MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pceulem Structured version   Visualization version   GIF version

Theorem pceulem 16474
Description: Lemma for pceu 16475. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pcval.1 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
pcval.2 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
pceu.3 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < )
pceu.4 𝑉 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )
pceu.5 (𝜑𝑃 ∈ ℙ)
pceu.6 (𝜑𝑁 ≠ 0)
pceu.7 (𝜑 → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ))
pceu.8 (𝜑𝑁 = (𝑥 / 𝑦))
pceu.9 (𝜑 → (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ))
pceu.10 (𝜑𝑁 = (𝑠 / 𝑡))
Assertion
Ref Expression
pceulem (𝜑 → (𝑆𝑇) = (𝑈𝑉))
Distinct variable groups:   𝑛,𝑠,𝑡,𝑥,𝑦,𝑁   𝑃,𝑛,𝑠,𝑡,𝑥,𝑦   𝑆,𝑠,𝑡   𝑇,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑡,𝑛,𝑠)   𝑆(𝑥,𝑦,𝑛)   𝑇(𝑥,𝑦,𝑛)   𝑈(𝑥,𝑦,𝑡,𝑛,𝑠)   𝑉(𝑥,𝑦,𝑡,𝑛,𝑠)

Proof of Theorem pceulem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pceu.7 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ))
21simprd 495 . . . . . . . . . 10 (𝜑𝑦 ∈ ℕ)
32nncnd 11919 . . . . . . . . 9 (𝜑𝑦 ∈ ℂ)
4 pceu.9 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ))
54simpld 494 . . . . . . . . . 10 (𝜑𝑠 ∈ ℤ)
65zcnd 12356 . . . . . . . . 9 (𝜑𝑠 ∈ ℂ)
73, 6mulcomd 10927 . . . . . . . 8 (𝜑 → (𝑦 · 𝑠) = (𝑠 · 𝑦))
8 pceu.10 . . . . . . . . . 10 (𝜑𝑁 = (𝑠 / 𝑡))
9 pceu.8 . . . . . . . . . 10 (𝜑𝑁 = (𝑥 / 𝑦))
108, 9eqtr3d 2780 . . . . . . . . 9 (𝜑 → (𝑠 / 𝑡) = (𝑥 / 𝑦))
114simprd 495 . . . . . . . . . . 11 (𝜑𝑡 ∈ ℕ)
1211nncnd 11919 . . . . . . . . . 10 (𝜑𝑡 ∈ ℂ)
131simpld 494 . . . . . . . . . . 11 (𝜑𝑥 ∈ ℤ)
1413zcnd 12356 . . . . . . . . . 10 (𝜑𝑥 ∈ ℂ)
1511nnne0d 11953 . . . . . . . . . 10 (𝜑𝑡 ≠ 0)
162nnne0d 11953 . . . . . . . . . 10 (𝜑𝑦 ≠ 0)
176, 12, 14, 3, 15, 16divmuleqd 11727 . . . . . . . . 9 (𝜑 → ((𝑠 / 𝑡) = (𝑥 / 𝑦) ↔ (𝑠 · 𝑦) = (𝑥 · 𝑡)))
1810, 17mpbid 231 . . . . . . . 8 (𝜑 → (𝑠 · 𝑦) = (𝑥 · 𝑡))
197, 18eqtrd 2778 . . . . . . 7 (𝜑 → (𝑦 · 𝑠) = (𝑥 · 𝑡))
2019breq2d 5082 . . . . . 6 (𝜑 → ((𝑃𝑧) ∥ (𝑦 · 𝑠) ↔ (𝑃𝑧) ∥ (𝑥 · 𝑡)))
2120rabbidv 3404 . . . . 5 (𝜑 → {𝑧 ∈ ℕ0 ∣ (𝑃𝑧) ∥ (𝑦 · 𝑠)} = {𝑧 ∈ ℕ0 ∣ (𝑃𝑧) ∥ (𝑥 · 𝑡)})
22 oveq2 7263 . . . . . . 7 (𝑛 = 𝑧 → (𝑃𝑛) = (𝑃𝑧))
2322breq1d 5080 . . . . . 6 (𝑛 = 𝑧 → ((𝑃𝑛) ∥ (𝑦 · 𝑠) ↔ (𝑃𝑧) ∥ (𝑦 · 𝑠)))
2423cbvrabv 3416 . . . . 5 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)} = {𝑧 ∈ ℕ0 ∣ (𝑃𝑧) ∥ (𝑦 · 𝑠)}
2522breq1d 5080 . . . . . 6 (𝑛 = 𝑧 → ((𝑃𝑛) ∥ (𝑥 · 𝑡) ↔ (𝑃𝑧) ∥ (𝑥 · 𝑡)))
2625cbvrabv 3416 . . . . 5 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)} = {𝑧 ∈ ℕ0 ∣ (𝑃𝑧) ∥ (𝑥 · 𝑡)}
2721, 24, 263eqtr4g 2804 . . . 4 (𝜑 → {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)})
2827supeq1d 9135 . . 3 (𝜑 → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < ))
29 pceu.5 . . . 4 (𝜑𝑃 ∈ ℙ)
302nnzd 12354 . . . 4 (𝜑𝑦 ∈ ℤ)
31 pceu.6 . . . . 5 (𝜑𝑁 ≠ 0)
3212, 15div0d 11680 . . . . . . . 8 (𝜑 → (0 / 𝑡) = 0)
33 oveq1 7262 . . . . . . . . 9 (𝑠 = 0 → (𝑠 / 𝑡) = (0 / 𝑡))
3433eqeq1d 2740 . . . . . . . 8 (𝑠 = 0 → ((𝑠 / 𝑡) = 0 ↔ (0 / 𝑡) = 0))
3532, 34syl5ibrcom 246 . . . . . . 7 (𝜑 → (𝑠 = 0 → (𝑠 / 𝑡) = 0))
368eqeq1d 2740 . . . . . . 7 (𝜑 → (𝑁 = 0 ↔ (𝑠 / 𝑡) = 0))
3735, 36sylibrd 258 . . . . . 6 (𝜑 → (𝑠 = 0 → 𝑁 = 0))
3837necon3d 2963 . . . . 5 (𝜑 → (𝑁 ≠ 0 → 𝑠 ≠ 0))
3931, 38mpd 15 . . . 4 (𝜑𝑠 ≠ 0)
40 pcval.2 . . . . 5 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
41 pceu.3 . . . . 5 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < )
42 eqid 2738 . . . . 5 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < )
4340, 41, 42pcpremul 16472 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0) ∧ (𝑠 ∈ ℤ ∧ 𝑠 ≠ 0)) → (𝑇 + 𝑈) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ))
4429, 30, 16, 5, 39, 43syl122anc 1377 . . 3 (𝜑 → (𝑇 + 𝑈) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ))
453, 16div0d 11680 . . . . . . . 8 (𝜑 → (0 / 𝑦) = 0)
46 oveq1 7262 . . . . . . . . 9 (𝑥 = 0 → (𝑥 / 𝑦) = (0 / 𝑦))
4746eqeq1d 2740 . . . . . . . 8 (𝑥 = 0 → ((𝑥 / 𝑦) = 0 ↔ (0 / 𝑦) = 0))
4845, 47syl5ibrcom 246 . . . . . . 7 (𝜑 → (𝑥 = 0 → (𝑥 / 𝑦) = 0))
499eqeq1d 2740 . . . . . . 7 (𝜑 → (𝑁 = 0 ↔ (𝑥 / 𝑦) = 0))
5048, 49sylibrd 258 . . . . . 6 (𝜑 → (𝑥 = 0 → 𝑁 = 0))
5150necon3d 2963 . . . . 5 (𝜑 → (𝑁 ≠ 0 → 𝑥 ≠ 0))
5231, 51mpd 15 . . . 4 (𝜑𝑥 ≠ 0)
5311nnzd 12354 . . . 4 (𝜑𝑡 ∈ ℤ)
54 pcval.1 . . . . 5 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
55 pceu.4 . . . . 5 𝑉 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )
56 eqid 2738 . . . . 5 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < )
5754, 55, 56pcpremul 16472 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ (𝑡 ∈ ℤ ∧ 𝑡 ≠ 0)) → (𝑆 + 𝑉) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < ))
5829, 13, 52, 53, 15, 57syl122anc 1377 . . 3 (𝜑 → (𝑆 + 𝑉) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < ))
5928, 44, 583eqtr4d 2788 . 2 (𝜑 → (𝑇 + 𝑈) = (𝑆 + 𝑉))
60 prmuz2 16329 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
6129, 60syl 17 . . . . 5 (𝜑𝑃 ∈ (ℤ‘2))
62 eqid 2738 . . . . . . 7 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}
6362, 40pcprecl 16468 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → (𝑇 ∈ ℕ0 ∧ (𝑃𝑇) ∥ 𝑦))
6463simpld 494 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → 𝑇 ∈ ℕ0)
6561, 30, 16, 64syl12anc 833 . . . 4 (𝜑𝑇 ∈ ℕ0)
6665nn0cnd 12225 . . 3 (𝜑𝑇 ∈ ℂ)
67 eqid 2738 . . . . . . 7 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}
6867, 41pcprecl 16468 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑠 ∈ ℤ ∧ 𝑠 ≠ 0)) → (𝑈 ∈ ℕ0 ∧ (𝑃𝑈) ∥ 𝑠))
6968simpld 494 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑠 ∈ ℤ ∧ 𝑠 ≠ 0)) → 𝑈 ∈ ℕ0)
7061, 5, 39, 69syl12anc 833 . . . 4 (𝜑𝑈 ∈ ℕ0)
7170nn0cnd 12225 . . 3 (𝜑𝑈 ∈ ℂ)
72 eqid 2738 . . . . . . 7 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}
7372, 54pcprecl 16468 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑥))
7473simpld 494 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → 𝑆 ∈ ℕ0)
7561, 13, 52, 74syl12anc 833 . . . 4 (𝜑𝑆 ∈ ℕ0)
7675nn0cnd 12225 . . 3 (𝜑𝑆 ∈ ℂ)
77 eqid 2738 . . . . . . 7 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}
7877, 55pcprecl 16468 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑡 ∈ ℤ ∧ 𝑡 ≠ 0)) → (𝑉 ∈ ℕ0 ∧ (𝑃𝑉) ∥ 𝑡))
7978simpld 494 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑡 ∈ ℤ ∧ 𝑡 ≠ 0)) → 𝑉 ∈ ℕ0)
8061, 53, 15, 79syl12anc 833 . . . 4 (𝜑𝑉 ∈ ℕ0)
8180nn0cnd 12225 . . 3 (𝜑𝑉 ∈ ℂ)
8266, 71, 76, 81addsubeq4d 11313 . 2 (𝜑 → ((𝑇 + 𝑈) = (𝑆 + 𝑉) ↔ (𝑆𝑇) = (𝑈𝑉)))
8359, 82mpbid 231 1 (𝜑 → (𝑆𝑇) = (𝑈𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  {crab 3067   class class class wbr 5070  cfv 6418  (class class class)co 7255  supcsup 9129  cr 10801  0cc0 10802   + caddc 10805   · cmul 10807   < clt 10940  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  cexp 13710  cdvds 15891  cprime 16304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-prm 16305
This theorem is referenced by:  pceu  16475
  Copyright terms: Public domain W3C validator