MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pceulem Structured version   Visualization version   GIF version

Theorem pceulem 16878
Description: Lemma for pceu 16879. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pcval.1 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
pcval.2 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
pceu.3 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < )
pceu.4 𝑉 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )
pceu.5 (𝜑𝑃 ∈ ℙ)
pceu.6 (𝜑𝑁 ≠ 0)
pceu.7 (𝜑 → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ))
pceu.8 (𝜑𝑁 = (𝑥 / 𝑦))
pceu.9 (𝜑 → (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ))
pceu.10 (𝜑𝑁 = (𝑠 / 𝑡))
Assertion
Ref Expression
pceulem (𝜑 → (𝑆𝑇) = (𝑈𝑉))
Distinct variable groups:   𝑛,𝑠,𝑡,𝑥,𝑦,𝑁   𝑃,𝑛,𝑠,𝑡,𝑥,𝑦   𝑆,𝑠,𝑡   𝑇,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑡,𝑛,𝑠)   𝑆(𝑥,𝑦,𝑛)   𝑇(𝑥,𝑦,𝑛)   𝑈(𝑥,𝑦,𝑡,𝑛,𝑠)   𝑉(𝑥,𝑦,𝑡,𝑛,𝑠)

Proof of Theorem pceulem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pceu.7 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ))
21simprd 495 . . . . . . . . . 10 (𝜑𝑦 ∈ ℕ)
32nncnd 12279 . . . . . . . . 9 (𝜑𝑦 ∈ ℂ)
4 pceu.9 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ))
54simpld 494 . . . . . . . . . 10 (𝜑𝑠 ∈ ℤ)
65zcnd 12720 . . . . . . . . 9 (𝜑𝑠 ∈ ℂ)
73, 6mulcomd 11279 . . . . . . . 8 (𝜑 → (𝑦 · 𝑠) = (𝑠 · 𝑦))
8 pceu.10 . . . . . . . . . 10 (𝜑𝑁 = (𝑠 / 𝑡))
9 pceu.8 . . . . . . . . . 10 (𝜑𝑁 = (𝑥 / 𝑦))
108, 9eqtr3d 2776 . . . . . . . . 9 (𝜑 → (𝑠 / 𝑡) = (𝑥 / 𝑦))
114simprd 495 . . . . . . . . . . 11 (𝜑𝑡 ∈ ℕ)
1211nncnd 12279 . . . . . . . . . 10 (𝜑𝑡 ∈ ℂ)
131simpld 494 . . . . . . . . . . 11 (𝜑𝑥 ∈ ℤ)
1413zcnd 12720 . . . . . . . . . 10 (𝜑𝑥 ∈ ℂ)
1511nnne0d 12313 . . . . . . . . . 10 (𝜑𝑡 ≠ 0)
162nnne0d 12313 . . . . . . . . . 10 (𝜑𝑦 ≠ 0)
176, 12, 14, 3, 15, 16divmuleqd 12086 . . . . . . . . 9 (𝜑 → ((𝑠 / 𝑡) = (𝑥 / 𝑦) ↔ (𝑠 · 𝑦) = (𝑥 · 𝑡)))
1810, 17mpbid 232 . . . . . . . 8 (𝜑 → (𝑠 · 𝑦) = (𝑥 · 𝑡))
197, 18eqtrd 2774 . . . . . . 7 (𝜑 → (𝑦 · 𝑠) = (𝑥 · 𝑡))
2019breq2d 5159 . . . . . 6 (𝜑 → ((𝑃𝑧) ∥ (𝑦 · 𝑠) ↔ (𝑃𝑧) ∥ (𝑥 · 𝑡)))
2120rabbidv 3440 . . . . 5 (𝜑 → {𝑧 ∈ ℕ0 ∣ (𝑃𝑧) ∥ (𝑦 · 𝑠)} = {𝑧 ∈ ℕ0 ∣ (𝑃𝑧) ∥ (𝑥 · 𝑡)})
22 oveq2 7438 . . . . . . 7 (𝑛 = 𝑧 → (𝑃𝑛) = (𝑃𝑧))
2322breq1d 5157 . . . . . 6 (𝑛 = 𝑧 → ((𝑃𝑛) ∥ (𝑦 · 𝑠) ↔ (𝑃𝑧) ∥ (𝑦 · 𝑠)))
2423cbvrabv 3443 . . . . 5 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)} = {𝑧 ∈ ℕ0 ∣ (𝑃𝑧) ∥ (𝑦 · 𝑠)}
2522breq1d 5157 . . . . . 6 (𝑛 = 𝑧 → ((𝑃𝑛) ∥ (𝑥 · 𝑡) ↔ (𝑃𝑧) ∥ (𝑥 · 𝑡)))
2625cbvrabv 3443 . . . . 5 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)} = {𝑧 ∈ ℕ0 ∣ (𝑃𝑧) ∥ (𝑥 · 𝑡)}
2721, 24, 263eqtr4g 2799 . . . 4 (𝜑 → {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)})
2827supeq1d 9483 . . 3 (𝜑 → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < ))
29 pceu.5 . . . 4 (𝜑𝑃 ∈ ℙ)
302nnzd 12637 . . . 4 (𝜑𝑦 ∈ ℤ)
31 pceu.6 . . . . 5 (𝜑𝑁 ≠ 0)
3212, 15div0d 12039 . . . . . . . 8 (𝜑 → (0 / 𝑡) = 0)
33 oveq1 7437 . . . . . . . . 9 (𝑠 = 0 → (𝑠 / 𝑡) = (0 / 𝑡))
3433eqeq1d 2736 . . . . . . . 8 (𝑠 = 0 → ((𝑠 / 𝑡) = 0 ↔ (0 / 𝑡) = 0))
3532, 34syl5ibrcom 247 . . . . . . 7 (𝜑 → (𝑠 = 0 → (𝑠 / 𝑡) = 0))
368eqeq1d 2736 . . . . . . 7 (𝜑 → (𝑁 = 0 ↔ (𝑠 / 𝑡) = 0))
3735, 36sylibrd 259 . . . . . 6 (𝜑 → (𝑠 = 0 → 𝑁 = 0))
3837necon3d 2958 . . . . 5 (𝜑 → (𝑁 ≠ 0 → 𝑠 ≠ 0))
3931, 38mpd 15 . . . 4 (𝜑𝑠 ≠ 0)
40 pcval.2 . . . . 5 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
41 pceu.3 . . . . 5 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < )
42 eqid 2734 . . . . 5 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < )
4340, 41, 42pcpremul 16876 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0) ∧ (𝑠 ∈ ℤ ∧ 𝑠 ≠ 0)) → (𝑇 + 𝑈) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ))
4429, 30, 16, 5, 39, 43syl122anc 1378 . . 3 (𝜑 → (𝑇 + 𝑈) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑦 · 𝑠)}, ℝ, < ))
453, 16div0d 12039 . . . . . . . 8 (𝜑 → (0 / 𝑦) = 0)
46 oveq1 7437 . . . . . . . . 9 (𝑥 = 0 → (𝑥 / 𝑦) = (0 / 𝑦))
4746eqeq1d 2736 . . . . . . . 8 (𝑥 = 0 → ((𝑥 / 𝑦) = 0 ↔ (0 / 𝑦) = 0))
4845, 47syl5ibrcom 247 . . . . . . 7 (𝜑 → (𝑥 = 0 → (𝑥 / 𝑦) = 0))
499eqeq1d 2736 . . . . . . 7 (𝜑 → (𝑁 = 0 ↔ (𝑥 / 𝑦) = 0))
5048, 49sylibrd 259 . . . . . 6 (𝜑 → (𝑥 = 0 → 𝑁 = 0))
5150necon3d 2958 . . . . 5 (𝜑 → (𝑁 ≠ 0 → 𝑥 ≠ 0))
5231, 51mpd 15 . . . 4 (𝜑𝑥 ≠ 0)
5311nnzd 12637 . . . 4 (𝜑𝑡 ∈ ℤ)
54 pcval.1 . . . . 5 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
55 pceu.4 . . . . 5 𝑉 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )
56 eqid 2734 . . . . 5 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < )
5754, 55, 56pcpremul 16876 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ (𝑡 ∈ ℤ ∧ 𝑡 ≠ 0)) → (𝑆 + 𝑉) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < ))
5829, 13, 52, 53, 15, 57syl122anc 1378 . . 3 (𝜑 → (𝑆 + 𝑉) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑥 · 𝑡)}, ℝ, < ))
5928, 44, 583eqtr4d 2784 . 2 (𝜑 → (𝑇 + 𝑈) = (𝑆 + 𝑉))
60 prmuz2 16729 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
6129, 60syl 17 . . . . 5 (𝜑𝑃 ∈ (ℤ‘2))
62 eqid 2734 . . . . . . 7 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}
6362, 40pcprecl 16872 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → (𝑇 ∈ ℕ0 ∧ (𝑃𝑇) ∥ 𝑦))
6463simpld 494 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → 𝑇 ∈ ℕ0)
6561, 30, 16, 64syl12anc 837 . . . 4 (𝜑𝑇 ∈ ℕ0)
6665nn0cnd 12586 . . 3 (𝜑𝑇 ∈ ℂ)
67 eqid 2734 . . . . . . 7 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}
6867, 41pcprecl 16872 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑠 ∈ ℤ ∧ 𝑠 ≠ 0)) → (𝑈 ∈ ℕ0 ∧ (𝑃𝑈) ∥ 𝑠))
6968simpld 494 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑠 ∈ ℤ ∧ 𝑠 ≠ 0)) → 𝑈 ∈ ℕ0)
7061, 5, 39, 69syl12anc 837 . . . 4 (𝜑𝑈 ∈ ℕ0)
7170nn0cnd 12586 . . 3 (𝜑𝑈 ∈ ℂ)
72 eqid 2734 . . . . . . 7 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}
7372, 54pcprecl 16872 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑥))
7473simpld 494 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → 𝑆 ∈ ℕ0)
7561, 13, 52, 74syl12anc 837 . . . 4 (𝜑𝑆 ∈ ℕ0)
7675nn0cnd 12586 . . 3 (𝜑𝑆 ∈ ℂ)
77 eqid 2734 . . . . . . 7 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}
7877, 55pcprecl 16872 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑡 ∈ ℤ ∧ 𝑡 ≠ 0)) → (𝑉 ∈ ℕ0 ∧ (𝑃𝑉) ∥ 𝑡))
7978simpld 494 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑡 ∈ ℤ ∧ 𝑡 ≠ 0)) → 𝑉 ∈ ℕ0)
8061, 53, 15, 79syl12anc 837 . . . 4 (𝜑𝑉 ∈ ℕ0)
8180nn0cnd 12586 . . 3 (𝜑𝑉 ∈ ℂ)
8266, 71, 76, 81addsubeq4d 11668 . 2 (𝜑 → ((𝑇 + 𝑈) = (𝑆 + 𝑉) ↔ (𝑆𝑇) = (𝑈𝑉)))
8359, 82mpbid 232 1 (𝜑 → (𝑆𝑇) = (𝑈𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wne 2937  {crab 3432   class class class wbr 5147  cfv 6562  (class class class)co 7430  supcsup 9477  cr 11151  0cc0 11152   + caddc 11155   · cmul 11157   < clt 11292  cmin 11489   / cdiv 11917  cn 12263  2c2 12318  0cn0 12523  cz 12610  cuz 12875  cexp 14098  cdvds 16286  cprime 16704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-dvds 16287  df-gcd 16528  df-prm 16705
This theorem is referenced by:  pceu  16879
  Copyright terms: Public domain W3C validator