MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atantayl2 Structured version   Visualization version   GIF version

Theorem atantayl2 26863
Description: The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypothesis
Ref Expression
atantayl2.1 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛))))
Assertion
Ref Expression
atantayl2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴))
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem atantayl2
StepHypRef Expression
1 atantayl2.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛))))
2 ax-icn 11191 . . . . . . . . . . . . . . . 16 i ∈ ℂ
32negcli 11552 . . . . . . . . . . . . . . 15 -i ∈ ℂ
43a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → -i ∈ ℂ)
5 nnnn0 12503 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
65ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 𝑛 ∈ ℕ0)
74, 6expcld 14136 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑𝑛) ∈ ℂ)
8 sqneg 14106 . . . . . . . . . . . . . . . . 17 (i ∈ ℂ → (-i↑2) = (i↑2))
92, 8ax-mp 5 . . . . . . . . . . . . . . . 16 (-i↑2) = (i↑2)
109oveq1i 7424 . . . . . . . . . . . . . . 15 ((-i↑2)↑(𝑛 / 2)) = ((i↑2)↑(𝑛 / 2))
11 ine0 11673 . . . . . . . . . . . . . . . . . 18 i ≠ 0
122, 11negne0i 11559 . . . . . . . . . . . . . . . . 17 -i ≠ 0
1312a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → -i ≠ 0)
14 2z 12618 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
1514a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 2 ∈ ℤ)
16 2ne0 12340 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
17 nnz 12603 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
1817adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
19 dvdsval2 16227 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ 𝑛 ∈ ℤ) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℤ))
2014, 16, 18, 19mp3an12i 1462 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℤ))
2120biimpa 476 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (𝑛 / 2) ∈ ℤ)
22 expmulz 14099 . . . . . . . . . . . . . . . 16 (((-i ∈ ℂ ∧ -i ≠ 0) ∧ (2 ∈ ℤ ∧ (𝑛 / 2) ∈ ℤ)) → (-i↑(2 · (𝑛 / 2))) = ((-i↑2)↑(𝑛 / 2)))
234, 13, 15, 21, 22syl22anc 838 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑(2 · (𝑛 / 2))) = ((-i↑2)↑(𝑛 / 2)))
242a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → i ∈ ℂ)
2511a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → i ≠ 0)
26 expmulz 14099 . . . . . . . . . . . . . . . 16 (((i ∈ ℂ ∧ i ≠ 0) ∧ (2 ∈ ℤ ∧ (𝑛 / 2) ∈ ℤ)) → (i↑(2 · (𝑛 / 2))) = ((i↑2)↑(𝑛 / 2)))
2724, 25, 15, 21, 26syl22anc 838 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (i↑(2 · (𝑛 / 2))) = ((i↑2)↑(𝑛 / 2)))
2810, 23, 273eqtr4a 2794 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑(2 · (𝑛 / 2))) = (i↑(2 · (𝑛 / 2))))
29 nncn 12244 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
3029ad2antlr 726 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 𝑛 ∈ ℂ)
31 2cnd 12314 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 2 ∈ ℂ)
3216a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 2 ≠ 0)
3330, 31, 32divcan2d 12016 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (2 · (𝑛 / 2)) = 𝑛)
3433oveq2d 7430 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑(2 · (𝑛 / 2))) = (-i↑𝑛))
3533oveq2d 7430 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (i↑(2 · (𝑛 / 2))) = (i↑𝑛))
3628, 34, 353eqtr3d 2776 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑𝑛) = (i↑𝑛))
377, 36subeq0bd 11664 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → ((-i↑𝑛) − (i↑𝑛)) = 0)
3837oveq2d 7430 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (i · ((-i↑𝑛) − (i↑𝑛))) = (i · 0))
39 it0e0 12458 . . . . . . . . . . 11 (i · 0) = 0
4038, 39eqtrdi 2784 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (i · ((-i↑𝑛) − (i↑𝑛))) = 0)
4140oveq1d 7429 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → ((i · ((-i↑𝑛) − (i↑𝑛))) / 2) = (0 / 2))
42 2cn 12311 . . . . . . . . . 10 2 ∈ ℂ
4342, 16div0i 11972 . . . . . . . . 9 (0 / 2) = 0
4441, 43eqtrdi 2784 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → ((i · ((-i↑𝑛) − (i↑𝑛))) / 2) = 0)
4544oveq1d 7429 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)) = (0 · ((𝐴𝑛) / 𝑛)))
46 simplll 774 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 𝐴 ∈ ℂ)
4746, 6expcld 14136 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (𝐴𝑛) ∈ ℂ)
48 nnne0 12270 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
4948ad2antlr 726 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 𝑛 ≠ 0)
5047, 30, 49divcld 12014 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → ((𝐴𝑛) / 𝑛) ∈ ℂ)
5150mul02d 11436 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (0 · ((𝐴𝑛) / 𝑛)) = 0)
5245, 51eqtr2d 2769 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 0 = (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
53 2cnd 12314 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 2 ∈ ℂ)
54 ax-1cn 11190 . . . . . . . . . . 11 1 ∈ ℂ
5554negcli 11552 . . . . . . . . . 10 -1 ∈ ℂ
5655a1i 11 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → -1 ∈ ℂ)
57 neg1ne0 12352 . . . . . . . . . 10 -1 ≠ 0
5857a1i 11 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → -1 ≠ 0)
5929ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 𝑛 ∈ ℂ)
60 peano2cn 11410 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → (𝑛 + 1) ∈ ℂ)
6159, 60syl 17 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (𝑛 + 1) ∈ ℂ)
6216a1i 11 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 2 ≠ 0)
6361, 53, 53, 62divsubdird 12053 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) − 2) / 2) = (((𝑛 + 1) / 2) − (2 / 2)))
64 2div2e1 12377 . . . . . . . . . . . . 13 (2 / 2) = 1
6564oveq2i 7425 . . . . . . . . . . . 12 (((𝑛 + 1) / 2) − (2 / 2)) = (((𝑛 + 1) / 2) − 1)
6663, 65eqtrdi 2784 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) − 2) / 2) = (((𝑛 + 1) / 2) − 1))
67 df-2 12299 . . . . . . . . . . . . . 14 2 = (1 + 1)
6867oveq2i 7425 . . . . . . . . . . . . 13 ((𝑛 + 1) − 2) = ((𝑛 + 1) − (1 + 1))
6954a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 1 ∈ ℂ)
7059, 69, 69pnpcan2d 11633 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((𝑛 + 1) − (1 + 1)) = (𝑛 − 1))
7168, 70eqtrid 2780 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((𝑛 + 1) − 2) = (𝑛 − 1))
7271oveq1d 7429 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) − 2) / 2) = ((𝑛 − 1) / 2))
7366, 72eqtr3d 2770 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) / 2) − 1) = ((𝑛 − 1) / 2))
7420notbid 318 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛 ↔ ¬ (𝑛 / 2) ∈ ℤ))
75 zeo 12672 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → ((𝑛 / 2) ∈ ℤ ∨ ((𝑛 + 1) / 2) ∈ ℤ))
7618, 75syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → ((𝑛 / 2) ∈ ℤ ∨ ((𝑛 + 1) / 2) ∈ ℤ))
7776ord 863 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (¬ (𝑛 / 2) ∈ ℤ → ((𝑛 + 1) / 2) ∈ ℤ))
7874, 77sylbid 239 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛 → ((𝑛 + 1) / 2) ∈ ℤ))
7978imp 406 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((𝑛 + 1) / 2) ∈ ℤ)
80 peano2zm 12629 . . . . . . . . . . 11 (((𝑛 + 1) / 2) ∈ ℤ → (((𝑛 + 1) / 2) − 1) ∈ ℤ)
8179, 80syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) / 2) − 1) ∈ ℤ)
8273, 81eqeltrrd 2830 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((𝑛 − 1) / 2) ∈ ℤ)
8356, 58, 82expclzd 14141 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) ∈ ℂ)
84832timesd 12479 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (2 · (-1↑((𝑛 − 1) / 2))) = ((-1↑((𝑛 − 1) / 2)) + (-1↑((𝑛 − 1) / 2))))
85 subcl 11483 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − 1) ∈ ℂ)
8659, 54, 85sylancl 585 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (𝑛 − 1) ∈ ℂ)
8786, 53, 62divcan2d 12016 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (2 · ((𝑛 − 1) / 2)) = (𝑛 − 1))
8887oveq2d 7430 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑(2 · ((𝑛 − 1) / 2))) = (-i↑(𝑛 − 1)))
893a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → -i ∈ ℂ)
9012a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → -i ≠ 0)
9117ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 𝑛 ∈ ℤ)
9289, 90, 91expm1d 14146 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑(𝑛 − 1)) = ((-i↑𝑛) / -i))
9388, 92eqtrd 2768 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑(2 · ((𝑛 − 1) / 2))) = ((-i↑𝑛) / -i))
9414a1i 11 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 2 ∈ ℤ)
95 expmulz 14099 . . . . . . . . . . . . 13 (((-i ∈ ℂ ∧ -i ≠ 0) ∧ (2 ∈ ℤ ∧ ((𝑛 − 1) / 2) ∈ ℤ)) → (-i↑(2 · ((𝑛 − 1) / 2))) = ((-i↑2)↑((𝑛 − 1) / 2)))
9689, 90, 94, 82, 95syl22anc 838 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑(2 · ((𝑛 − 1) / 2))) = ((-i↑2)↑((𝑛 − 1) / 2)))
975ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 𝑛 ∈ ℕ0)
98 expcl 14070 . . . . . . . . . . . . . 14 ((-i ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (-i↑𝑛) ∈ ℂ)
993, 97, 98sylancr 586 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑𝑛) ∈ ℂ)
10099, 89, 90divrec2d 12018 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((-i↑𝑛) / -i) = ((1 / -i) · (-i↑𝑛)))
10193, 96, 1003eqtr3d 2776 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((-i↑2)↑((𝑛 − 1) / 2)) = ((1 / -i) · (-i↑𝑛)))
102 i2 14191 . . . . . . . . . . . . 13 (i↑2) = -1
1039, 102eqtri 2756 . . . . . . . . . . . 12 (-i↑2) = -1
104103oveq1i 7424 . . . . . . . . . . 11 ((-i↑2)↑((𝑛 − 1) / 2)) = (-1↑((𝑛 − 1) / 2))
105 irec 14190 . . . . . . . . . . . . . 14 (1 / i) = -i
106105negeqi 11477 . . . . . . . . . . . . 13 -(1 / i) = --i
107 divneg2 11962 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → -(1 / i) = (1 / -i))
10854, 2, 11, 107mp3an 1458 . . . . . . . . . . . . 13 -(1 / i) = (1 / -i)
1092negnegi 11554 . . . . . . . . . . . . 13 --i = i
110106, 108, 1093eqtr3i 2764 . . . . . . . . . . . 12 (1 / -i) = i
111110oveq1i 7424 . . . . . . . . . . 11 ((1 / -i) · (-i↑𝑛)) = (i · (-i↑𝑛))
112101, 104, 1113eqtr3g 2791 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) = (i · (-i↑𝑛)))
11387oveq2d 7430 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑(2 · ((𝑛 − 1) / 2))) = (i↑(𝑛 − 1)))
1142a1i 11 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → i ∈ ℂ)
11511a1i 11 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → i ≠ 0)
116114, 115, 91expm1d 14146 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑(𝑛 − 1)) = ((i↑𝑛) / i))
117113, 116eqtrd 2768 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑(2 · ((𝑛 − 1) / 2))) = ((i↑𝑛) / i))
118 expmulz 14099 . . . . . . . . . . . . . 14 (((i ∈ ℂ ∧ i ≠ 0) ∧ (2 ∈ ℤ ∧ ((𝑛 − 1) / 2) ∈ ℤ)) → (i↑(2 · ((𝑛 − 1) / 2))) = ((i↑2)↑((𝑛 − 1) / 2)))
119114, 115, 94, 82, 118syl22anc 838 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑(2 · ((𝑛 − 1) / 2))) = ((i↑2)↑((𝑛 − 1) / 2)))
120 expcl 14070 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (i↑𝑛) ∈ ℂ)
1212, 97, 120sylancr 586 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑𝑛) ∈ ℂ)
122121, 114, 115divrec2d 12018 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((i↑𝑛) / i) = ((1 / i) · (i↑𝑛)))
123117, 119, 1223eqtr3d 2776 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((i↑2)↑((𝑛 − 1) / 2)) = ((1 / i) · (i↑𝑛)))
124102oveq1i 7424 . . . . . . . . . . . 12 ((i↑2)↑((𝑛 − 1) / 2)) = (-1↑((𝑛 − 1) / 2))
125105oveq1i 7424 . . . . . . . . . . . 12 ((1 / i) · (i↑𝑛)) = (-i · (i↑𝑛))
126123, 124, 1253eqtr3g 2791 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) = (-i · (i↑𝑛)))
127 mulneg1 11674 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (i↑𝑛) ∈ ℂ) → (-i · (i↑𝑛)) = -(i · (i↑𝑛)))
1282, 121, 127sylancr 586 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i · (i↑𝑛)) = -(i · (i↑𝑛)))
129126, 128eqtrd 2768 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) = -(i · (i↑𝑛)))
130112, 129oveq12d 7432 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((-1↑((𝑛 − 1) / 2)) + (-1↑((𝑛 − 1) / 2))) = ((i · (-i↑𝑛)) + -(i · (i↑𝑛))))
131 mulcl 11216 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (-i↑𝑛) ∈ ℂ) → (i · (-i↑𝑛)) ∈ ℂ)
1322, 99, 131sylancr 586 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i · (-i↑𝑛)) ∈ ℂ)
133 mulcl 11216 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (i↑𝑛) ∈ ℂ) → (i · (i↑𝑛)) ∈ ℂ)
1342, 121, 133sylancr 586 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i · (i↑𝑛)) ∈ ℂ)
135132, 134negsubd 11601 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((i · (-i↑𝑛)) + -(i · (i↑𝑛))) = ((i · (-i↑𝑛)) − (i · (i↑𝑛))))
136114, 99, 121subdid 11694 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i · ((-i↑𝑛) − (i↑𝑛))) = ((i · (-i↑𝑛)) − (i · (i↑𝑛))))
137135, 136eqtr4d 2771 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((i · (-i↑𝑛)) + -(i · (i↑𝑛))) = (i · ((-i↑𝑛) − (i↑𝑛))))
13884, 130, 1373eqtrd 2772 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (2 · (-1↑((𝑛 − 1) / 2))) = (i · ((-i↑𝑛) − (i↑𝑛))))
13953, 83, 62, 138mvllmuld 12070 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) = ((i · ((-i↑𝑛) − (i↑𝑛))) / 2))
140139oveq1d 7429 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛)) = (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
14152, 140ifeqda 4560 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛))) = (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
142141mpteq2dva 5242 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛))))
1431, 142eqtrid 2780 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐹 = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛))))
144143seqeq3d 14000 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) = seq1( + , (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))))
145 eqid 2728 . . 3 (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛))) = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
146145atantayl 26862 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))) ⇝ (arctan‘𝐴))
147144, 146eqbrtrd 5164 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846   = wceq 1534  wcel 2099  wne 2936  ifcif 4524   class class class wbr 5142  cmpt 5225  cfv 6542  (class class class)co 7414  cc 11130  0cc0 11132  1c1 11133  ici 11134   + caddc 11135   · cmul 11137   < clt 11272  cmin 11468  -cneg 11469   / cdiv 11895  cn 12236  2c2 12291  0cn0 12496  cz 12582  seqcseq 13992  cexp 14052  abscabs 15207  cli 15454  cdvds 16224  arctancatan 26789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210  ax-addf 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-q 12957  df-rp 13001  df-xneg 13118  df-xadd 13119  df-xmul 13120  df-ioo 13354  df-ioc 13355  df-ico 13356  df-icc 13357  df-fz 13511  df-fzo 13654  df-fl 13783  df-mod 13861  df-seq 13993  df-exp 14053  df-fac 14259  df-bc 14288  df-hash 14316  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15441  df-clim 15458  df-rlim 15459  df-sum 15659  df-ef 16037  df-sin 16039  df-cos 16040  df-tan 16041  df-pi 16042  df-dvds 16225  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17397  df-topn 17398  df-0g 17416  df-gsum 17417  df-topgen 17418  df-pt 17419  df-prds 17422  df-xrs 17477  df-qtop 17482  df-imas 17483  df-xps 17485  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-mulg 19017  df-cntz 19261  df-cmn 19730  df-psmet 21264  df-xmet 21265  df-met 21266  df-bl 21267  df-mopn 21268  df-fbas 21269  df-fg 21270  df-cnfld 21273  df-top 22789  df-topon 22806  df-topsp 22828  df-bases 22842  df-cld 22916  df-ntr 22917  df-cls 22918  df-nei 22995  df-lp 23033  df-perf 23034  df-cn 23124  df-cnp 23125  df-haus 23212  df-cmp 23284  df-tx 23459  df-hmeo 23652  df-fil 23743  df-fm 23835  df-flim 23836  df-flf 23837  df-xms 24219  df-ms 24220  df-tms 24221  df-cncf 24791  df-limc 25788  df-dv 25789  df-ulm 26306  df-log 26483  df-atan 26792
This theorem is referenced by:  atantayl3  26864  leibpi  26867
  Copyright terms: Public domain W3C validator