Step | Hyp | Ref
| Expression |
1 | | prmuz2 16401 |
. . . . . . 7
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) |
2 | 1 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈
(ℤ≥‘2)) |
3 | | zmulcl 12369 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) |
4 | 3 | ad2ant2r 744 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ∈ ℤ) |
5 | 4 | 3adant1 1129 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ∈ ℤ) |
6 | | zcn 12324 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) |
7 | 6 | anim1i 615 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0)) |
8 | | zcn 12324 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
9 | 8 | anim1i 615 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) |
10 | | mulne0 11617 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ≠ 0) |
11 | 7, 9, 10 | syl2an 596 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ≠ 0) |
12 | 11 | 3adant1 1129 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ≠ 0) |
13 | | eqid 2738 |
. . . . . . 7
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)} |
14 | 13 | pclem 16539 |
. . . . . 6
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ ((𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0)) → ({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)} ⊆ ℤ ∧ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)} ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)}𝑦 ≤ 𝑥)) |
15 | 2, 5, 12, 14 | syl12anc 834 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)} ⊆ ℤ ∧ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)} ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)}𝑦 ≤ 𝑥)) |
16 | 15 | simp1d 1141 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)} ⊆ ℤ) |
17 | 15 | simp3d 1143 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)}𝑦 ≤ 𝑥) |
18 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑥 = (𝑆 + 𝑇) → (𝑃↑𝑥) = (𝑃↑(𝑆 + 𝑇))) |
19 | 18 | breq1d 5084 |
. . . . . 6
⊢ (𝑥 = (𝑆 + 𝑇) → ((𝑃↑𝑥) ∥ (𝑀 · 𝑁) ↔ (𝑃↑(𝑆 + 𝑇)) ∥ (𝑀 · 𝑁))) |
20 | | simp2l 1198 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑀 ∈
ℤ) |
21 | | simp2r 1199 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑀 ≠ 0) |
22 | | eqid 2738 |
. . . . . . . . . 10
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑀} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑀} |
23 | | pcpremul.1 |
. . . . . . . . . 10
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑀}, ℝ, < ) |
24 | 22, 23 | pcprecl 16540 |
. . . . . . . . 9
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑀)) |
25 | 2, 20, 21, 24 | syl12anc 834 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0
∧ (𝑃↑𝑆) ∥ 𝑀)) |
26 | 25 | simpld 495 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈
ℕ0) |
27 | | simp3l 1200 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈
ℤ) |
28 | | simp3r 1201 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ≠ 0) |
29 | | eqid 2738 |
. . . . . . . . . 10
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑁} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} |
30 | | pcpremul.2 |
. . . . . . . . . 10
⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁}, ℝ, < ) |
31 | 29, 30 | pcprecl 16540 |
. . . . . . . . 9
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑇 ∈ ℕ0 ∧ (𝑃↑𝑇) ∥ 𝑁)) |
32 | 2, 27, 28, 31 | syl12anc 834 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑇 ∈ ℕ0
∧ (𝑃↑𝑇) ∥ 𝑁)) |
33 | 32 | simpld 495 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑇 ∈
ℕ0) |
34 | 26, 33 | nn0addcld 12297 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) ∈
ℕ0) |
35 | | prmnn 16379 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
36 | 35 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈
ℕ) |
37 | 36, 34 | nnexpcld 13960 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) ∈ ℕ) |
38 | 37 | nnzd 12425 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) ∈ ℤ) |
39 | 36, 33 | nnexpcld 13960 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑇) ∈ ℕ) |
40 | 39 | nnzd 12425 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑇) ∈ ℤ) |
41 | 20, 40 | zmulcld 12432 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · (𝑃↑𝑇)) ∈ ℤ) |
42 | 36 | nncnd 11989 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈
ℂ) |
43 | 42, 33, 26 | expaddd 13866 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) = ((𝑃↑𝑆) · (𝑃↑𝑇))) |
44 | 25 | simprd 496 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ∥ 𝑀) |
45 | 36, 26 | nnexpcld 13960 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ∈ ℕ) |
46 | 45 | nnzd 12425 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ∈ ℤ) |
47 | | dvdsmulc 15993 |
. . . . . . . . . 10
⊢ (((𝑃↑𝑆) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑃↑𝑇) ∈ ℤ) → ((𝑃↑𝑆) ∥ 𝑀 → ((𝑃↑𝑆) · (𝑃↑𝑇)) ∥ (𝑀 · (𝑃↑𝑇)))) |
48 | 46, 20, 40, 47 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑𝑆) ∥ 𝑀 → ((𝑃↑𝑆) · (𝑃↑𝑇)) ∥ (𝑀 · (𝑃↑𝑇)))) |
49 | 44, 48 | mpd 15 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑𝑆) · (𝑃↑𝑇)) ∥ (𝑀 · (𝑃↑𝑇))) |
50 | 43, 49 | eqbrtrd 5096 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) ∥ (𝑀 · (𝑃↑𝑇))) |
51 | 32 | simprd 496 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑇) ∥ 𝑁) |
52 | | dvdscmul 15992 |
. . . . . . . . 9
⊢ (((𝑃↑𝑇) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑃↑𝑇) ∥ 𝑁 → (𝑀 · (𝑃↑𝑇)) ∥ (𝑀 · 𝑁))) |
53 | 40, 27, 20, 52 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑𝑇) ∥ 𝑁 → (𝑀 · (𝑃↑𝑇)) ∥ (𝑀 · 𝑁))) |
54 | 51, 53 | mpd 15 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · (𝑃↑𝑇)) ∥ (𝑀 · 𝑁)) |
55 | 38, 41, 5, 50, 54 | dvdstrd 16004 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) ∥ (𝑀 · 𝑁)) |
56 | 19, 34, 55 | elrabd 3626 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) ∈ {𝑥 ∈ ℕ0 ∣ (𝑃↑𝑥) ∥ (𝑀 · 𝑁)}) |
57 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (𝑃↑𝑥) = (𝑃↑𝑛)) |
58 | 57 | breq1d 5084 |
. . . . . 6
⊢ (𝑥 = 𝑛 → ((𝑃↑𝑥) ∥ (𝑀 · 𝑁) ↔ (𝑃↑𝑛) ∥ (𝑀 · 𝑁))) |
59 | 58 | cbvrabv 3426 |
. . . . 5
⊢ {𝑥 ∈ ℕ0
∣ (𝑃↑𝑥) ∥ (𝑀 · 𝑁)} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)} |
60 | 56, 59 | eleqtrdi 2849 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) ∈ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)}) |
61 | | suprzub 12679 |
. . . 4
⊢ (({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)} ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)}𝑦 ≤ 𝑥 ∧ (𝑆 + 𝑇) ∈ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)}) → (𝑆 + 𝑇) ≤ sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)}, ℝ, < )) |
62 | 16, 17, 60, 61 | syl3anc 1370 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) ≤ sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)}, ℝ, < )) |
63 | | pcpremul.3 |
. . 3
⊢ 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)}, ℝ, < ) |
64 | 62, 63 | breqtrrdi 5116 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) ≤ 𝑈) |
65 | 22, 23 | pcprendvds2 16542 |
. . . . . 6
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → ¬ 𝑃 ∥ (𝑀 / (𝑃↑𝑆))) |
66 | 2, 20, 21, 65 | syl12anc 834 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑀 / (𝑃↑𝑆))) |
67 | 29, 30 | pcprendvds2 16542 |
. . . . . 6
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑𝑇))) |
68 | 2, 27, 28, 67 | syl12anc 834 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑𝑇))) |
69 | | ioran 981 |
. . . . 5
⊢ (¬
(𝑃 ∥ (𝑀 / (𝑃↑𝑆)) ∨ 𝑃 ∥ (𝑁 / (𝑃↑𝑇))) ↔ (¬ 𝑃 ∥ (𝑀 / (𝑃↑𝑆)) ∧ ¬ 𝑃 ∥ (𝑁 / (𝑃↑𝑇)))) |
70 | 66, 68, 69 | sylanbrc 583 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃 ∥ (𝑀 / (𝑃↑𝑆)) ∨ 𝑃 ∥ (𝑁 / (𝑃↑𝑇)))) |
71 | | simp1 1135 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈
ℙ) |
72 | 45 | nnne0d 12023 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ≠ 0) |
73 | | dvdsval2 15966 |
. . . . . . 7
⊢ (((𝑃↑𝑆) ∈ ℤ ∧ (𝑃↑𝑆) ≠ 0 ∧ 𝑀 ∈ ℤ) → ((𝑃↑𝑆) ∥ 𝑀 ↔ (𝑀 / (𝑃↑𝑆)) ∈ ℤ)) |
74 | 46, 72, 20, 73 | syl3anc 1370 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑𝑆) ∥ 𝑀 ↔ (𝑀 / (𝑃↑𝑆)) ∈ ℤ)) |
75 | 44, 74 | mpbid 231 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 / (𝑃↑𝑆)) ∈ ℤ) |
76 | 39 | nnne0d 12023 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑇) ≠ 0) |
77 | | dvdsval2 15966 |
. . . . . . 7
⊢ (((𝑃↑𝑇) ∈ ℤ ∧ (𝑃↑𝑇) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑃↑𝑇) ∥ 𝑁 ↔ (𝑁 / (𝑃↑𝑇)) ∈ ℤ)) |
78 | 40, 76, 27, 77 | syl3anc 1370 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑𝑇) ∥ 𝑁 ↔ (𝑁 / (𝑃↑𝑇)) ∈ ℤ)) |
79 | 51, 78 | mpbid 231 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑁 / (𝑃↑𝑇)) ∈ ℤ) |
80 | | euclemma 16418 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 / (𝑃↑𝑆)) ∈ ℤ ∧ (𝑁 / (𝑃↑𝑇)) ∈ ℤ) → (𝑃 ∥ ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇))) ↔ (𝑃 ∥ (𝑀 / (𝑃↑𝑆)) ∨ 𝑃 ∥ (𝑁 / (𝑃↑𝑇))))) |
81 | 71, 75, 79, 80 | syl3anc 1370 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 ∥ ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇))) ↔ (𝑃 ∥ (𝑀 / (𝑃↑𝑆)) ∨ 𝑃 ∥ (𝑁 / (𝑃↑𝑇))))) |
82 | 70, 81 | mtbird 325 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇)))) |
83 | 13, 63 | pcprecl 16540 |
. . . . . . 7
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ ((𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0)) → (𝑈 ∈ ℕ0 ∧ (𝑃↑𝑈) ∥ (𝑀 · 𝑁))) |
84 | 2, 5, 12, 83 | syl12anc 834 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑈 ∈ ℕ0
∧ (𝑃↑𝑈) ∥ (𝑀 · 𝑁))) |
85 | 84 | simpld 495 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑈 ∈
ℕ0) |
86 | | nn0ltp1le 12378 |
. . . . 5
⊢ (((𝑆 + 𝑇) ∈ ℕ0 ∧ 𝑈 ∈ ℕ0)
→ ((𝑆 + 𝑇) < 𝑈 ↔ ((𝑆 + 𝑇) + 1) ≤ 𝑈)) |
87 | 34, 85, 86 | syl2anc 584 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑆 + 𝑇) < 𝑈 ↔ ((𝑆 + 𝑇) + 1) ≤ 𝑈)) |
88 | 36 | nnzd 12425 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈
ℤ) |
89 | | peano2nn0 12273 |
. . . . . . . 8
⊢ ((𝑆 + 𝑇) ∈ ℕ0 → ((𝑆 + 𝑇) + 1) ∈
ℕ0) |
90 | 34, 89 | syl 17 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑆 + 𝑇) + 1) ∈
ℕ0) |
91 | | dvdsexp 16037 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℤ ∧ ((𝑆 + 𝑇) + 1) ∈ ℕ0 ∧
𝑈 ∈
(ℤ≥‘((𝑆 + 𝑇) + 1))) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑃↑𝑈)) |
92 | 91 | 3expia 1120 |
. . . . . . 7
⊢ ((𝑃 ∈ ℤ ∧ ((𝑆 + 𝑇) + 1) ∈ ℕ0) →
(𝑈 ∈
(ℤ≥‘((𝑆 + 𝑇) + 1)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑃↑𝑈))) |
93 | 88, 90, 92 | syl2anc 584 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑈 ∈
(ℤ≥‘((𝑆 + 𝑇) + 1)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑃↑𝑈))) |
94 | 84 | simprd 496 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑈) ∥ (𝑀 · 𝑁)) |
95 | 36, 90 | nnexpcld 13960 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∈ ℕ) |
96 | 95 | nnzd 12425 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∈ ℤ) |
97 | 36, 85 | nnexpcld 13960 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑈) ∈ ℕ) |
98 | 97 | nnzd 12425 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑈) ∈ ℤ) |
99 | | dvdstr 16003 |
. . . . . . . 8
⊢ (((𝑃↑((𝑆 + 𝑇) + 1)) ∈ ℤ ∧ (𝑃↑𝑈) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (((𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑃↑𝑈) ∧ (𝑃↑𝑈) ∥ (𝑀 · 𝑁)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑀 · 𝑁))) |
100 | 96, 98, 5, 99 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑃↑𝑈) ∧ (𝑃↑𝑈) ∥ (𝑀 · 𝑁)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑀 · 𝑁))) |
101 | 94, 100 | mpan2d 691 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑃↑𝑈) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑀 · 𝑁))) |
102 | 93, 101 | syld 47 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑈 ∈
(ℤ≥‘((𝑆 + 𝑇) + 1)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑀 · 𝑁))) |
103 | 90 | nn0zd 12424 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑆 + 𝑇) + 1) ∈ ℤ) |
104 | 85 | nn0zd 12424 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑈 ∈
ℤ) |
105 | | eluz 12596 |
. . . . . 6
⊢ ((((𝑆 + 𝑇) + 1) ∈ ℤ ∧ 𝑈 ∈ ℤ) → (𝑈 ∈
(ℤ≥‘((𝑆 + 𝑇) + 1)) ↔ ((𝑆 + 𝑇) + 1) ≤ 𝑈)) |
106 | 103, 104,
105 | syl2anc 584 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑈 ∈
(ℤ≥‘((𝑆 + 𝑇) + 1)) ↔ ((𝑆 + 𝑇) + 1) ≤ 𝑈)) |
107 | 42, 34 | expp1d 13865 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑((𝑆 + 𝑇) + 1)) = ((𝑃↑(𝑆 + 𝑇)) · 𝑃)) |
108 | 20 | zcnd 12427 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑀 ∈
ℂ) |
109 | 27 | zcnd 12427 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈
ℂ) |
110 | 108, 109 | mulcld 10995 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ∈ ℂ) |
111 | 37 | nncnd 11989 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) ∈ ℂ) |
112 | 37 | nnne0d 12023 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) ≠ 0) |
113 | 110, 111,
112 | divcan2d 11753 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 · 𝑁) / (𝑃↑(𝑆 + 𝑇)))) = (𝑀 · 𝑁)) |
114 | 43 | oveq2d 7291 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑀 · 𝑁) / (𝑃↑(𝑆 + 𝑇))) = ((𝑀 · 𝑁) / ((𝑃↑𝑆) · (𝑃↑𝑇)))) |
115 | 45 | nncnd 11989 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ∈ ℂ) |
116 | 39 | nncnd 11989 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑇) ∈ ℂ) |
117 | 108, 115,
109, 116, 72, 76 | divmuldivd 11792 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇))) = ((𝑀 · 𝑁) / ((𝑃↑𝑆) · (𝑃↑𝑇)))) |
118 | 114, 117 | eqtr4d 2781 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑀 · 𝑁) / (𝑃↑(𝑆 + 𝑇))) = ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇)))) |
119 | 118 | oveq2d 7291 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 · 𝑁) / (𝑃↑(𝑆 + 𝑇)))) = ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇))))) |
120 | 113, 119 | eqtr3d 2780 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) = ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇))))) |
121 | 107, 120 | breq12d 5087 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑀 · 𝑁) ↔ ((𝑃↑(𝑆 + 𝑇)) · 𝑃) ∥ ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇)))))) |
122 | 75, 79 | zmulcld 12432 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇))) ∈ ℤ) |
123 | | dvdscmulr 15994 |
. . . . . . 7
⊢ ((𝑃 ∈ ℤ ∧ ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇))) ∈ ℤ ∧ ((𝑃↑(𝑆 + 𝑇)) ∈ ℤ ∧ (𝑃↑(𝑆 + 𝑇)) ≠ 0)) → (((𝑃↑(𝑆 + 𝑇)) · 𝑃) ∥ ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇)))) ↔ 𝑃 ∥ ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇))))) |
124 | 88, 122, 38, 112, 123 | syl112anc 1373 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((𝑃↑(𝑆 + 𝑇)) · 𝑃) ∥ ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇)))) ↔ 𝑃 ∥ ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇))))) |
125 | 121, 124 | bitrd 278 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑀 · 𝑁) ↔ 𝑃 ∥ ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇))))) |
126 | 102, 106,
125 | 3imtr3d 293 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((𝑆 + 𝑇) + 1) ≤ 𝑈 → 𝑃 ∥ ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇))))) |
127 | 87, 126 | sylbid 239 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑆 + 𝑇) < 𝑈 → 𝑃 ∥ ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇))))) |
128 | 82, 127 | mtod 197 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑆 + 𝑇) < 𝑈) |
129 | 34 | nn0red 12294 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) ∈ ℝ) |
130 | 85 | nn0red 12294 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑈 ∈
ℝ) |
131 | 129, 130 | eqleltd 11119 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑆 + 𝑇) = 𝑈 ↔ ((𝑆 + 𝑇) ≤ 𝑈 ∧ ¬ (𝑆 + 𝑇) < 𝑈))) |
132 | 64, 128, 131 | mpbir2and 710 |
1
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) = 𝑈) |