MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseralt Structured version   Visualization version   GIF version

Theorem iseralt 15721
Description: The alternating series test. If 𝐺(𝑘) is a decreasing sequence that converges to 0, then Σ𝑘𝑍(-1↑𝑘) · 𝐺(𝑘) is a convergent series. (Note that the first term is positive if 𝑀 is even, and negative if 𝑀 is odd. If the parity of your series does not match up with this, you will need to post-compose the series with multiplication by -1 using isermulc2 15694.) (Contributed by Mario Carneiro, 7-Apr-2015.) (Proof shortened by AV, 9-Jul-2022.)
Hypotheses
Ref Expression
iseralt.1 𝑍 = (ℤ𝑀)
iseralt.2 (𝜑𝑀 ∈ ℤ)
iseralt.3 (𝜑𝐺:𝑍⟶ℝ)
iseralt.4 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
iseralt.5 (𝜑𝐺 ⇝ 0)
iseralt.6 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
Assertion
Ref Expression
iseralt (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍

Proof of Theorem iseralt
Dummy variables 𝑗 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseralt.1 . 2 𝑍 = (ℤ𝑀)
2 seqex 14044 . . 3 seq𝑀( + , 𝐹) ∈ V
32a1i 11 . 2 (𝜑 → seq𝑀( + , 𝐹) ∈ V)
4 iseralt.5 . . . 4 (𝜑𝐺 ⇝ 0)
5 iseralt.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
6 climrel 15528 . . . . . . 7 Rel ⇝
76brrelex1i 5741 . . . . . 6 (𝐺 ⇝ 0 → 𝐺 ∈ V)
84, 7syl 17 . . . . 5 (𝜑𝐺 ∈ V)
9 eqidd 2738 . . . . 5 ((𝜑𝑛𝑍) → (𝐺𝑛) = (𝐺𝑛))
10 iseralt.3 . . . . . . 7 (𝜑𝐺:𝑍⟶ℝ)
1110ffvelcdmda 7104 . . . . . 6 ((𝜑𝑛𝑍) → (𝐺𝑛) ∈ ℝ)
1211recnd 11289 . . . . 5 ((𝜑𝑛𝑍) → (𝐺𝑛) ∈ ℂ)
131, 5, 8, 9, 12clim0c 15543 . . . 4 (𝜑 → (𝐺 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(𝐺𝑛)) < 𝑥))
144, 13mpbid 232 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(𝐺𝑛)) < 𝑥)
15 simpr 484 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑗𝑍)
1615, 1eleqtrdi 2851 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
17 eluzelz 12888 . . . . . . . 8 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
18 uzid 12893 . . . . . . . 8 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
1916, 17, 183syl 18 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑗 ∈ (ℤ𝑗))
20 peano2uz 12943 . . . . . . 7 (𝑗 ∈ (ℤ𝑗) → (𝑗 + 1) ∈ (ℤ𝑗))
21 2fveq3 6911 . . . . . . . . 9 (𝑛 = (𝑗 + 1) → (abs‘(𝐺𝑛)) = (abs‘(𝐺‘(𝑗 + 1))))
2221breq1d 5153 . . . . . . . 8 (𝑛 = (𝑗 + 1) → ((abs‘(𝐺𝑛)) < 𝑥 ↔ (abs‘(𝐺‘(𝑗 + 1))) < 𝑥))
2322rspcv 3618 . . . . . . 7 ((𝑗 + 1) ∈ (ℤ𝑗) → (∀𝑛 ∈ (ℤ𝑗)(abs‘(𝐺𝑛)) < 𝑥 → (abs‘(𝐺‘(𝑗 + 1))) < 𝑥))
2419, 20, 233syl 18 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑛 ∈ (ℤ𝑗)(abs‘(𝐺𝑛)) < 𝑥 → (abs‘(𝐺‘(𝑗 + 1))) < 𝑥))
25 eluzelz 12888 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (ℤ𝑗) → 𝑛 ∈ ℤ)
2625ad2antll 729 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑛 ∈ ℤ)
2726zcnd 12723 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑛 ∈ ℂ)
2817, 1eleq2s 2859 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗𝑍𝑗 ∈ ℤ)
2928ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ ℤ)
3029zcnd 12723 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ ℂ)
3127, 30subcld 11620 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑛𝑗) ∈ ℂ)
32 2cnd 12344 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 2 ∈ ℂ)
33 2ne0 12370 . . . . . . . . . . . . . . . . . . . . 21 2 ≠ 0
3433a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 2 ≠ 0)
3531, 32, 34divcan2d 12045 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (2 · ((𝑛𝑗) / 2)) = (𝑛𝑗))
3635oveq2d 7447 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑗 + (2 · ((𝑛𝑗) / 2))) = (𝑗 + (𝑛𝑗)))
3730, 27pncan3d 11623 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑗 + (𝑛𝑗)) = 𝑛)
3836, 37eqtr2d 2778 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑛 = (𝑗 + (2 · ((𝑛𝑗) / 2))))
3938adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → 𝑛 = (𝑗 + (2 · ((𝑛𝑗) / 2))))
4039fveq2d 6910 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘(𝑗 + (2 · ((𝑛𝑗) / 2)))))
4140fvoveq1d 7453 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑗 + (2 · ((𝑛𝑗) / 2)))) − (seq𝑀( + , 𝐹)‘𝑗))))
42 simpll 767 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → 𝜑)
43 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑗𝑍)
4443ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → 𝑗𝑍)
45 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → ((𝑛𝑗) / 2) ∈ ℤ)
4626, 29zsubcld 12727 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑛𝑗) ∈ ℤ)
4746zred 12722 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑛𝑗) ∈ ℝ)
48 2rp 13039 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ+
4948a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 2 ∈ ℝ+)
50 eluzle 12891 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (ℤ𝑗) → 𝑗𝑛)
5150ad2antll 729 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑗𝑛)
5226zred 12722 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑛 ∈ ℝ)
5329zred 12722 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ ℝ)
5452, 53subge0d 11853 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (0 ≤ (𝑛𝑗) ↔ 𝑗𝑛))
5551, 54mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 0 ≤ (𝑛𝑗))
5647, 49, 55divge0d 13117 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 0 ≤ ((𝑛𝑗) / 2))
5756adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → 0 ≤ ((𝑛𝑗) / 2))
58 elnn0z 12626 . . . . . . . . . . . . . . . 16 (((𝑛𝑗) / 2) ∈ ℕ0 ↔ (((𝑛𝑗) / 2) ∈ ℤ ∧ 0 ≤ ((𝑛𝑗) / 2)))
5945, 57, 58sylanbrc 583 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → ((𝑛𝑗) / 2) ∈ ℕ0)
60 iseralt.4 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
61 iseralt.6 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
621, 5, 10, 60, 4, 61iseraltlem3 15720 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍 ∧ ((𝑛𝑗) / 2) ∈ ℕ0) → ((abs‘((seq𝑀( + , 𝐹)‘(𝑗 + (2 · ((𝑛𝑗) / 2)))) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)) ∧ (abs‘((seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((𝑛𝑗) / 2))) + 1)) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1))))
6362simpld 494 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍 ∧ ((𝑛𝑗) / 2) ∈ ℕ0) → (abs‘((seq𝑀( + , 𝐹)‘(𝑗 + (2 · ((𝑛𝑗) / 2)))) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))
6442, 44, 59, 63syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → (abs‘((seq𝑀( + , 𝐹)‘(𝑗 + (2 · ((𝑛𝑗) / 2)))) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))
6541, 64eqbrtrd 5165 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))
66 2div2e1 12407 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 / 2) = 1
6766oveq2i 7442 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑛𝑗) + 1) / 2) − (2 / 2)) = ((((𝑛𝑗) + 1) / 2) − 1)
68 peano2cn 11433 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛𝑗) ∈ ℂ → ((𝑛𝑗) + 1) ∈ ℂ)
6931, 68syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑛𝑗) + 1) ∈ ℂ)
7069, 32, 32, 34divsubdird 12082 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((((𝑛𝑗) + 1) − 2) / 2) = ((((𝑛𝑗) + 1) / 2) − (2 / 2)))
71 df-2 12329 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 = (1 + 1)
7271oveq2i 7442 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑛𝑗) + 1) − 2) = (((𝑛𝑗) + 1) − (1 + 1))
73 ax-1cn 11213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1 ∈ ℂ
7473a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 1 ∈ ℂ)
7531, 74, 74pnpcan2d 11658 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (((𝑛𝑗) + 1) − (1 + 1)) = ((𝑛𝑗) − 1))
7672, 75eqtrid 2789 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (((𝑛𝑗) + 1) − 2) = ((𝑛𝑗) − 1))
7776oveq1d 7446 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((((𝑛𝑗) + 1) − 2) / 2) = (((𝑛𝑗) − 1) / 2))
7870, 77eqtr3d 2779 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((((𝑛𝑗) + 1) / 2) − (2 / 2)) = (((𝑛𝑗) − 1) / 2))
7967, 78eqtr3id 2791 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((((𝑛𝑗) + 1) / 2) − 1) = (((𝑛𝑗) − 1) / 2))
8079oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (2 · ((((𝑛𝑗) + 1) / 2) − 1)) = (2 · (((𝑛𝑗) − 1) / 2)))
81 subcl 11507 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛𝑗) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛𝑗) − 1) ∈ ℂ)
8231, 73, 81sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑛𝑗) − 1) ∈ ℂ)
8382, 32, 34divcan2d 12045 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (2 · (((𝑛𝑗) − 1) / 2)) = ((𝑛𝑗) − 1))
8427, 30, 74sub32d 11652 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑛𝑗) − 1) = ((𝑛 − 1) − 𝑗))
8580, 83, 843eqtrd 2781 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (2 · ((((𝑛𝑗) + 1) / 2) − 1)) = ((𝑛 − 1) − 𝑗))
8685oveq2d 7447 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) = (𝑗 + ((𝑛 − 1) − 𝑗)))
87 subcl 11507 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − 1) ∈ ℂ)
8827, 73, 87sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑛 − 1) ∈ ℂ)
8930, 88pncan3d 11623 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑗 + ((𝑛 − 1) − 𝑗)) = (𝑛 − 1))
9086, 89eqtrd 2777 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) = (𝑛 − 1))
9190oveq1d 7446 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) + 1) = ((𝑛 − 1) + 1))
92 npcan 11517 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
9327, 73, 92sylancl 586 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑛 − 1) + 1) = 𝑛)
9491, 93eqtr2d 2778 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑛 = ((𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) + 1))
9594adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → 𝑛 = ((𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) + 1))
9695fveq2d 6910 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) + 1)))
9796fvoveq1d 7453 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) = (abs‘((seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) + 1)) − (seq𝑀( + , 𝐹)‘𝑗))))
98 simpll 767 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → 𝜑)
9943ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → 𝑗𝑍)
100 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → (((𝑛𝑗) + 1) / 2) ∈ ℤ)
101 uznn0sub 12917 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (ℤ𝑗) → (𝑛𝑗) ∈ ℕ0)
102101ad2antll 729 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑛𝑗) ∈ ℕ0)
103 nn0p1nn 12565 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛𝑗) ∈ ℕ0 → ((𝑛𝑗) + 1) ∈ ℕ)
104102, 103syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑛𝑗) + 1) ∈ ℕ)
105104nnrpd 13075 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑛𝑗) + 1) ∈ ℝ+)
106105rphalfcld 13089 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (((𝑛𝑗) + 1) / 2) ∈ ℝ+)
107106rpgt0d 13080 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 0 < (((𝑛𝑗) + 1) / 2))
108107adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → 0 < (((𝑛𝑗) + 1) / 2))
109 elnnz 12623 . . . . . . . . . . . . . . . . 17 ((((𝑛𝑗) + 1) / 2) ∈ ℕ ↔ ((((𝑛𝑗) + 1) / 2) ∈ ℤ ∧ 0 < (((𝑛𝑗) + 1) / 2)))
110100, 108, 109sylanbrc 583 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → (((𝑛𝑗) + 1) / 2) ∈ ℕ)
111 nnm1nn0 12567 . . . . . . . . . . . . . . . 16 ((((𝑛𝑗) + 1) / 2) ∈ ℕ → ((((𝑛𝑗) + 1) / 2) − 1) ∈ ℕ0)
112110, 111syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → ((((𝑛𝑗) + 1) / 2) − 1) ∈ ℕ0)
1131, 5, 10, 60, 4, 61iseraltlem3 15720 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍 ∧ ((((𝑛𝑗) + 1) / 2) − 1) ∈ ℕ0) → ((abs‘((seq𝑀( + , 𝐹)‘(𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1)))) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)) ∧ (abs‘((seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) + 1)) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1))))
114113simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍 ∧ ((((𝑛𝑗) + 1) / 2) − 1) ∈ ℕ0) → (abs‘((seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) + 1)) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))
11598, 99, 112, 114syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → (abs‘((seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) + 1)) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))
11697, 115eqbrtrd 5165 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))
117 zeo 12704 . . . . . . . . . . . . . 14 ((𝑛𝑗) ∈ ℤ → (((𝑛𝑗) / 2) ∈ ℤ ∨ (((𝑛𝑗) + 1) / 2) ∈ ℤ))
11846, 117syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (((𝑛𝑗) / 2) ∈ ℤ ∨ (((𝑛𝑗) + 1) / 2) ∈ ℤ))
11965, 116, 118mpjaodan 961 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))
1201peano2uzs 12944 . . . . . . . . . . . . . . 15 (𝑗𝑍 → (𝑗 + 1) ∈ 𝑍)
121120adantr 480 . . . . . . . . . . . . . 14 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑗 + 1) ∈ 𝑍)
122 ffvelcdm 7101 . . . . . . . . . . . . . 14 ((𝐺:𝑍⟶ℝ ∧ (𝑗 + 1) ∈ 𝑍) → (𝐺‘(𝑗 + 1)) ∈ ℝ)
12310, 121, 122syl2an 596 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝐺‘(𝑗 + 1)) ∈ ℝ)
1241, 5, 10, 60, 4iseraltlem1 15718 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 + 1) ∈ 𝑍) → 0 ≤ (𝐺‘(𝑗 + 1)))
125121, 124sylan2 593 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 0 ≤ (𝐺‘(𝑗 + 1)))
126123, 125absidd 15461 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘(𝐺‘(𝑗 + 1))) = (𝐺‘(𝑗 + 1)))
127119, 126breqtrrd 5171 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (abs‘(𝐺‘(𝑗 + 1))))
128127adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (abs‘(𝐺‘(𝑗 + 1))))
129 neg1rr 12381 . . . . . . . . . . . . . . . . . . . . 21 -1 ∈ ℝ
130129a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → -1 ∈ ℝ)
131 neg1ne0 12382 . . . . . . . . . . . . . . . . . . . . 21 -1 ≠ 0
132131a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → -1 ≠ 0)
133 eluzelz 12888 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
134133, 1eleq2s 2859 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝑍𝑘 ∈ ℤ)
135134adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → 𝑘 ∈ ℤ)
136130, 132, 135reexpclzd 14288 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → (-1↑𝑘) ∈ ℝ)
13710ffvelcdmda 7104 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
138136, 137remulcld 11291 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → ((-1↑𝑘) · (𝐺𝑘)) ∈ ℝ)
13961, 138eqeltrd 2841 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
1401, 5, 139serfre 14072 . . . . . . . . . . . . . . . 16 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
1411uztrn2 12897 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
142 ffvelcdm 7101 . . . . . . . . . . . . . . . 16 ((seq𝑀( + , 𝐹):𝑍⟶ℝ ∧ 𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ)
143140, 141, 142syl2an 596 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ)
144 ffvelcdm 7101 . . . . . . . . . . . . . . . 16 ((seq𝑀( + , 𝐹):𝑍⟶ℝ ∧ 𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ)
145140, 43, 144syl2an 596 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ)
146143, 145resubcld 11691 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗)) ∈ ℝ)
147146recnd 11289 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗)) ∈ ℂ)
148147abscld 15475 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ∈ ℝ)
149148adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ∈ ℝ)
150126, 123eqeltrd 2841 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘(𝐺‘(𝑗 + 1))) ∈ ℝ)
151150adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘(𝐺‘(𝑗 + 1))) ∈ ℝ)
152 rpre 13043 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
153152ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑥 ∈ ℝ)
154 lelttr 11351 . . . . . . . . . . 11 (((abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ∈ ℝ ∧ (abs‘(𝐺‘(𝑗 + 1))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (abs‘(𝐺‘(𝑗 + 1))) ∧ (abs‘(𝐺‘(𝑗 + 1))) < 𝑥) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))
155149, 151, 153, 154syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (((abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (abs‘(𝐺‘(𝑗 + 1))) ∧ (abs‘(𝐺‘(𝑗 + 1))) < 𝑥) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))
156128, 155mpand 695 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((abs‘(𝐺‘(𝑗 + 1))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))
157140adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → seq𝑀( + , 𝐹):𝑍⟶ℝ)
158157, 141, 142syl2an 596 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ)
159156, 158jctild 525 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((abs‘(𝐺‘(𝑗 + 1))) < 𝑥 → ((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)))
160159anassrs 467 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑛 ∈ (ℤ𝑗)) → ((abs‘(𝐺‘(𝑗 + 1))) < 𝑥 → ((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)))
161160ralrimdva 3154 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → ((abs‘(𝐺‘(𝑗 + 1))) < 𝑥 → ∀𝑛 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)))
16224, 161syld 47 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑛 ∈ (ℤ𝑗)(abs‘(𝐺𝑛)) < 𝑥 → ∀𝑛 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)))
163162reximdva 3168 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(𝐺𝑛)) < 𝑥 → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)))
164163ralimdva 3167 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(𝐺𝑛)) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)))
16514, 164mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))
1661, 3, 165caurcvg2 15714 1 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  Vcvv 3480   class class class wbr 5143  dom cdm 5685  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  cz 12613  cuz 12878  +crp 13034  seqcseq 14042  cexp 14102  abscabs 15273  cli 15520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-fz 13548  df-fl 13832  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525
This theorem is referenced by:  leibpi  26985
  Copyright terms: Public domain W3C validator