MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pceulem Structured version   Visualization version   GIF version

Theorem pceulem 16865
Description: Lemma for pceu 16866. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pcval.1 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
pcval.2 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
pceu.3 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < )
pceu.4 𝑉 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )
pceu.5 (𝜑𝑃 ∈ ℙ)
pceu.6 (𝜑𝑁 ≠ 0)
pceu.7 (𝜑 → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ))
pceu.8 (𝜑𝑁 = (𝑥 / 𝑦))
pceu.9 (𝜑 → (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ))
pceu.10 (𝜑𝑁 = (𝑠 / 𝑡))
Assertion
Ref Expression
pceulem (𝜑 → (𝑆𝑇) = (𝑈𝑉))
Distinct variable groups:   𝑛,𝑠,𝑡,𝑥,𝑦,𝑁   𝑃,𝑛,𝑠,𝑡,𝑥,𝑦   𝑆,𝑠,𝑡   𝑇,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑡,𝑛,𝑠)   𝑆(𝑥,𝑦,𝑛)   𝑇(𝑥,𝑦,𝑛)   𝑈(𝑥,𝑦,𝑡,𝑛,𝑠)   𝑉(𝑥,𝑦,𝑡,𝑛,𝑠)

Proof of Theorem pceulem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pceu.7 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ))
21simprd 495 . . . . . . . . . 10 (𝜑𝑦 ∈ ℕ)
32nncnd 12256 . . . . . . . . 9 (𝜑𝑦 ∈ ℂ)
4 pceu.9 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ))
54simpld 494 . . . . . . . . . 10 (𝜑𝑠 ∈ ℤ)
65zcnd 12698 . . . . . . . . 9 (𝜑𝑠 ∈ ℂ)
73, 6mulcomd 11256 . . . . . . . 8 (𝜑 → (𝑦 · 𝑠) = (𝑠 · 𝑦))
8 pceu.10 . . . . . . . . . 10 (𝜑𝑁 = (𝑠 / 𝑡))
9 pceu.8 . . . . . . . . . 10 (𝜑𝑁 = (𝑥 / 𝑦))
108, 9eqtr3d 2772 . . . . . . . . 9 (𝜑 → (𝑠 / 𝑡) = (𝑥 / 𝑦))
114simprd 495 . . . . . . . . . . 11 (𝜑𝑡 ∈ ℕ)
1211nncnd 12256 . . . . . . . . . 10 (𝜑𝑡 ∈ ℂ)
131simpld 494 . . . . . . . . . . 11 (𝜑𝑥 ∈ ℤ)
1413zcnd 12698 . . . . . . . . . 10 (𝜑𝑥 ∈ ℂ)
1511nnne0d 12290 . . . . . . . . . 10 (𝜑𝑡 ≠ 0)
162nnne0d 12290 . . . . . . . . . 10 (𝜑𝑦 ≠ 0)
176, 12, 14, 3, 15, 16divmuleqd 12063 . . . . . . . . 9 (𝜑 → ((𝑠 / 𝑡) = (𝑥 / 𝑦) ↔ (𝑠 · 𝑦) = (𝑥 · 𝑡)))
1810, 17mpbid 232 . . . . . . . 8 (𝜑 → (𝑠 · 𝑦) = (𝑥 · 𝑡))
197, 18eqtrd 2770 . . . . . . 7 (𝜑 → (𝑦 · 𝑠) = (𝑥 · 𝑡))
2019breq2d 5131 . . . . . 6 (𝜑 → ((𝑃𝑧) ∥ (𝑦 · 𝑠) ↔ (𝑃𝑧) ∥ (𝑥 · 𝑡)))
2120rabbidv 3423 . . . . 5 (𝜑 → {𝑧 ∈ ℕ0 ∣ (𝑃𝑧) ∥ (𝑦 · 𝑠)} = {𝑧 ∈ ℕ0 ∣ (𝑃𝑧) ∥ (𝑥 · 𝑡)})
22 oveq2 7413 . . . . . . 7 (𝑛 = 𝑧 → (𝑃𝑛) = (𝑃𝑧))
2322breq1d 5129 . . . . . 6 (𝑛 = 𝑧 → ((𝑃𝑛) ∥ (𝑦 · 𝑠) ↔ (𝑃𝑧) ∥ (𝑦 · 𝑠)))
2423cbvrabv 3426 . . . . 5 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)} = {𝑧 ∈ ℕ0 ∣ (𝑃𝑧) ∥ (𝑦 · 𝑠)}
2522breq1d 5129 . . . . . 6 (𝑛 = 𝑧 → ((𝑃𝑛) ∥ (𝑥 · 𝑡) ↔ (𝑃𝑧) ∥ (𝑥 · 𝑡)))
2625cbvrabv 3426 . . . . 5 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)} = {𝑧 ∈ ℕ0 ∣ (𝑃𝑧) ∥ (𝑥 · 𝑡)}
2721, 24, 263eqtr4g 2795 . . . 4 (𝜑 → {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)})
2827supeq1d 9458 . . 3 (𝜑 → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < ))
29 pceu.5 . . . 4 (𝜑𝑃 ∈ ℙ)
302nnzd 12615 . . . 4 (𝜑𝑦 ∈ ℤ)
31 pceu.6 . . . . 5 (𝜑𝑁 ≠ 0)
3212, 15div0d 12016 . . . . . . . 8 (𝜑 → (0 / 𝑡) = 0)
33 oveq1 7412 . . . . . . . . 9 (𝑠 = 0 → (𝑠 / 𝑡) = (0 / 𝑡))
3433eqeq1d 2737 . . . . . . . 8 (𝑠 = 0 → ((𝑠 / 𝑡) = 0 ↔ (0 / 𝑡) = 0))
3532, 34syl5ibrcom 247 . . . . . . 7 (𝜑 → (𝑠 = 0 → (𝑠 / 𝑡) = 0))
368eqeq1d 2737 . . . . . . 7 (𝜑 → (𝑁 = 0 ↔ (𝑠 / 𝑡) = 0))
3735, 36sylibrd 259 . . . . . 6 (𝜑 → (𝑠 = 0 → 𝑁 = 0))
3837necon3d 2953 . . . . 5 (𝜑 → (𝑁 ≠ 0 → 𝑠 ≠ 0))
3931, 38mpd 15 . . . 4 (𝜑𝑠 ≠ 0)
40 pcval.2 . . . . 5 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
41 pceu.3 . . . . 5 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < )
42 eqid 2735 . . . . 5 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < )
4340, 41, 42pcpremul 16863 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0) ∧ (𝑠 ∈ ℤ ∧ 𝑠 ≠ 0)) → (𝑇 + 𝑈) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ))
4429, 30, 16, 5, 39, 43syl122anc 1381 . . 3 (𝜑 → (𝑇 + 𝑈) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ))
453, 16div0d 12016 . . . . . . . 8 (𝜑 → (0 / 𝑦) = 0)
46 oveq1 7412 . . . . . . . . 9 (𝑥 = 0 → (𝑥 / 𝑦) = (0 / 𝑦))
4746eqeq1d 2737 . . . . . . . 8 (𝑥 = 0 → ((𝑥 / 𝑦) = 0 ↔ (0 / 𝑦) = 0))
4845, 47syl5ibrcom 247 . . . . . . 7 (𝜑 → (𝑥 = 0 → (𝑥 / 𝑦) = 0))
499eqeq1d 2737 . . . . . . 7 (𝜑 → (𝑁 = 0 ↔ (𝑥 / 𝑦) = 0))
5048, 49sylibrd 259 . . . . . 6 (𝜑 → (𝑥 = 0 → 𝑁 = 0))
5150necon3d 2953 . . . . 5 (𝜑 → (𝑁 ≠ 0 → 𝑥 ≠ 0))
5231, 51mpd 15 . . . 4 (𝜑𝑥 ≠ 0)
5311nnzd 12615 . . . 4 (𝜑𝑡 ∈ ℤ)
54 pcval.1 . . . . 5 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
55 pceu.4 . . . . 5 𝑉 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )
56 eqid 2735 . . . . 5 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < )
5754, 55, 56pcpremul 16863 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ (𝑡 ∈ ℤ ∧ 𝑡 ≠ 0)) → (𝑆 + 𝑉) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < ))
5829, 13, 52, 53, 15, 57syl122anc 1381 . . 3 (𝜑 → (𝑆 + 𝑉) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < ))
5928, 44, 583eqtr4d 2780 . 2 (𝜑 → (𝑇 + 𝑈) = (𝑆 + 𝑉))
60 prmuz2 16715 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
6129, 60syl 17 . . . . 5 (𝜑𝑃 ∈ (ℤ‘2))
62 eqid 2735 . . . . . . 7 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}
6362, 40pcprecl 16859 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → (𝑇 ∈ ℕ0 ∧ (𝑃𝑇) ∥ 𝑦))
6463simpld 494 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → 𝑇 ∈ ℕ0)
6561, 30, 16, 64syl12anc 836 . . . 4 (𝜑𝑇 ∈ ℕ0)
6665nn0cnd 12564 . . 3 (𝜑𝑇 ∈ ℂ)
67 eqid 2735 . . . . . . 7 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}
6867, 41pcprecl 16859 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑠 ∈ ℤ ∧ 𝑠 ≠ 0)) → (𝑈 ∈ ℕ0 ∧ (𝑃𝑈) ∥ 𝑠))
6968simpld 494 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑠 ∈ ℤ ∧ 𝑠 ≠ 0)) → 𝑈 ∈ ℕ0)
7061, 5, 39, 69syl12anc 836 . . . 4 (𝜑𝑈 ∈ ℕ0)
7170nn0cnd 12564 . . 3 (𝜑𝑈 ∈ ℂ)
72 eqid 2735 . . . . . . 7 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}
7372, 54pcprecl 16859 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑥))
7473simpld 494 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → 𝑆 ∈ ℕ0)
7561, 13, 52, 74syl12anc 836 . . . 4 (𝜑𝑆 ∈ ℕ0)
7675nn0cnd 12564 . . 3 (𝜑𝑆 ∈ ℂ)
77 eqid 2735 . . . . . . 7 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}
7877, 55pcprecl 16859 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑡 ∈ ℤ ∧ 𝑡 ≠ 0)) → (𝑉 ∈ ℕ0 ∧ (𝑃𝑉) ∥ 𝑡))
7978simpld 494 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑡 ∈ ℤ ∧ 𝑡 ≠ 0)) → 𝑉 ∈ ℕ0)
8061, 53, 15, 79syl12anc 836 . . . 4 (𝜑𝑉 ∈ ℕ0)
8180nn0cnd 12564 . . 3 (𝜑𝑉 ∈ ℂ)
8266, 71, 76, 81addsubeq4d 11645 . 2 (𝜑 → ((𝑇 + 𝑈) = (𝑆 + 𝑉) ↔ (𝑆𝑇) = (𝑈𝑉)))
8359, 82mpbid 232 1 (𝜑 → (𝑆𝑇) = (𝑈𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  {crab 3415   class class class wbr 5119  cfv 6531  (class class class)co 7405  supcsup 9452  cr 11128  0cc0 11129   + caddc 11132   · cmul 11134   < clt 11269  cmin 11466   / cdiv 11894  cn 12240  2c2 12295  0cn0 12501  cz 12588  cuz 12852  cexp 14079  cdvds 16272  cprime 16690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-gcd 16514  df-prm 16691
This theorem is referenced by:  pceu  16866
  Copyright terms: Public domain W3C validator