌𝐴) → 𝑌𝐴)
18 eqid 2735 . . . . . . . 8 (PSubSp‘𝐾) = (PSubSp‘𝐾)
192, 18, 6pclclN 39874 . . . . . . 7 ((𝐾𝑉 ∧ (𝑋𝑌) ⊆ 𝐴) → (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾))
201, 11, 19syl2anc 584 . . . . . 6 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾))
212, 18, 3paddss 39828 . . . . . 6 ((𝐾𝑉 ∧ (𝑋𝐴𝑌𝐴 ∧ (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾))) → ((𝑋 ⊆ (𝑈‘(𝑋𝑌)) ∧ 𝑌 ⊆ (𝑈‘(𝑋𝑌))) ↔ (𝑋 + 𝑌) ⊆ (𝑈‘(𝑋𝑌))))
221, 16, 17, 20, 21syl13anc 1371 . . . . 5 ((𝐾𝑉𝑋𝐴𝑌𝐴) → ((𝑋 ⊆ (𝑈‘(𝑋𝑌)) ∧ 𝑌 ⊆ (𝑈‘(𝑋𝑌))) ↔ (𝑋 + 𝑌) ⊆ (𝑈‘(𝑋𝑌))))
2315, 22mpbid 232 . . . 4 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ (𝑈‘(𝑋𝑌)))
242, 18psubssat 39737 . . . . 5 ((𝐾𝑉 ∧ (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾)) → (𝑈‘(𝑋𝑌)) ⊆ 𝐴)
251, 20, 24syl2anc 584 . . . 4 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) ⊆ 𝐴)
262, 6pclssN 39877 . . . 4 ((𝐾𝑉 ∧ (𝑋 + 𝑌) ⊆ (𝑈‘(𝑋𝑌)) ∧ (𝑈‘(𝑋𝑌)) ⊆ 𝐴) → (𝑈‘(𝑋 + 𝑌)) ⊆ (𝑈‘(𝑈‘(𝑋𝑌))))
271, 23, 25, 26syl3anc 1370 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋 + 𝑌)) ⊆ (𝑈‘(𝑈‘(𝑋𝑌))))
2818, 6pclidN 39879 . . . 4 ((𝐾𝑉 ∧ (𝑈‘(𝑋𝑌)) ∈ (PSubSp‘𝐾)) → (𝑈‘(𝑈‘(𝑋𝑌))) = (𝑈‘(𝑋𝑌)))
291, 20, 28syl2anc 584 . . 3 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑈‘(𝑋𝑌))) = (𝑈‘(𝑋𝑌)))
3027, 29sseqtrd 4036 . 2 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋 + 𝑌)) ⊆ (𝑈‘(𝑋𝑌)))
318, 30eqssd 4013 1 ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) = (𝑈‘(𝑋 + 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  cun 3961  wss 3963  cfv 6563  (class class class)co 7431  Atomscatm 39245  PSubSpcpsubsp 39479  +𝑃cpadd 39778  PClcpclN 39870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-psubsp 39486  df-padd 39779  df-pclN 39871
This theorem is referenced by:  pclun2N  39882
  Copyright terms: Public domain W3C validator