Step | Hyp | Ref
| Expression |
1 | | prmuz2 15813 |
. . . . . . 7
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) |
2 | 1 | 3ad2ant1 1124 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈
(ℤ≥‘2)) |
3 | | zmulcl 11778 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) |
4 | 3 | ad2ant2r 737 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ∈ ℤ) |
5 | 4 | 3adant1 1121 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ∈ ℤ) |
6 | | zcn 11733 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) |
7 | 6 | anim1i 608 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0)) |
8 | | zcn 11733 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
9 | 8 | anim1i 608 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) |
10 | | mulne0 11017 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ≠ 0) |
11 | 7, 9, 10 | syl2an 589 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ≠ 0) |
12 | 11 | 3adant1 1121 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ≠ 0) |
13 | | eqid 2778 |
. . . . . . 7
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)} |
14 | 13 | pclem 15947 |
. . . . . 6
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ ((𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0)) → ({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)} ⊆ ℤ ∧ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)} ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)}𝑦 ≤ 𝑥)) |
15 | 2, 5, 12, 14 | syl12anc 827 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)} ⊆ ℤ ∧ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)} ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)}𝑦 ≤ 𝑥)) |
16 | 15 | simp1d 1133 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)} ⊆ ℤ) |
17 | 15 | simp3d 1135 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)}𝑦 ≤ 𝑥) |
18 | | oveq2 6930 |
. . . . . . 7
⊢ (𝑥 = (𝑆 + 𝑇) → (𝑃↑𝑥) = (𝑃↑(𝑆 + 𝑇))) |
19 | 18 | breq1d 4896 |
. . . . . 6
⊢ (𝑥 = (𝑆 + 𝑇) → ((𝑃↑𝑥) ∥ (𝑀 · 𝑁) ↔ (𝑃↑(𝑆 + 𝑇)) ∥ (𝑀 · 𝑁))) |
20 | | simp2l 1213 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑀 ∈
ℤ) |
21 | | simp2r 1214 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑀 ≠ 0) |
22 | | eqid 2778 |
. . . . . . . . . 10
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑀} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑀} |
23 | | pcpremul.1 |
. . . . . . . . . 10
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑀}, ℝ, < ) |
24 | 22, 23 | pcprecl 15948 |
. . . . . . . . 9
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑀)) |
25 | 2, 20, 21, 24 | syl12anc 827 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0
∧ (𝑃↑𝑆) ∥ 𝑀)) |
26 | 25 | simpld 490 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈
ℕ0) |
27 | | simp3l 1215 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈
ℤ) |
28 | | simp3r 1216 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ≠ 0) |
29 | | eqid 2778 |
. . . . . . . . . 10
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑁} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} |
30 | | pcpremul.2 |
. . . . . . . . . 10
⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁}, ℝ, < ) |
31 | 29, 30 | pcprecl 15948 |
. . . . . . . . 9
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑇 ∈ ℕ0 ∧ (𝑃↑𝑇) ∥ 𝑁)) |
32 | 2, 27, 28, 31 | syl12anc 827 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑇 ∈ ℕ0
∧ (𝑃↑𝑇) ∥ 𝑁)) |
33 | 32 | simpld 490 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑇 ∈
ℕ0) |
34 | 26, 33 | nn0addcld 11706 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) ∈
ℕ0) |
35 | | prmnn 15793 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
36 | 35 | 3ad2ant1 1124 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈
ℕ) |
37 | 36 | nncnd 11392 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈
ℂ) |
38 | 37, 33, 26 | expaddd 13329 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) = ((𝑃↑𝑆) · (𝑃↑𝑇))) |
39 | 25 | simprd 491 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ∥ 𝑀) |
40 | 36, 26 | nnexpcld 13351 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ∈ ℕ) |
41 | 40 | nnzd 11833 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ∈ ℤ) |
42 | 36, 33 | nnexpcld 13351 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑇) ∈ ℕ) |
43 | 42 | nnzd 11833 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑇) ∈ ℤ) |
44 | | dvdsmulc 15416 |
. . . . . . . . . 10
⊢ (((𝑃↑𝑆) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑃↑𝑇) ∈ ℤ) → ((𝑃↑𝑆) ∥ 𝑀 → ((𝑃↑𝑆) · (𝑃↑𝑇)) ∥ (𝑀 · (𝑃↑𝑇)))) |
45 | 41, 20, 43, 44 | syl3anc 1439 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑𝑆) ∥ 𝑀 → ((𝑃↑𝑆) · (𝑃↑𝑇)) ∥ (𝑀 · (𝑃↑𝑇)))) |
46 | 39, 45 | mpd 15 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑𝑆) · (𝑃↑𝑇)) ∥ (𝑀 · (𝑃↑𝑇))) |
47 | 38, 46 | eqbrtrd 4908 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) ∥ (𝑀 · (𝑃↑𝑇))) |
48 | 32 | simprd 491 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑇) ∥ 𝑁) |
49 | | dvdscmul 15415 |
. . . . . . . . 9
⊢ (((𝑃↑𝑇) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑃↑𝑇) ∥ 𝑁 → (𝑀 · (𝑃↑𝑇)) ∥ (𝑀 · 𝑁))) |
50 | 43, 27, 20, 49 | syl3anc 1439 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑𝑇) ∥ 𝑁 → (𝑀 · (𝑃↑𝑇)) ∥ (𝑀 · 𝑁))) |
51 | 48, 50 | mpd 15 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · (𝑃↑𝑇)) ∥ (𝑀 · 𝑁)) |
52 | 36, 34 | nnexpcld 13351 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) ∈ ℕ) |
53 | 52 | nnzd 11833 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) ∈ ℤ) |
54 | 20, 43 | zmulcld 11840 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · (𝑃↑𝑇)) ∈ ℤ) |
55 | | dvdstr 15425 |
. . . . . . . 8
⊢ (((𝑃↑(𝑆 + 𝑇)) ∈ ℤ ∧ (𝑀 · (𝑃↑𝑇)) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (((𝑃↑(𝑆 + 𝑇)) ∥ (𝑀 · (𝑃↑𝑇)) ∧ (𝑀 · (𝑃↑𝑇)) ∥ (𝑀 · 𝑁)) → (𝑃↑(𝑆 + 𝑇)) ∥ (𝑀 · 𝑁))) |
56 | 53, 54, 5, 55 | syl3anc 1439 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((𝑃↑(𝑆 + 𝑇)) ∥ (𝑀 · (𝑃↑𝑇)) ∧ (𝑀 · (𝑃↑𝑇)) ∥ (𝑀 · 𝑁)) → (𝑃↑(𝑆 + 𝑇)) ∥ (𝑀 · 𝑁))) |
57 | 47, 51, 56 | mp2and 689 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) ∥ (𝑀 · 𝑁)) |
58 | 19, 34, 57 | elrabd 3575 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) ∈ {𝑥 ∈ ℕ0 ∣ (𝑃↑𝑥) ∥ (𝑀 · 𝑁)}) |
59 | | oveq2 6930 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (𝑃↑𝑥) = (𝑃↑𝑛)) |
60 | 59 | breq1d 4896 |
. . . . . 6
⊢ (𝑥 = 𝑛 → ((𝑃↑𝑥) ∥ (𝑀 · 𝑁) ↔ (𝑃↑𝑛) ∥ (𝑀 · 𝑁))) |
61 | 60 | cbvrabv 3396 |
. . . . 5
⊢ {𝑥 ∈ ℕ0
∣ (𝑃↑𝑥) ∥ (𝑀 · 𝑁)} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)} |
62 | 58, 61 | syl6eleq 2869 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) ∈ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)}) |
63 | | suprzub 12086 |
. . . 4
⊢ (({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)} ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)}𝑦 ≤ 𝑥 ∧ (𝑆 + 𝑇) ∈ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)}) → (𝑆 + 𝑇) ≤ sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)}, ℝ, < )) |
64 | 16, 17, 62, 63 | syl3anc 1439 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) ≤ sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)}, ℝ, < )) |
65 | | pcpremul.3 |
. . 3
⊢ 𝑈 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ (𝑀 · 𝑁)}, ℝ, < ) |
66 | 64, 65 | syl6breqr 4928 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) ≤ 𝑈) |
67 | 22, 23 | pcprendvds2 15950 |
. . . . . 6
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → ¬ 𝑃 ∥ (𝑀 / (𝑃↑𝑆))) |
68 | 2, 20, 21, 67 | syl12anc 827 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑀 / (𝑃↑𝑆))) |
69 | 29, 30 | pcprendvds2 15950 |
. . . . . 6
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑𝑇))) |
70 | 2, 27, 28, 69 | syl12anc 827 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑𝑇))) |
71 | | ioran 969 |
. . . . 5
⊢ (¬
(𝑃 ∥ (𝑀 / (𝑃↑𝑆)) ∨ 𝑃 ∥ (𝑁 / (𝑃↑𝑇))) ↔ (¬ 𝑃 ∥ (𝑀 / (𝑃↑𝑆)) ∧ ¬ 𝑃 ∥ (𝑁 / (𝑃↑𝑇)))) |
72 | 68, 70, 71 | sylanbrc 578 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃 ∥ (𝑀 / (𝑃↑𝑆)) ∨ 𝑃 ∥ (𝑁 / (𝑃↑𝑇)))) |
73 | | simp1 1127 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈
ℙ) |
74 | 40 | nnne0d 11425 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ≠ 0) |
75 | | dvdsval2 15390 |
. . . . . . 7
⊢ (((𝑃↑𝑆) ∈ ℤ ∧ (𝑃↑𝑆) ≠ 0 ∧ 𝑀 ∈ ℤ) → ((𝑃↑𝑆) ∥ 𝑀 ↔ (𝑀 / (𝑃↑𝑆)) ∈ ℤ)) |
76 | 41, 74, 20, 75 | syl3anc 1439 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑𝑆) ∥ 𝑀 ↔ (𝑀 / (𝑃↑𝑆)) ∈ ℤ)) |
77 | 39, 76 | mpbid 224 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 / (𝑃↑𝑆)) ∈ ℤ) |
78 | 42 | nnne0d 11425 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑇) ≠ 0) |
79 | | dvdsval2 15390 |
. . . . . . 7
⊢ (((𝑃↑𝑇) ∈ ℤ ∧ (𝑃↑𝑇) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑃↑𝑇) ∥ 𝑁 ↔ (𝑁 / (𝑃↑𝑇)) ∈ ℤ)) |
80 | 43, 78, 27, 79 | syl3anc 1439 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑𝑇) ∥ 𝑁 ↔ (𝑁 / (𝑃↑𝑇)) ∈ ℤ)) |
81 | 48, 80 | mpbid 224 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑁 / (𝑃↑𝑇)) ∈ ℤ) |
82 | | euclemma 15829 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 / (𝑃↑𝑆)) ∈ ℤ ∧ (𝑁 / (𝑃↑𝑇)) ∈ ℤ) → (𝑃 ∥ ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇))) ↔ (𝑃 ∥ (𝑀 / (𝑃↑𝑆)) ∨ 𝑃 ∥ (𝑁 / (𝑃↑𝑇))))) |
83 | 73, 77, 81, 82 | syl3anc 1439 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 ∥ ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇))) ↔ (𝑃 ∥ (𝑀 / (𝑃↑𝑆)) ∨ 𝑃 ∥ (𝑁 / (𝑃↑𝑇))))) |
84 | 72, 83 | mtbird 317 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇)))) |
85 | 13, 65 | pcprecl 15948 |
. . . . . . 7
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ ((𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0)) → (𝑈 ∈ ℕ0 ∧ (𝑃↑𝑈) ∥ (𝑀 · 𝑁))) |
86 | 2, 5, 12, 85 | syl12anc 827 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑈 ∈ ℕ0
∧ (𝑃↑𝑈) ∥ (𝑀 · 𝑁))) |
87 | 86 | simpld 490 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑈 ∈
ℕ0) |
88 | | nn0ltp1le 11787 |
. . . . 5
⊢ (((𝑆 + 𝑇) ∈ ℕ0 ∧ 𝑈 ∈ ℕ0)
→ ((𝑆 + 𝑇) < 𝑈 ↔ ((𝑆 + 𝑇) + 1) ≤ 𝑈)) |
89 | 34, 87, 88 | syl2anc 579 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑆 + 𝑇) < 𝑈 ↔ ((𝑆 + 𝑇) + 1) ≤ 𝑈)) |
90 | 36 | nnzd 11833 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈
ℤ) |
91 | | peano2nn0 11684 |
. . . . . . . 8
⊢ ((𝑆 + 𝑇) ∈ ℕ0 → ((𝑆 + 𝑇) + 1) ∈
ℕ0) |
92 | 34, 91 | syl 17 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑆 + 𝑇) + 1) ∈
ℕ0) |
93 | | dvdsexp 15456 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℤ ∧ ((𝑆 + 𝑇) + 1) ∈ ℕ0 ∧
𝑈 ∈
(ℤ≥‘((𝑆 + 𝑇) + 1))) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑃↑𝑈)) |
94 | 93 | 3expia 1111 |
. . . . . . 7
⊢ ((𝑃 ∈ ℤ ∧ ((𝑆 + 𝑇) + 1) ∈ ℕ0) →
(𝑈 ∈
(ℤ≥‘((𝑆 + 𝑇) + 1)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑃↑𝑈))) |
95 | 90, 92, 94 | syl2anc 579 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑈 ∈
(ℤ≥‘((𝑆 + 𝑇) + 1)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑃↑𝑈))) |
96 | 86 | simprd 491 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑈) ∥ (𝑀 · 𝑁)) |
97 | 36, 92 | nnexpcld 13351 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∈ ℕ) |
98 | 97 | nnzd 11833 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∈ ℤ) |
99 | 36, 87 | nnexpcld 13351 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑈) ∈ ℕ) |
100 | 99 | nnzd 11833 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑈) ∈ ℤ) |
101 | | dvdstr 15425 |
. . . . . . . 8
⊢ (((𝑃↑((𝑆 + 𝑇) + 1)) ∈ ℤ ∧ (𝑃↑𝑈) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (((𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑃↑𝑈) ∧ (𝑃↑𝑈) ∥ (𝑀 · 𝑁)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑀 · 𝑁))) |
102 | 98, 100, 5, 101 | syl3anc 1439 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑃↑𝑈) ∧ (𝑃↑𝑈) ∥ (𝑀 · 𝑁)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑀 · 𝑁))) |
103 | 96, 102 | mpan2d 684 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑃↑𝑈) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑀 · 𝑁))) |
104 | 95, 103 | syld 47 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑈 ∈
(ℤ≥‘((𝑆 + 𝑇) + 1)) → (𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑀 · 𝑁))) |
105 | 92 | nn0zd 11832 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑆 + 𝑇) + 1) ∈ ℤ) |
106 | 87 | nn0zd 11832 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑈 ∈
ℤ) |
107 | | eluz 12006 |
. . . . . 6
⊢ ((((𝑆 + 𝑇) + 1) ∈ ℤ ∧ 𝑈 ∈ ℤ) → (𝑈 ∈
(ℤ≥‘((𝑆 + 𝑇) + 1)) ↔ ((𝑆 + 𝑇) + 1) ≤ 𝑈)) |
108 | 105, 106,
107 | syl2anc 579 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑈 ∈
(ℤ≥‘((𝑆 + 𝑇) + 1)) ↔ ((𝑆 + 𝑇) + 1) ≤ 𝑈)) |
109 | 37, 34 | expp1d 13328 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑((𝑆 + 𝑇) + 1)) = ((𝑃↑(𝑆 + 𝑇)) · 𝑃)) |
110 | 20 | zcnd 11835 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑀 ∈
ℂ) |
111 | 27 | zcnd 11835 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈
ℂ) |
112 | 110, 111 | mulcld 10397 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ∈ ℂ) |
113 | 52 | nncnd 11392 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) ∈ ℂ) |
114 | 52 | nnne0d 11425 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 𝑇)) ≠ 0) |
115 | 112, 113,
114 | divcan2d 11153 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 · 𝑁) / (𝑃↑(𝑆 + 𝑇)))) = (𝑀 · 𝑁)) |
116 | 38 | oveq2d 6938 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑀 · 𝑁) / (𝑃↑(𝑆 + 𝑇))) = ((𝑀 · 𝑁) / ((𝑃↑𝑆) · (𝑃↑𝑇)))) |
117 | 40 | nncnd 11392 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ∈ ℂ) |
118 | 42 | nncnd 11392 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑇) ∈ ℂ) |
119 | 110, 117,
111, 118, 74, 78 | divmuldivd 11192 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇))) = ((𝑀 · 𝑁) / ((𝑃↑𝑆) · (𝑃↑𝑇)))) |
120 | 116, 119 | eqtr4d 2817 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑀 · 𝑁) / (𝑃↑(𝑆 + 𝑇))) = ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇)))) |
121 | 120 | oveq2d 6938 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 · 𝑁) / (𝑃↑(𝑆 + 𝑇)))) = ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇))))) |
122 | 115, 121 | eqtr3d 2816 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) = ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇))))) |
123 | 109, 122 | breq12d 4899 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑀 · 𝑁) ↔ ((𝑃↑(𝑆 + 𝑇)) · 𝑃) ∥ ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇)))))) |
124 | 77, 81 | zmulcld 11840 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇))) ∈ ℤ) |
125 | | dvdscmulr 15417 |
. . . . . . 7
⊢ ((𝑃 ∈ ℤ ∧ ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇))) ∈ ℤ ∧ ((𝑃↑(𝑆 + 𝑇)) ∈ ℤ ∧ (𝑃↑(𝑆 + 𝑇)) ≠ 0)) → (((𝑃↑(𝑆 + 𝑇)) · 𝑃) ∥ ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇)))) ↔ 𝑃 ∥ ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇))))) |
126 | 90, 124, 53, 114, 125 | syl112anc 1442 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((𝑃↑(𝑆 + 𝑇)) · 𝑃) ∥ ((𝑃↑(𝑆 + 𝑇)) · ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇)))) ↔ 𝑃 ∥ ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇))))) |
127 | 123, 126 | bitrd 271 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑((𝑆 + 𝑇) + 1)) ∥ (𝑀 · 𝑁) ↔ 𝑃 ∥ ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇))))) |
128 | 104, 108,
127 | 3imtr3d 285 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((𝑆 + 𝑇) + 1) ≤ 𝑈 → 𝑃 ∥ ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇))))) |
129 | 89, 128 | sylbid 232 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑆 + 𝑇) < 𝑈 → 𝑃 ∥ ((𝑀 / (𝑃↑𝑆)) · (𝑁 / (𝑃↑𝑇))))) |
130 | 84, 129 | mtod 190 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑆 + 𝑇) < 𝑈) |
131 | 34 | nn0red 11703 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) ∈ ℝ) |
132 | 87 | nn0red 11703 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑈 ∈
ℝ) |
133 | 131, 132 | eqleltd 10520 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑆 + 𝑇) = 𝑈 ↔ ((𝑆 + 𝑇) ≤ 𝑈 ∧ ¬ (𝑆 + 𝑇) < 𝑈))) |
134 | 66, 130, 133 | mpbir2and 703 |
1
⊢ ((𝑃 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 + 𝑇) = 𝑈) |