MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atantayl2 Structured version   Visualization version   GIF version

Theorem atantayl2 26999
Description: The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypothesis
Ref Expression
atantayl2.1 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛))))
Assertion
Ref Expression
atantayl2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴))
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem atantayl2
StepHypRef Expression
1 atantayl2.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛))))
2 ax-icn 11243 . . . . . . . . . . . . . . . 16 i ∈ ℂ
32negcli 11604 . . . . . . . . . . . . . . 15 -i ∈ ℂ
43a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → -i ∈ ℂ)
5 nnnn0 12560 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
65ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 𝑛 ∈ ℕ0)
74, 6expcld 14196 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑𝑛) ∈ ℂ)
8 sqneg 14166 . . . . . . . . . . . . . . . . 17 (i ∈ ℂ → (-i↑2) = (i↑2))
92, 8ax-mp 5 . . . . . . . . . . . . . . . 16 (-i↑2) = (i↑2)
109oveq1i 7458 . . . . . . . . . . . . . . 15 ((-i↑2)↑(𝑛 / 2)) = ((i↑2)↑(𝑛 / 2))
11 ine0 11725 . . . . . . . . . . . . . . . . . 18 i ≠ 0
122, 11negne0i 11611 . . . . . . . . . . . . . . . . 17 -i ≠ 0
1312a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → -i ≠ 0)
14 2z 12675 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
1514a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 2 ∈ ℤ)
16 2ne0 12397 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
17 nnz 12660 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
1817adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
19 dvdsval2 16305 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ 𝑛 ∈ ℤ) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℤ))
2014, 16, 18, 19mp3an12i 1465 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℤ))
2120biimpa 476 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (𝑛 / 2) ∈ ℤ)
22 expmulz 14159 . . . . . . . . . . . . . . . 16 (((-i ∈ ℂ ∧ -i ≠ 0) ∧ (2 ∈ ℤ ∧ (𝑛 / 2) ∈ ℤ)) → (-i↑(2 · (𝑛 / 2))) = ((-i↑2)↑(𝑛 / 2)))
234, 13, 15, 21, 22syl22anc 838 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑(2 · (𝑛 / 2))) = ((-i↑2)↑(𝑛 / 2)))
242a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → i ∈ ℂ)
2511a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → i ≠ 0)
26 expmulz 14159 . . . . . . . . . . . . . . . 16 (((i ∈ ℂ ∧ i ≠ 0) ∧ (2 ∈ ℤ ∧ (𝑛 / 2) ∈ ℤ)) → (i↑(2 · (𝑛 / 2))) = ((i↑2)↑(𝑛 / 2)))
2724, 25, 15, 21, 26syl22anc 838 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (i↑(2 · (𝑛 / 2))) = ((i↑2)↑(𝑛 / 2)))
2810, 23, 273eqtr4a 2806 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑(2 · (𝑛 / 2))) = (i↑(2 · (𝑛 / 2))))
29 nncn 12301 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
3029ad2antlr 726 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 𝑛 ∈ ℂ)
31 2cnd 12371 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 2 ∈ ℂ)
3216a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 2 ≠ 0)
3330, 31, 32divcan2d 12072 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (2 · (𝑛 / 2)) = 𝑛)
3433oveq2d 7464 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑(2 · (𝑛 / 2))) = (-i↑𝑛))
3533oveq2d 7464 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (i↑(2 · (𝑛 / 2))) = (i↑𝑛))
3628, 34, 353eqtr3d 2788 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑𝑛) = (i↑𝑛))
377, 36subeq0bd 11716 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → ((-i↑𝑛) − (i↑𝑛)) = 0)
3837oveq2d 7464 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (i · ((-i↑𝑛) − (i↑𝑛))) = (i · 0))
39 it0e0 12515 . . . . . . . . . . 11 (i · 0) = 0
4038, 39eqtrdi 2796 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (i · ((-i↑𝑛) − (i↑𝑛))) = 0)
4140oveq1d 7463 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → ((i · ((-i↑𝑛) − (i↑𝑛))) / 2) = (0 / 2))
42 2cn 12368 . . . . . . . . . 10 2 ∈ ℂ
4342, 16div0i 12028 . . . . . . . . 9 (0 / 2) = 0
4441, 43eqtrdi 2796 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → ((i · ((-i↑𝑛) − (i↑𝑛))) / 2) = 0)
4544oveq1d 7463 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)) = (0 · ((𝐴𝑛) / 𝑛)))
46 simplll 774 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 𝐴 ∈ ℂ)
4746, 6expcld 14196 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (𝐴𝑛) ∈ ℂ)
48 nnne0 12327 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
4948ad2antlr 726 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 𝑛 ≠ 0)
5047, 30, 49divcld 12070 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → ((𝐴𝑛) / 𝑛) ∈ ℂ)
5150mul02d 11488 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (0 · ((𝐴𝑛) / 𝑛)) = 0)
5245, 51eqtr2d 2781 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 0 = (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
53 2cnd 12371 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 2 ∈ ℂ)
54 ax-1cn 11242 . . . . . . . . . . 11 1 ∈ ℂ
5554negcli 11604 . . . . . . . . . 10 -1 ∈ ℂ
5655a1i 11 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → -1 ∈ ℂ)
57 neg1ne0 12409 . . . . . . . . . 10 -1 ≠ 0
5857a1i 11 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → -1 ≠ 0)
5929ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 𝑛 ∈ ℂ)
60 peano2cn 11462 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → (𝑛 + 1) ∈ ℂ)
6159, 60syl 17 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (𝑛 + 1) ∈ ℂ)
6216a1i 11 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 2 ≠ 0)
6361, 53, 53, 62divsubdird 12109 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) − 2) / 2) = (((𝑛 + 1) / 2) − (2 / 2)))
64 2div2e1 12434 . . . . . . . . . . . . 13 (2 / 2) = 1
6564oveq2i 7459 . . . . . . . . . . . 12 (((𝑛 + 1) / 2) − (2 / 2)) = (((𝑛 + 1) / 2) − 1)
6663, 65eqtrdi 2796 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) − 2) / 2) = (((𝑛 + 1) / 2) − 1))
67 df-2 12356 . . . . . . . . . . . . . 14 2 = (1 + 1)
6867oveq2i 7459 . . . . . . . . . . . . 13 ((𝑛 + 1) − 2) = ((𝑛 + 1) − (1 + 1))
6954a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 1 ∈ ℂ)
7059, 69, 69pnpcan2d 11685 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((𝑛 + 1) − (1 + 1)) = (𝑛 − 1))
7168, 70eqtrid 2792 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((𝑛 + 1) − 2) = (𝑛 − 1))
7271oveq1d 7463 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) − 2) / 2) = ((𝑛 − 1) / 2))
7366, 72eqtr3d 2782 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) / 2) − 1) = ((𝑛 − 1) / 2))
7420notbid 318 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛 ↔ ¬ (𝑛 / 2) ∈ ℤ))
75 zeo 12729 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → ((𝑛 / 2) ∈ ℤ ∨ ((𝑛 + 1) / 2) ∈ ℤ))
7618, 75syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → ((𝑛 / 2) ∈ ℤ ∨ ((𝑛 + 1) / 2) ∈ ℤ))
7776ord 863 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (¬ (𝑛 / 2) ∈ ℤ → ((𝑛 + 1) / 2) ∈ ℤ))
7874, 77sylbid 240 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛 → ((𝑛 + 1) / 2) ∈ ℤ))
7978imp 406 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((𝑛 + 1) / 2) ∈ ℤ)
80 peano2zm 12686 . . . . . . . . . . 11 (((𝑛 + 1) / 2) ∈ ℤ → (((𝑛 + 1) / 2) − 1) ∈ ℤ)
8179, 80syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) / 2) − 1) ∈ ℤ)
8273, 81eqeltrrd 2845 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((𝑛 − 1) / 2) ∈ ℤ)
8356, 58, 82expclzd 14201 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) ∈ ℂ)
84832timesd 12536 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (2 · (-1↑((𝑛 − 1) / 2))) = ((-1↑((𝑛 − 1) / 2)) + (-1↑((𝑛 − 1) / 2))))
85 subcl 11535 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − 1) ∈ ℂ)
8659, 54, 85sylancl 585 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (𝑛 − 1) ∈ ℂ)
8786, 53, 62divcan2d 12072 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (2 · ((𝑛 − 1) / 2)) = (𝑛 − 1))
8887oveq2d 7464 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑(2 · ((𝑛 − 1) / 2))) = (-i↑(𝑛 − 1)))
893a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → -i ∈ ℂ)
9012a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → -i ≠ 0)
9117ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 𝑛 ∈ ℤ)
9289, 90, 91expm1d 14206 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑(𝑛 − 1)) = ((-i↑𝑛) / -i))
9388, 92eqtrd 2780 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑(2 · ((𝑛 − 1) / 2))) = ((-i↑𝑛) / -i))
9414a1i 11 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 2 ∈ ℤ)
95 expmulz 14159 . . . . . . . . . . . . 13 (((-i ∈ ℂ ∧ -i ≠ 0) ∧ (2 ∈ ℤ ∧ ((𝑛 − 1) / 2) ∈ ℤ)) → (-i↑(2 · ((𝑛 − 1) / 2))) = ((-i↑2)↑((𝑛 − 1) / 2)))
9689, 90, 94, 82, 95syl22anc 838 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑(2 · ((𝑛 − 1) / 2))) = ((-i↑2)↑((𝑛 − 1) / 2)))
975ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 𝑛 ∈ ℕ0)
98 expcl 14130 . . . . . . . . . . . . . 14 ((-i ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (-i↑𝑛) ∈ ℂ)
993, 97, 98sylancr 586 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑𝑛) ∈ ℂ)
10099, 89, 90divrec2d 12074 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((-i↑𝑛) / -i) = ((1 / -i) · (-i↑𝑛)))
10193, 96, 1003eqtr3d 2788 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((-i↑2)↑((𝑛 − 1) / 2)) = ((1 / -i) · (-i↑𝑛)))
102 i2 14251 . . . . . . . . . . . . 13 (i↑2) = -1
1039, 102eqtri 2768 . . . . . . . . . . . 12 (-i↑2) = -1
104103oveq1i 7458 . . . . . . . . . . 11 ((-i↑2)↑((𝑛 − 1) / 2)) = (-1↑((𝑛 − 1) / 2))
105 irec 14250 . . . . . . . . . . . . . 14 (1 / i) = -i
106105negeqi 11529 . . . . . . . . . . . . 13 -(1 / i) = --i
107 divneg2 12018 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → -(1 / i) = (1 / -i))
10854, 2, 11, 107mp3an 1461 . . . . . . . . . . . . 13 -(1 / i) = (1 / -i)
1092negnegi 11606 . . . . . . . . . . . . 13 --i = i
110106, 108, 1093eqtr3i 2776 . . . . . . . . . . . 12 (1 / -i) = i
111110oveq1i 7458 . . . . . . . . . . 11 ((1 / -i) · (-i↑𝑛)) = (i · (-i↑𝑛))
112101, 104, 1113eqtr3g 2803 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) = (i · (-i↑𝑛)))
11387oveq2d 7464 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑(2 · ((𝑛 − 1) / 2))) = (i↑(𝑛 − 1)))
1142a1i 11 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → i ∈ ℂ)
11511a1i 11 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → i ≠ 0)
116114, 115, 91expm1d 14206 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑(𝑛 − 1)) = ((i↑𝑛) / i))
117113, 116eqtrd 2780 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑(2 · ((𝑛 − 1) / 2))) = ((i↑𝑛) / i))
118 expmulz 14159 . . . . . . . . . . . . . 14 (((i ∈ ℂ ∧ i ≠ 0) ∧ (2 ∈ ℤ ∧ ((𝑛 − 1) / 2) ∈ ℤ)) → (i↑(2 · ((𝑛 − 1) / 2))) = ((i↑2)↑((𝑛 − 1) / 2)))
119114, 115, 94, 82, 118syl22anc 838 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑(2 · ((𝑛 − 1) / 2))) = ((i↑2)↑((𝑛 − 1) / 2)))
120 expcl 14130 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (i↑𝑛) ∈ ℂ)
1212, 97, 120sylancr 586 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑𝑛) ∈ ℂ)
122121, 114, 115divrec2d 12074 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((i↑𝑛) / i) = ((1 / i) · (i↑𝑛)))
123117, 119, 1223eqtr3d 2788 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((i↑2)↑((𝑛 − 1) / 2)) = ((1 / i) · (i↑𝑛)))
124102oveq1i 7458 . . . . . . . . . . . 12 ((i↑2)↑((𝑛 − 1) / 2)) = (-1↑((𝑛 − 1) / 2))
125105oveq1i 7458 . . . . . . . . . . . 12 ((1 / i) · (i↑𝑛)) = (-i · (i↑𝑛))
126123, 124, 1253eqtr3g 2803 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) = (-i · (i↑𝑛)))
127 mulneg1 11726 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (i↑𝑛) ∈ ℂ) → (-i · (i↑𝑛)) = -(i · (i↑𝑛)))
1282, 121, 127sylancr 586 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i · (i↑𝑛)) = -(i · (i↑𝑛)))
129126, 128eqtrd 2780 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) = -(i · (i↑𝑛)))
130112, 129oveq12d 7466 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((-1↑((𝑛 − 1) / 2)) + (-1↑((𝑛 − 1) / 2))) = ((i · (-i↑𝑛)) + -(i · (i↑𝑛))))
131 mulcl 11268 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (-i↑𝑛) ∈ ℂ) → (i · (-i↑𝑛)) ∈ ℂ)
1322, 99, 131sylancr 586 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i · (-i↑𝑛)) ∈ ℂ)
133 mulcl 11268 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (i↑𝑛) ∈ ℂ) → (i · (i↑𝑛)) ∈ ℂ)
1342, 121, 133sylancr 586 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i · (i↑𝑛)) ∈ ℂ)
135132, 134negsubd 11653 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((i · (-i↑𝑛)) + -(i · (i↑𝑛))) = ((i · (-i↑𝑛)) − (i · (i↑𝑛))))
136114, 99, 121subdid 11746 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i · ((-i↑𝑛) − (i↑𝑛))) = ((i · (-i↑𝑛)) − (i · (i↑𝑛))))
137135, 136eqtr4d 2783 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((i · (-i↑𝑛)) + -(i · (i↑𝑛))) = (i · ((-i↑𝑛) − (i↑𝑛))))
13884, 130, 1373eqtrd 2784 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (2 · (-1↑((𝑛 − 1) / 2))) = (i · ((-i↑𝑛) − (i↑𝑛))))
13953, 83, 62, 138mvllmuld 12126 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) = ((i · ((-i↑𝑛) − (i↑𝑛))) / 2))
140139oveq1d 7463 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛)) = (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
14152, 140ifeqda 4584 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛))) = (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
142141mpteq2dva 5266 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛))))
1431, 142eqtrid 2792 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐹 = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛))))
144143seqeq3d 14060 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) = seq1( + , (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))))
145 eqid 2740 . . 3 (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛))) = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
146145atantayl 26998 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))) ⇝ (arctan‘𝐴))
147144, 146eqbrtrd 5188 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  ifcif 4548   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185  ici 11186   + caddc 11187   · cmul 11189   < clt 11324  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cz 12639  seqcseq 14052  cexp 14112  abscabs 15283  cli 15530  cdvds 16302  arctancatan 26925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-tan 16119  df-pi 16120  df-dvds 16303  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-ulm 26438  df-log 26616  df-atan 26928
This theorem is referenced by:  atantayl3  27000  leibpi  27003
  Copyright terms: Public domain W3C validator