MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcpremul Structured version   Visualization version   GIF version

Theorem pcpremul 16170
Description: Multiplicative property of the prime count pre-function. Note that the primality of 𝑃 is essential for this property; (4 pCnt 2) = 0 but (4 pCnt (2 · 2)) = 1 ≠ 2 · (4 pCnt 2) = 0. Since this is needed to show uniqueness for the real prime count function (over ), we don't bother to define it off the primes. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pcpremul.1 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑀}, ℝ, < )
pcpremul.2 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}, ℝ, < )
pcpremul.3 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)}, ℝ, < )
Assertion
Ref Expression
pcpremul ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) = 𝑈)
Distinct variable groups:   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛
Allowed substitution hints:   𝑆(𝑛)   𝑇(𝑛)   𝑈(𝑛)

Proof of Theorem pcpremul
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmuz2 16030 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
213ad2ant1 1130 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ (ℤ‘2))
3 zmulcl 12019 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
43ad2ant2r 746 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ∈ ℤ)
543adant1 1127 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ∈ ℤ)
6 zcn 11974 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
76anim1i 617 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
8 zcn 11974 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
98anim1i 617 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
10 mulne0 11271 . . . . . . . 8 (((𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ≠ 0)
117, 9, 10syl2an 598 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ≠ 0)
12113adant1 1127 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ≠ 0)
13 eqid 2798 . . . . . . 7 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)}
1413pclem 16165 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ ((𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0)) → ({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)} ⊆ ℤ ∧ {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)} ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)}𝑦𝑥))
152, 5, 12, 14syl12anc 835 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)} ⊆ ℤ ∧ {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)} ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)}𝑦𝑥))
1615simp1d 1139 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)} ⊆ ℤ)
1715simp3d 1141 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)}𝑦𝑥)
18 oveq2 7143 . . . . . . 7 (𝑥 = (𝑆 + 𝑇) → (𝑃𝑥) = (𝑃↑(𝑆 + 𝑇)))
1918breq1d 5040 . . . . . 6 (𝑥 = (𝑆 + 𝑇) → ((𝑃𝑥) ∥ (𝑀 · 𝑁) ↔ (𝑃↑(𝑆 + 𝑇)) ∥ (𝑀 · 𝑁)))
20 simp2l 1196 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑀 ∈ ℤ)
21 simp2r 1197 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑀 ≠ 0)
22 eqid 2798 . . . . . . . . . 10 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑀} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑀}
23 pcpremul.1 . . . . . . . . . 10 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑀}, ℝ, < )
2422, 23pcprecl 16166 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑀))
252, 20, 21, 24syl12anc 835 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑀))
2625simpld 498 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℕ0)
27 simp3l 1198 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℤ)
28 simp3r 1199 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ≠ 0)
29 eqid 2798 . . . . . . . . . 10 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
30 pcpremul.2 . . . . . . . . . 10 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}, ℝ, < )
3129, 30pcprecl 16166 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑇 ∈ ℕ0 ∧ (𝑃𝑇) ∥ 𝑁))
322, 27, 28, 31syl12anc 835 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑇 ∈ ℕ0 ∧ (𝑃𝑇) ∥ 𝑁))
3332simpld 498 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑇 ∈ ℕ0)
3426, 33nn0addcld 11947 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) ∈ ℕ0)
35 prmnn 16008 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
36353ad2ant1 1130 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℕ)
3736nncnd 11641 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℂ)
3837, 33, 26expaddd 13508 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) = ((𝑃𝑆) · (𝑃𝑇)))
3925simprd 499 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑆) ∥ 𝑀)
4036, 26nnexpcld 13602 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑆) ∈ ℕ)
4140nnzd 12074 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑆) ∈ ℤ)
4236, 33nnexpcld 13602 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑇) ∈ ℕ)
4342nnzd 12074 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑇) ∈ ℤ)
44 dvdsmulc 15629 . . . . . . . . . 10 (((𝑃𝑆) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑃𝑇) ∈ ℤ) → ((𝑃𝑆) ∥ 𝑀 → ((𝑃𝑆) · (𝑃𝑇)) ∥ (𝑀 · (𝑃𝑇))))
4541, 20, 43, 44syl3anc 1368 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃𝑆) ∥ 𝑀 → ((𝑃𝑆) · (𝑃𝑇)) ∥ (𝑀 · (𝑃𝑇))))
4639, 45mpd 15 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃𝑆) · (𝑃𝑇)) ∥ (𝑀 · (𝑃𝑇)))
4738, 46eqbrtrd 5052 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) ∥ (𝑀 · (𝑃𝑇)))
4832simprd 499 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑇) ∥ 𝑁)
49 dvdscmul 15628 . . . . . . . . 9 (((𝑃𝑇) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑃𝑇) ∥ 𝑁 → (𝑀 · (𝑃𝑇)) ∥ (𝑀 · 𝑁)))
5043, 27, 20, 49syl3anc 1368 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃𝑇) ∥ 𝑁 → (𝑀 · (𝑃𝑇)) ∥ (𝑀 · 𝑁)))
5148, 50mpd 15 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · (𝑃𝑇)) ∥ (𝑀 · 𝑁))
5236, 34nnexpcld 13602 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) ∈ ℕ)
5352nnzd 12074 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) ∈ ℤ)
5420, 43zmulcld 12081 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · (𝑃𝑇)) ∈ ℤ)
55 dvdstr 15638 . . . . . . . 8 (((𝑃↑(𝑆 + 𝑇)) ∈ ℤ ∧ (𝑀 · (𝑃𝑇)) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (((𝑃↑(𝑆 + 𝑇)) ∥ (𝑀 · (𝑃𝑇)) ∧ (𝑀 · (𝑃𝑇)) ∥ (𝑀 · 𝑁)) → (𝑃↑(𝑆 + 𝑇)) ∥ (𝑀 · 𝑁)))
5653, 54, 5, 55syl3anc 1368 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((𝑃↑(𝑆 + 𝑇)) ∥ (𝑀 · (𝑃𝑇)) ∧ (𝑀 · (𝑃𝑇)) ∥ (𝑀 · 𝑁)) → (𝑃↑(𝑆 + 𝑇)) ∥ (𝑀 · 𝑁)))
5747, 51, 56mp2and 698 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) ∥ (𝑀 · 𝑁))
5819, 34, 57elrabd 3630 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) ∈ {𝑥 ∈ ℕ0 ∣ (𝑃𝑥) ∥ (𝑀 · 𝑁)})
59 oveq2 7143 . . . . . . 7 (𝑥 = 𝑛 → (𝑃𝑥) = (𝑃𝑛))
6059breq1d 5040 . . . . . 6 (𝑥 = 𝑛 → ((𝑃𝑥) ∥ (𝑀 · 𝑁) ↔ (𝑃𝑛) ∥ (𝑀 · 𝑁)))
6160cbvrabv 3439 . . . . 5 {𝑥 ∈ ℕ0 ∣ (𝑃𝑥) ∥ (𝑀 · 𝑁)} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)}
6258, 61eleqtrdi 2900 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) ∈ {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)})
63 suprzub 12327 . . . 4 (({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)} ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)}𝑦𝑥 ∧ (𝑆 + 𝑇) ∈ {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)}) → (𝑆 + 𝑇) ≤ sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)}, ℝ, < ))
6416, 17, 62, 63syl3anc 1368 . . 3 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) ≤ sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)}, ℝ, < ))
65 pcpremul.3 . . 3 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ (𝑀 · 𝑁)}, ℝ, < )
6664, 65breqtrrdi 5072 . 2 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) ≤ 𝑈)
6722, 23pcprendvds2 16168 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → ¬ 𝑃 ∥ (𝑀 / (𝑃𝑆)))
682, 20, 21, 67syl12anc 835 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑀 / (𝑃𝑆)))
6929, 30pcprendvds2 16168 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃𝑇)))
702, 27, 28, 69syl12anc 835 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃𝑇)))
71 ioran 981 . . . . 5 (¬ (𝑃 ∥ (𝑀 / (𝑃𝑆)) ∨ 𝑃 ∥ (𝑁 / (𝑃𝑇))) ↔ (¬ 𝑃 ∥ (𝑀 / (𝑃𝑆)) ∧ ¬ 𝑃 ∥ (𝑁 / (𝑃𝑇))))
7268, 70, 71sylanbrc 586 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃 ∥ (𝑀 / (𝑃𝑆)) ∨ 𝑃 ∥ (𝑁 / (𝑃𝑇))))
73 simp1 1133 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℙ)
7440nnne0d 11675 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑆) ≠ 0)
75 dvdsval2 15602 . . . . . . 7 (((𝑃𝑆) ∈ ℤ ∧ (𝑃𝑆) ≠ 0 ∧ 𝑀 ∈ ℤ) → ((𝑃𝑆) ∥ 𝑀 ↔ (𝑀 / (𝑃𝑆)) ∈ ℤ))
7641, 74, 20, 75syl3anc 1368 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃𝑆) ∥ 𝑀 ↔ (𝑀 / (𝑃𝑆)) ∈ ℤ))
7739, 76mpbid 235 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 / (𝑃𝑆)) ∈ ℤ)
7842nnne0d 11675 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑇) ≠ 0)
79 dvdsval2 15602 . . . . . . 7 (((𝑃𝑇) ∈ ℤ ∧ (𝑃𝑇) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑃𝑇) ∥ 𝑁 ↔ (𝑁 / (𝑃𝑇)) ∈ ℤ))
8043, 78, 27, 79syl3anc 1368 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃𝑇) ∥ 𝑁 ↔ (𝑁 / (𝑃𝑇)) ∈ ℤ))
8148, 80mpbid 235 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑁 / (𝑃𝑇)) ∈ ℤ)
82 euclemma 16047 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 / (𝑃𝑆)) ∈ ℤ ∧ (𝑁 / (𝑃𝑇)) ∈ ℤ) → (𝑃 ∥ ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇))) ↔ (𝑃 ∥ (𝑀 / (𝑃𝑆)) ∨ 𝑃 ∥ (𝑁 / (𝑃𝑇)))))
8373, 77, 81, 82syl3anc 1368 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 ∥ ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇))) ↔ (𝑃 ∥ (𝑀 / (𝑃𝑆)) ∨ 𝑃 ∥ (𝑁 / (𝑃𝑇)))))
8472, 83mtbird 328 . . 3 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇))))
8513, 65pcprecl 16166 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ ((𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0)) → (𝑈 ∈ ℕ0 ∧ (𝑃𝑈) ∥ (𝑀 · 𝑁)))
862, 5, 12, 85syl12anc 835 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑈 ∈ ℕ0 ∧ (𝑃𝑈) ∥ (𝑀 · 𝑁)))
8786simpld 498 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑈 ∈ ℕ0)
88 nn0ltp1le 12028 . . . . 5 (((𝑆 + 𝑇) ∈ ℕ0𝑈 ∈ ℕ0) → ((𝑆 + 𝑇) < 𝑈 ↔ ((𝑆 + 𝑇) + 1) ≤ 𝑈))
8934, 87, 88syl2anc 587 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑆 + 𝑇) < 𝑈 ↔ ((𝑆 + 𝑇) + 1) ≤ 𝑈))
9036nnzd 12074 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℤ)
91 peano2nn0 11925 . . . . . . . 8 ((𝑆 + 𝑇) ∈ ℕ0 → ((𝑆 + 𝑇) + 1) ∈ ℕ0)
9234, 91syl 17 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑆 + 𝑇) + 1) ∈ ℕ0)
93 dvdsexp 15669 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((𝑆 + 𝑇) + 1) ∈ ℕ0𝑈 ∈ (ℤ‘((𝑆 + 𝑇) + 1))) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑃𝑈))
94933expia 1118 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((𝑆 + 𝑇) + 1) ∈ ℕ0) → (𝑈 ∈ (ℤ‘((𝑆 + 𝑇) + 1)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑃𝑈)))
9590, 92, 94syl2anc 587 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑈 ∈ (ℤ‘((𝑆 + 𝑇) + 1)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑃𝑈)))
9686simprd 499 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑈) ∥ (𝑀 · 𝑁))
9736, 92nnexpcld 13602 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∈ ℕ)
9897nnzd 12074 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∈ ℤ)
9936, 87nnexpcld 13602 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑈) ∈ ℕ)
10099nnzd 12074 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑈) ∈ ℤ)
101 dvdstr 15638 . . . . . . . 8 (((𝑃↑((𝑆 + 𝑇) + 1)) ∈ ℤ ∧ (𝑃𝑈) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (((𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑃𝑈) ∧ (𝑃𝑈) ∥ (𝑀 · 𝑁)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑀 · 𝑁)))
10298, 100, 5, 101syl3anc 1368 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑃𝑈) ∧ (𝑃𝑈) ∥ (𝑀 · 𝑁)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑀 · 𝑁)))
10396, 102mpan2d 693 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑃𝑈) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑀 · 𝑁)))
10495, 103syld 47 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑈 ∈ (ℤ‘((𝑆 + 𝑇) + 1)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑀 · 𝑁)))
10592nn0zd 12073 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑆 + 𝑇) + 1) ∈ ℤ)
10687nn0zd 12073 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑈 ∈ ℤ)
107 eluz 12245 . . . . . 6 ((((𝑆 + 𝑇) + 1) ∈ ℤ ∧ 𝑈 ∈ ℤ) → (𝑈 ∈ (ℤ‘((𝑆 + 𝑇) + 1)) ↔ ((𝑆 + 𝑇) + 1) ≤ 𝑈))
108105, 106, 107syl2anc 587 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑈 ∈ (ℤ‘((𝑆 + 𝑇) + 1)) ↔ ((𝑆 + 𝑇) + 1) ≤ 𝑈))
10937, 34expp1d 13507 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑((𝑆 + 𝑇) + 1)) = ((𝑃↑(𝑆 + 𝑇)) · 𝑃))
11020zcnd 12076 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑀 ∈ ℂ)
11127zcnd 12076 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℂ)
112110, 111mulcld 10650 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ∈ ℂ)
11352nncnd 11641 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) ∈ ℂ)
11452nnne0d 11675 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) ≠ 0)
115112, 113, 114divcan2d 11407 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 · 𝑁) / (𝑃↑(𝑆 + 𝑇)))) = (𝑀 · 𝑁))
11638oveq2d 7151 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑀 · 𝑁) / (𝑃↑(𝑆 + 𝑇))) = ((𝑀 · 𝑁) / ((𝑃𝑆) · (𝑃𝑇))))
11740nncnd 11641 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑆) ∈ ℂ)
11842nncnd 11641 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃𝑇) ∈ ℂ)
119110, 117, 111, 118, 74, 78divmuldivd 11446 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇))) = ((𝑀 · 𝑁) / ((𝑃𝑆) · (𝑃𝑇))))
120116, 119eqtr4d 2836 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑀 · 𝑁) / (𝑃↑(𝑆 + 𝑇))) = ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇))))
121120oveq2d 7151 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 · 𝑁) / (𝑃↑(𝑆 + 𝑇)))) = ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇)))))
122115, 121eqtr3d 2835 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) = ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇)))))
123109, 122breq12d 5043 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑀 · 𝑁) ↔ ((𝑃↑(𝑆 + 𝑇)) · 𝑃) ∥ ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇))))))
12477, 81zmulcld 12081 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇))) ∈ ℤ)
125 dvdscmulr 15630 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇))) ∈ ℤ ∧ ((𝑃↑(𝑆 + 𝑇)) ∈ ℤ ∧ (𝑃↑(𝑆 + 𝑇)) ≠ 0)) → (((𝑃↑(𝑆 + 𝑇)) · 𝑃) ∥ ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇)))) ↔ 𝑃 ∥ ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇)))))
12690, 124, 53, 114, 125syl112anc 1371 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((𝑃↑(𝑆 + 𝑇)) · 𝑃) ∥ ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇)))) ↔ 𝑃 ∥ ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇)))))
127123, 126bitrd 282 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑀 · 𝑁) ↔ 𝑃 ∥ ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇)))))
128104, 108, 1273imtr3d 296 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((𝑆 + 𝑇) + 1) ≤ 𝑈𝑃 ∥ ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇)))))
12989, 128sylbid 243 . . 3 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑆 + 𝑇) < 𝑈𝑃 ∥ ((𝑀 / (𝑃𝑆)) · (𝑁 / (𝑃𝑇)))))
13084, 129mtod 201 . 2 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑆 + 𝑇) < 𝑈)
13134nn0red 11944 . . 3 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) ∈ ℝ)
13287nn0red 11944 . . 3 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑈 ∈ ℝ)
133131, 132eqleltd 10773 . 2 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑆 + 𝑇) = 𝑈 ↔ ((𝑆 + 𝑇) ≤ 𝑈 ∧ ¬ (𝑆 + 𝑇) < 𝑈)))
13466, 130, 133mpbir2and 712 1 ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  wss 3881  c0 4243   class class class wbr 5030  cfv 6324  (class class class)co 7135  supcsup 8888  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  cexp 13425  cdvds 15599  cprime 16005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-prm 16006
This theorem is referenced by:  pceulem  16172  pcmul  16178
  Copyright terms: Public domain W3C validator