MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atantayl2 Structured version   Visualization version   GIF version

Theorem atantayl2 25524
Description: The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypothesis
Ref Expression
atantayl2.1 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛))))
Assertion
Ref Expression
atantayl2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴))
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem atantayl2
StepHypRef Expression
1 atantayl2.1 . . . 4 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛))))
2 ax-icn 10585 . . . . . . . . . . . . . . . 16 i ∈ ℂ
32negcli 10943 . . . . . . . . . . . . . . 15 -i ∈ ℂ
43a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → -i ∈ ℂ)
5 nnnn0 11892 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
65ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 𝑛 ∈ ℕ0)
74, 6expcld 13506 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑𝑛) ∈ ℂ)
8 sqneg 13478 . . . . . . . . . . . . . . . . 17 (i ∈ ℂ → (-i↑2) = (i↑2))
92, 8ax-mp 5 . . . . . . . . . . . . . . . 16 (-i↑2) = (i↑2)
109oveq1i 7145 . . . . . . . . . . . . . . 15 ((-i↑2)↑(𝑛 / 2)) = ((i↑2)↑(𝑛 / 2))
11 ine0 11064 . . . . . . . . . . . . . . . . . 18 i ≠ 0
122, 11negne0i 10950 . . . . . . . . . . . . . . . . 17 -i ≠ 0
1312a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → -i ≠ 0)
14 2z 12002 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
1514a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 2 ∈ ℤ)
16 2ne0 11729 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
17 nnz 11992 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
1817adantl 485 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
19 dvdsval2 15602 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ 𝑛 ∈ ℤ) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℤ))
2014, 16, 18, 19mp3an12i 1462 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (2 ∥ 𝑛 ↔ (𝑛 / 2) ∈ ℤ))
2120biimpa 480 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (𝑛 / 2) ∈ ℤ)
22 expmulz 13471 . . . . . . . . . . . . . . . 16 (((-i ∈ ℂ ∧ -i ≠ 0) ∧ (2 ∈ ℤ ∧ (𝑛 / 2) ∈ ℤ)) → (-i↑(2 · (𝑛 / 2))) = ((-i↑2)↑(𝑛 / 2)))
234, 13, 15, 21, 22syl22anc 837 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑(2 · (𝑛 / 2))) = ((-i↑2)↑(𝑛 / 2)))
242a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → i ∈ ℂ)
2511a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → i ≠ 0)
26 expmulz 13471 . . . . . . . . . . . . . . . 16 (((i ∈ ℂ ∧ i ≠ 0) ∧ (2 ∈ ℤ ∧ (𝑛 / 2) ∈ ℤ)) → (i↑(2 · (𝑛 / 2))) = ((i↑2)↑(𝑛 / 2)))
2724, 25, 15, 21, 26syl22anc 837 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (i↑(2 · (𝑛 / 2))) = ((i↑2)↑(𝑛 / 2)))
2810, 23, 273eqtr4a 2859 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑(2 · (𝑛 / 2))) = (i↑(2 · (𝑛 / 2))))
29 nncn 11633 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
3029ad2antlr 726 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 𝑛 ∈ ℂ)
31 2cnd 11703 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 2 ∈ ℂ)
3216a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 2 ≠ 0)
3330, 31, 32divcan2d 11407 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (2 · (𝑛 / 2)) = 𝑛)
3433oveq2d 7151 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑(2 · (𝑛 / 2))) = (-i↑𝑛))
3533oveq2d 7151 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (i↑(2 · (𝑛 / 2))) = (i↑𝑛))
3628, 34, 353eqtr3d 2841 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (-i↑𝑛) = (i↑𝑛))
377, 36subeq0bd 11055 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → ((-i↑𝑛) − (i↑𝑛)) = 0)
3837oveq2d 7151 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (i · ((-i↑𝑛) − (i↑𝑛))) = (i · 0))
39 it0e0 11847 . . . . . . . . . . 11 (i · 0) = 0
4038, 39eqtrdi 2849 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (i · ((-i↑𝑛) − (i↑𝑛))) = 0)
4140oveq1d 7150 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → ((i · ((-i↑𝑛) − (i↑𝑛))) / 2) = (0 / 2))
42 2cn 11700 . . . . . . . . . 10 2 ∈ ℂ
4342, 16div0i 11363 . . . . . . . . 9 (0 / 2) = 0
4441, 43eqtrdi 2849 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → ((i · ((-i↑𝑛) − (i↑𝑛))) / 2) = 0)
4544oveq1d 7150 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)) = (0 · ((𝐴𝑛) / 𝑛)))
46 simplll 774 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 𝐴 ∈ ℂ)
4746, 6expcld 13506 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (𝐴𝑛) ∈ ℂ)
48 nnne0 11659 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
4948ad2antlr 726 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 𝑛 ≠ 0)
5047, 30, 49divcld 11405 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → ((𝐴𝑛) / 𝑛) ∈ ℂ)
5150mul02d 10827 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → (0 · ((𝐴𝑛) / 𝑛)) = 0)
5245, 51eqtr2d 2834 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ 2 ∥ 𝑛) → 0 = (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
53 2cnd 11703 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 2 ∈ ℂ)
54 ax-1cn 10584 . . . . . . . . . . 11 1 ∈ ℂ
5554negcli 10943 . . . . . . . . . 10 -1 ∈ ℂ
5655a1i 11 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → -1 ∈ ℂ)
57 neg1ne0 11741 . . . . . . . . . 10 -1 ≠ 0
5857a1i 11 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → -1 ≠ 0)
5929ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 𝑛 ∈ ℂ)
60 peano2cn 10801 . . . . . . . . . . . . . 14 (𝑛 ∈ ℂ → (𝑛 + 1) ∈ ℂ)
6159, 60syl 17 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (𝑛 + 1) ∈ ℂ)
6216a1i 11 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 2 ≠ 0)
6361, 53, 53, 62divsubdird 11444 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) − 2) / 2) = (((𝑛 + 1) / 2) − (2 / 2)))
64 2div2e1 11766 . . . . . . . . . . . . 13 (2 / 2) = 1
6564oveq2i 7146 . . . . . . . . . . . 12 (((𝑛 + 1) / 2) − (2 / 2)) = (((𝑛 + 1) / 2) − 1)
6663, 65eqtrdi 2849 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) − 2) / 2) = (((𝑛 + 1) / 2) − 1))
67 df-2 11688 . . . . . . . . . . . . . 14 2 = (1 + 1)
6867oveq2i 7146 . . . . . . . . . . . . 13 ((𝑛 + 1) − 2) = ((𝑛 + 1) − (1 + 1))
6954a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 1 ∈ ℂ)
7059, 69, 69pnpcan2d 11024 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((𝑛 + 1) − (1 + 1)) = (𝑛 − 1))
7168, 70syl5eq 2845 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((𝑛 + 1) − 2) = (𝑛 − 1))
7271oveq1d 7150 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) − 2) / 2) = ((𝑛 − 1) / 2))
7366, 72eqtr3d 2835 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) / 2) − 1) = ((𝑛 − 1) / 2))
7420notbid 321 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛 ↔ ¬ (𝑛 / 2) ∈ ℤ))
75 zeo 12056 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → ((𝑛 / 2) ∈ ℤ ∨ ((𝑛 + 1) / 2) ∈ ℤ))
7618, 75syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → ((𝑛 / 2) ∈ ℤ ∨ ((𝑛 + 1) / 2) ∈ ℤ))
7776ord 861 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (¬ (𝑛 / 2) ∈ ℤ → ((𝑛 + 1) / 2) ∈ ℤ))
7874, 77sylbid 243 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → (¬ 2 ∥ 𝑛 → ((𝑛 + 1) / 2) ∈ ℤ))
7978imp 410 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((𝑛 + 1) / 2) ∈ ℤ)
80 peano2zm 12013 . . . . . . . . . . 11 (((𝑛 + 1) / 2) ∈ ℤ → (((𝑛 + 1) / 2) − 1) ∈ ℤ)
8179, 80syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (((𝑛 + 1) / 2) − 1) ∈ ℤ)
8273, 81eqeltrrd 2891 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((𝑛 − 1) / 2) ∈ ℤ)
8356, 58, 82expclzd 13511 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) ∈ ℂ)
84832timesd 11868 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (2 · (-1↑((𝑛 − 1) / 2))) = ((-1↑((𝑛 − 1) / 2)) + (-1↑((𝑛 − 1) / 2))))
85 subcl 10874 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − 1) ∈ ℂ)
8659, 54, 85sylancl 589 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (𝑛 − 1) ∈ ℂ)
8786, 53, 62divcan2d 11407 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (2 · ((𝑛 − 1) / 2)) = (𝑛 − 1))
8887oveq2d 7151 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑(2 · ((𝑛 − 1) / 2))) = (-i↑(𝑛 − 1)))
893a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → -i ∈ ℂ)
9012a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → -i ≠ 0)
9117ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 𝑛 ∈ ℤ)
9289, 90, 91expm1d 13516 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑(𝑛 − 1)) = ((-i↑𝑛) / -i))
9388, 92eqtrd 2833 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑(2 · ((𝑛 − 1) / 2))) = ((-i↑𝑛) / -i))
9414a1i 11 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 2 ∈ ℤ)
95 expmulz 13471 . . . . . . . . . . . . 13 (((-i ∈ ℂ ∧ -i ≠ 0) ∧ (2 ∈ ℤ ∧ ((𝑛 − 1) / 2) ∈ ℤ)) → (-i↑(2 · ((𝑛 − 1) / 2))) = ((-i↑2)↑((𝑛 − 1) / 2)))
9689, 90, 94, 82, 95syl22anc 837 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑(2 · ((𝑛 − 1) / 2))) = ((-i↑2)↑((𝑛 − 1) / 2)))
975ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → 𝑛 ∈ ℕ0)
98 expcl 13443 . . . . . . . . . . . . . 14 ((-i ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (-i↑𝑛) ∈ ℂ)
993, 97, 98sylancr 590 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i↑𝑛) ∈ ℂ)
10099, 89, 90divrec2d 11409 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((-i↑𝑛) / -i) = ((1 / -i) · (-i↑𝑛)))
10193, 96, 1003eqtr3d 2841 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((-i↑2)↑((𝑛 − 1) / 2)) = ((1 / -i) · (-i↑𝑛)))
102 i2 13561 . . . . . . . . . . . . 13 (i↑2) = -1
1039, 102eqtri 2821 . . . . . . . . . . . 12 (-i↑2) = -1
104103oveq1i 7145 . . . . . . . . . . 11 ((-i↑2)↑((𝑛 − 1) / 2)) = (-1↑((𝑛 − 1) / 2))
105 irec 13560 . . . . . . . . . . . . . 14 (1 / i) = -i
106105negeqi 10868 . . . . . . . . . . . . 13 -(1 / i) = --i
107 divneg2 11353 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → -(1 / i) = (1 / -i))
10854, 2, 11, 107mp3an 1458 . . . . . . . . . . . . 13 -(1 / i) = (1 / -i)
1092negnegi 10945 . . . . . . . . . . . . 13 --i = i
110106, 108, 1093eqtr3i 2829 . . . . . . . . . . . 12 (1 / -i) = i
111110oveq1i 7145 . . . . . . . . . . 11 ((1 / -i) · (-i↑𝑛)) = (i · (-i↑𝑛))
112101, 104, 1113eqtr3g 2856 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) = (i · (-i↑𝑛)))
11387oveq2d 7151 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑(2 · ((𝑛 − 1) / 2))) = (i↑(𝑛 − 1)))
1142a1i 11 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → i ∈ ℂ)
11511a1i 11 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → i ≠ 0)
116114, 115, 91expm1d 13516 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑(𝑛 − 1)) = ((i↑𝑛) / i))
117113, 116eqtrd 2833 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑(2 · ((𝑛 − 1) / 2))) = ((i↑𝑛) / i))
118 expmulz 13471 . . . . . . . . . . . . . 14 (((i ∈ ℂ ∧ i ≠ 0) ∧ (2 ∈ ℤ ∧ ((𝑛 − 1) / 2) ∈ ℤ)) → (i↑(2 · ((𝑛 − 1) / 2))) = ((i↑2)↑((𝑛 − 1) / 2)))
119114, 115, 94, 82, 118syl22anc 837 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑(2 · ((𝑛 − 1) / 2))) = ((i↑2)↑((𝑛 − 1) / 2)))
120 expcl 13443 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (i↑𝑛) ∈ ℂ)
1212, 97, 120sylancr 590 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i↑𝑛) ∈ ℂ)
122121, 114, 115divrec2d 11409 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((i↑𝑛) / i) = ((1 / i) · (i↑𝑛)))
123117, 119, 1223eqtr3d 2841 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((i↑2)↑((𝑛 − 1) / 2)) = ((1 / i) · (i↑𝑛)))
124102oveq1i 7145 . . . . . . . . . . . 12 ((i↑2)↑((𝑛 − 1) / 2)) = (-1↑((𝑛 − 1) / 2))
125105oveq1i 7145 . . . . . . . . . . . 12 ((1 / i) · (i↑𝑛)) = (-i · (i↑𝑛))
126123, 124, 1253eqtr3g 2856 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) = (-i · (i↑𝑛)))
127 mulneg1 11065 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (i↑𝑛) ∈ ℂ) → (-i · (i↑𝑛)) = -(i · (i↑𝑛)))
1282, 121, 127sylancr 590 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-i · (i↑𝑛)) = -(i · (i↑𝑛)))
129126, 128eqtrd 2833 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) = -(i · (i↑𝑛)))
130112, 129oveq12d 7153 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((-1↑((𝑛 − 1) / 2)) + (-1↑((𝑛 − 1) / 2))) = ((i · (-i↑𝑛)) + -(i · (i↑𝑛))))
131 mulcl 10610 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (-i↑𝑛) ∈ ℂ) → (i · (-i↑𝑛)) ∈ ℂ)
1322, 99, 131sylancr 590 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i · (-i↑𝑛)) ∈ ℂ)
133 mulcl 10610 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (i↑𝑛) ∈ ℂ) → (i · (i↑𝑛)) ∈ ℂ)
1342, 121, 133sylancr 590 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i · (i↑𝑛)) ∈ ℂ)
135132, 134negsubd 10992 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((i · (-i↑𝑛)) + -(i · (i↑𝑛))) = ((i · (-i↑𝑛)) − (i · (i↑𝑛))))
136114, 99, 121subdid 11085 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (i · ((-i↑𝑛) − (i↑𝑛))) = ((i · (-i↑𝑛)) − (i · (i↑𝑛))))
137135, 136eqtr4d 2836 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((i · (-i↑𝑛)) + -(i · (i↑𝑛))) = (i · ((-i↑𝑛) − (i↑𝑛))))
13884, 130, 1373eqtrd 2837 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (2 · (-1↑((𝑛 − 1) / 2))) = (i · ((-i↑𝑛) − (i↑𝑛))))
13953, 83, 62, 138mvllmuld 11461 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → (-1↑((𝑛 − 1) / 2)) = ((i · ((-i↑𝑛) − (i↑𝑛))) / 2))
140139oveq1d 7150 . . . . . 6 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) ∧ ¬ 2 ∥ 𝑛) → ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛)) = (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
14152, 140ifeqda 4460 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ) → if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛))) = (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
142141mpteq2dva 5125 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴𝑛) / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛))))
1431, 142syl5eq 2845 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐹 = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛))))
144143seqeq3d 13372 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) = seq1( + , (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))))
145 eqid 2798 . . 3 (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛))) = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))
146145atantayl 25523 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴𝑛) / 𝑛)))) ⇝ (arctan‘𝐴))
147144, 146eqbrtrd 5052 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987  ifcif 4425   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527  ici 10528   + caddc 10529   · cmul 10531   < clt 10664  cmin 10859  -cneg 10860   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  seqcseq 13364  cexp 13425  abscabs 14585  cli 14833  cdvds 15599  arctancatan 25450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-tan 15417  df-pi 15418  df-dvds 15600  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-ulm 24972  df-log 25148  df-atan 25453
This theorem is referenced by:  atantayl3  25525  leibpi  25528
  Copyright terms: Public domain W3C validator