| Step | Hyp | Ref
| Expression |
| 1 | | iseralt.1 |
. 2
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 2 | | seqex 14044 |
. . 3
⊢ seq𝑀( + , 𝐹) ∈ V |
| 3 | 2 | a1i 11 |
. 2
⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ V) |
| 4 | | iseralt.5 |
. . . 4
⊢ (𝜑 → 𝐺 ⇝ 0) |
| 5 | | iseralt.2 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 6 | | climrel 15528 |
. . . . . . 7
⊢ Rel
⇝ |
| 7 | 6 | brrelex1i 5741 |
. . . . . 6
⊢ (𝐺 ⇝ 0 → 𝐺 ∈ V) |
| 8 | 4, 7 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ V) |
| 9 | | eqidd 2738 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐺‘𝑛) = (𝐺‘𝑛)) |
| 10 | | iseralt.3 |
. . . . . . 7
⊢ (𝜑 → 𝐺:𝑍⟶ℝ) |
| 11 | 10 | ffvelcdmda 7104 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐺‘𝑛) ∈ ℝ) |
| 12 | 11 | recnd 11289 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐺‘𝑛) ∈ ℂ) |
| 13 | 1, 5, 8, 9, 12 | clim0c 15543 |
. . . 4
⊢ (𝜑 → (𝐺 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(𝐺‘𝑛)) < 𝑥)) |
| 14 | 4, 13 | mpbid 232 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(𝐺‘𝑛)) < 𝑥) |
| 15 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) |
| 16 | 15, 1 | eleqtrdi 2851 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
| 17 | | eluzelz 12888 |
. . . . . . . 8
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ ℤ) |
| 18 | | uzid 12893 |
. . . . . . . 8
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
(ℤ≥‘𝑗)) |
| 19 | 16, 17, 18 | 3syl 18 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑗)) |
| 20 | | peano2uz 12943 |
. . . . . . 7
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → (𝑗 + 1) ∈
(ℤ≥‘𝑗)) |
| 21 | | 2fveq3 6911 |
. . . . . . . . 9
⊢ (𝑛 = (𝑗 + 1) → (abs‘(𝐺‘𝑛)) = (abs‘(𝐺‘(𝑗 + 1)))) |
| 22 | 21 | breq1d 5153 |
. . . . . . . 8
⊢ (𝑛 = (𝑗 + 1) → ((abs‘(𝐺‘𝑛)) < 𝑥 ↔ (abs‘(𝐺‘(𝑗 + 1))) < 𝑥)) |
| 23 | 22 | rspcv 3618 |
. . . . . . 7
⊢ ((𝑗 + 1) ∈
(ℤ≥‘𝑗) → (∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(𝐺‘𝑛)) < 𝑥 → (abs‘(𝐺‘(𝑗 + 1))) < 𝑥)) |
| 24 | 19, 20, 23 | 3syl 18 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(𝐺‘𝑛)) < 𝑥 → (abs‘(𝐺‘(𝑗 + 1))) < 𝑥)) |
| 25 | | eluzelz 12888 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈
(ℤ≥‘𝑗) → 𝑛 ∈ ℤ) |
| 26 | 25 | ad2antll 729 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑛 ∈ ℤ) |
| 27 | 26 | zcnd 12723 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑛 ∈ ℂ) |
| 28 | 17, 1 | eleq2s 2859 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ) |
| 29 | 28 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑗 ∈ ℤ) |
| 30 | 29 | zcnd 12723 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑗 ∈ ℂ) |
| 31 | 27, 30 | subcld 11620 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑛 − 𝑗) ∈ ℂ) |
| 32 | | 2cnd 12344 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 2 ∈
ℂ) |
| 33 | | 2ne0 12370 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 2 ≠
0 |
| 34 | 33 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 2 ≠
0) |
| 35 | 31, 32, 34 | divcan2d 12045 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (2 · ((𝑛 − 𝑗) / 2)) = (𝑛 − 𝑗)) |
| 36 | 35 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑗 + (2 · ((𝑛 − 𝑗) / 2))) = (𝑗 + (𝑛 − 𝑗))) |
| 37 | 30, 27 | pncan3d 11623 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑗 + (𝑛 − 𝑗)) = 𝑛) |
| 38 | 36, 37 | eqtr2d 2778 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑛 = (𝑗 + (2 · ((𝑛 − 𝑗) / 2)))) |
| 39 | 38 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ ((𝑛 − 𝑗) / 2) ∈ ℤ) → 𝑛 = (𝑗 + (2 · ((𝑛 − 𝑗) / 2)))) |
| 40 | 39 | fveq2d 6910 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ ((𝑛 − 𝑗) / 2) ∈ ℤ) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘(𝑗 + (2 · ((𝑛 − 𝑗) / 2))))) |
| 41 | 40 | fvoveq1d 7453 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ ((𝑛 − 𝑗) / 2) ∈ ℤ) →
(abs‘((seq𝑀( + ,
𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑗 + (2 · ((𝑛 − 𝑗) / 2)))) − (seq𝑀( + , 𝐹)‘𝑗)))) |
| 42 | | simpll 767 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ ((𝑛 − 𝑗) / 2) ∈ ℤ) → 𝜑) |
| 43 | | simpl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗)) → 𝑗 ∈ 𝑍) |
| 44 | 43 | ad2antlr 727 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ ((𝑛 − 𝑗) / 2) ∈ ℤ) → 𝑗 ∈ 𝑍) |
| 45 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ ((𝑛 − 𝑗) / 2) ∈ ℤ) → ((𝑛 − 𝑗) / 2) ∈ ℤ) |
| 46 | 26, 29 | zsubcld 12727 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑛 − 𝑗) ∈ ℤ) |
| 47 | 46 | zred 12722 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑛 − 𝑗) ∈ ℝ) |
| 48 | | 2rp 13039 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℝ+ |
| 49 | 48 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 2 ∈
ℝ+) |
| 50 | | eluzle 12891 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈
(ℤ≥‘𝑗) → 𝑗 ≤ 𝑛) |
| 51 | 50 | ad2antll 729 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑗 ≤ 𝑛) |
| 52 | 26 | zred 12722 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑛 ∈ ℝ) |
| 53 | 29 | zred 12722 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑗 ∈ ℝ) |
| 54 | 52, 53 | subge0d 11853 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (0 ≤ (𝑛 − 𝑗) ↔ 𝑗 ≤ 𝑛)) |
| 55 | 51, 54 | mpbird 257 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 0 ≤ (𝑛 − 𝑗)) |
| 56 | 47, 49, 55 | divge0d 13117 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 0 ≤ ((𝑛 − 𝑗) / 2)) |
| 57 | 56 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ ((𝑛 − 𝑗) / 2) ∈ ℤ) → 0 ≤ ((𝑛 − 𝑗) / 2)) |
| 58 | | elnn0z 12626 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 − 𝑗) / 2) ∈ ℕ0 ↔
(((𝑛 − 𝑗) / 2) ∈ ℤ ∧ 0
≤ ((𝑛 − 𝑗) / 2))) |
| 59 | 45, 57, 58 | sylanbrc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ ((𝑛 − 𝑗) / 2) ∈ ℤ) → ((𝑛 − 𝑗) / 2) ∈
ℕ0) |
| 60 | | iseralt.4 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) |
| 61 | | iseralt.6 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = ((-1↑𝑘) · (𝐺‘𝑘))) |
| 62 | 1, 5, 10, 60, 4, 61 | iseraltlem3 15720 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ((𝑛 − 𝑗) / 2) ∈ ℕ0) →
((abs‘((seq𝑀( + ,
𝐹)‘(𝑗 + (2 · ((𝑛 − 𝑗) / 2)))) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)) ∧ (abs‘((seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((𝑛 − 𝑗) / 2))) + 1)) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))) |
| 63 | 62 | simpld 494 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ((𝑛 − 𝑗) / 2) ∈ ℕ0) →
(abs‘((seq𝑀( + ,
𝐹)‘(𝑗 + (2 · ((𝑛 − 𝑗) / 2)))) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1))) |
| 64 | 42, 44, 59, 63 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ ((𝑛 − 𝑗) / 2) ∈ ℤ) →
(abs‘((seq𝑀( + ,
𝐹)‘(𝑗 + (2 · ((𝑛 − 𝑗) / 2)))) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1))) |
| 65 | 41, 64 | eqbrtrd 5165 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ ((𝑛 − 𝑗) / 2) ∈ ℤ) →
(abs‘((seq𝑀( + ,
𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1))) |
| 66 | | 2div2e1 12407 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (2 / 2) =
1 |
| 67 | 66 | oveq2i 7442 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑛 − 𝑗) + 1) / 2) − (2 / 2)) = ((((𝑛 − 𝑗) + 1) / 2) − 1) |
| 68 | | peano2cn 11433 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑛 − 𝑗) ∈ ℂ → ((𝑛 − 𝑗) + 1) ∈ ℂ) |
| 69 | 31, 68 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝑛 − 𝑗) + 1) ∈ ℂ) |
| 70 | 69, 32, 32, 34 | divsubdird 12082 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((((𝑛 − 𝑗) + 1) − 2) / 2) = ((((𝑛 − 𝑗) + 1) / 2) − (2 /
2))) |
| 71 | | df-2 12329 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 2 = (1 +
1) |
| 72 | 71 | oveq2i 7442 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑛 − 𝑗) + 1) − 2) = (((𝑛 − 𝑗) + 1) − (1 + 1)) |
| 73 | | ax-1cn 11213 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 1 ∈
ℂ |
| 74 | 73 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 1 ∈
ℂ) |
| 75 | 31, 74, 74 | pnpcan2d 11658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (((𝑛 − 𝑗) + 1) − (1 + 1)) = ((𝑛 − 𝑗) − 1)) |
| 76 | 72, 75 | eqtrid 2789 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (((𝑛 − 𝑗) + 1) − 2) = ((𝑛 − 𝑗) − 1)) |
| 77 | 76 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((((𝑛 − 𝑗) + 1) − 2) / 2) = (((𝑛 − 𝑗) − 1) / 2)) |
| 78 | 70, 77 | eqtr3d 2779 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((((𝑛 − 𝑗) + 1) / 2) − (2 / 2)) = (((𝑛 − 𝑗) − 1) / 2)) |
| 79 | 67, 78 | eqtr3id 2791 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((((𝑛 − 𝑗) + 1) / 2) − 1) = (((𝑛 − 𝑗) − 1) / 2)) |
| 80 | 79 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1)) = (2 ·
(((𝑛 − 𝑗) − 1) /
2))) |
| 81 | | subcl 11507 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑛 − 𝑗) ∈ ℂ ∧ 1 ∈ ℂ)
→ ((𝑛 − 𝑗) − 1) ∈
ℂ) |
| 82 | 31, 73, 81 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝑛 − 𝑗) − 1) ∈ ℂ) |
| 83 | 82, 32, 34 | divcan2d 12045 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (2 · (((𝑛 − 𝑗) − 1) / 2)) = ((𝑛 − 𝑗) − 1)) |
| 84 | 27, 30, 74 | sub32d 11652 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝑛 − 𝑗) − 1) = ((𝑛 − 1) − 𝑗)) |
| 85 | 80, 83, 84 | 3eqtrd 2781 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1)) = ((𝑛 − 1) − 𝑗)) |
| 86 | 85 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑗 + (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1))) = (𝑗 + ((𝑛 − 1) − 𝑗))) |
| 87 | | subcl 11507 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑛 −
1) ∈ ℂ) |
| 88 | 27, 73, 87 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑛 − 1) ∈ ℂ) |
| 89 | 30, 88 | pncan3d 11623 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑗 + ((𝑛 − 1) − 𝑗)) = (𝑛 − 1)) |
| 90 | 86, 89 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑗 + (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1))) = (𝑛 − 1)) |
| 91 | 90 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝑗 + (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1))) + 1) = ((𝑛 − 1) +
1)) |
| 92 | | npcan 11517 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑛 −
1) + 1) = 𝑛) |
| 93 | 27, 73, 92 | sylancl 586 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝑛 − 1) + 1) = 𝑛) |
| 94 | 91, 93 | eqtr2d 2778 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑛 = ((𝑗 + (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1))) +
1)) |
| 95 | 94 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ) → 𝑛 = ((𝑗 + (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1))) +
1)) |
| 96 | 95 | fveq2d 6910 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1))) +
1))) |
| 97 | 96 | fvoveq1d 7453 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ) →
(abs‘((seq𝑀( + ,
𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) = (abs‘((seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1))) + 1)) −
(seq𝑀( + , 𝐹)‘𝑗)))) |
| 98 | | simpll 767 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ) → 𝜑) |
| 99 | 43 | ad2antlr 727 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ) → 𝑗 ∈ 𝑍) |
| 100 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ) → (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ) |
| 101 | | uznn0sub 12917 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈
(ℤ≥‘𝑗) → (𝑛 − 𝑗) ∈
ℕ0) |
| 102 | 101 | ad2antll 729 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑛 − 𝑗) ∈
ℕ0) |
| 103 | | nn0p1nn 12565 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 − 𝑗) ∈ ℕ0 → ((𝑛 − 𝑗) + 1) ∈ ℕ) |
| 104 | 102, 103 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝑛 − 𝑗) + 1) ∈ ℕ) |
| 105 | 104 | nnrpd 13075 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝑛 − 𝑗) + 1) ∈
ℝ+) |
| 106 | 105 | rphalfcld 13089 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (((𝑛 − 𝑗) + 1) / 2) ∈
ℝ+) |
| 107 | 106 | rpgt0d 13080 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 0 < (((𝑛 − 𝑗) + 1) / 2)) |
| 108 | 107 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ) → 0 <
(((𝑛 − 𝑗) + 1) / 2)) |
| 109 | | elnnz 12623 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑛 − 𝑗) + 1) / 2) ∈ ℕ ↔ ((((𝑛 − 𝑗) + 1) / 2) ∈ ℤ ∧ 0 <
(((𝑛 − 𝑗) + 1) / 2))) |
| 110 | 100, 108,
109 | sylanbrc 583 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ) → (((𝑛 − 𝑗) + 1) / 2) ∈ ℕ) |
| 111 | | nnm1nn0 12567 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 − 𝑗) + 1) / 2) ∈ ℕ → ((((𝑛 − 𝑗) + 1) / 2) − 1) ∈
ℕ0) |
| 112 | 110, 111 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ) → ((((𝑛 − 𝑗) + 1) / 2) − 1) ∈
ℕ0) |
| 113 | 1, 5, 10, 60, 4, 61 | iseraltlem3 15720 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ((((𝑛 − 𝑗) + 1) / 2) − 1) ∈
ℕ0) → ((abs‘((seq𝑀( + , 𝐹)‘(𝑗 + (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1)))) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)) ∧ (abs‘((seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1))) + 1)) −
(seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))) |
| 114 | 113 | simprd 495 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ((((𝑛 − 𝑗) + 1) / 2) − 1) ∈
ℕ0) → (abs‘((seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1))) + 1)) −
(seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1))) |
| 115 | 98, 99, 112, 114 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ) →
(abs‘((seq𝑀( + ,
𝐹)‘((𝑗 + (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1))) + 1)) −
(seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1))) |
| 116 | 97, 115 | eqbrtrd 5165 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ) →
(abs‘((seq𝑀( + ,
𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1))) |
| 117 | | zeo 12704 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 − 𝑗) ∈ ℤ → (((𝑛 − 𝑗) / 2) ∈ ℤ ∨ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ)) |
| 118 | 46, 117 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (((𝑛 − 𝑗) / 2) ∈ ℤ ∨ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ)) |
| 119 | 65, 116, 118 | mpjaodan 961 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1))) |
| 120 | 1 | peano2uzs 12944 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ 𝑍 → (𝑗 + 1) ∈ 𝑍) |
| 121 | 120 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗)) → (𝑗 + 1) ∈ 𝑍) |
| 122 | | ffvelcdm 7101 |
. . . . . . . . . . . . . 14
⊢ ((𝐺:𝑍⟶ℝ ∧ (𝑗 + 1) ∈ 𝑍) → (𝐺‘(𝑗 + 1)) ∈ ℝ) |
| 123 | 10, 121, 122 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝐺‘(𝑗 + 1)) ∈ ℝ) |
| 124 | 1, 5, 10, 60, 4 | iseraltlem1 15718 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 + 1) ∈ 𝑍) → 0 ≤ (𝐺‘(𝑗 + 1))) |
| 125 | 121, 124 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 0 ≤ (𝐺‘(𝑗 + 1))) |
| 126 | 123, 125 | absidd 15461 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘(𝐺‘(𝑗 + 1))) = (𝐺‘(𝑗 + 1))) |
| 127 | 119, 126 | breqtrrd 5171 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (abs‘(𝐺‘(𝑗 + 1)))) |
| 128 | 127 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (abs‘(𝐺‘(𝑗 + 1)))) |
| 129 | | neg1rr 12381 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ -1 ∈
ℝ |
| 130 | 129 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -1 ∈ ℝ) |
| 131 | | neg1ne0 12382 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ -1 ≠
0 |
| 132 | 131 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -1 ≠ 0) |
| 133 | | eluzelz 12888 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℤ) |
| 134 | 133, 1 | eleq2s 2859 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
| 135 | 134 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℤ) |
| 136 | 130, 132,
135 | reexpclzd 14288 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (-1↑𝑘) ∈ ℝ) |
| 137 | 10 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) |
| 138 | 136, 137 | remulcld 11291 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((-1↑𝑘) · (𝐺‘𝑘)) ∈ ℝ) |
| 139 | 61, 138 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
| 140 | 1, 5, 139 | serfre 14072 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ) |
| 141 | 1 | uztrn2 12897 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗)) → 𝑛 ∈ 𝑍) |
| 142 | | ffvelcdm 7101 |
. . . . . . . . . . . . . . . 16
⊢
((seq𝑀( + , 𝐹):𝑍⟶ℝ ∧ 𝑛 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ) |
| 143 | 140, 141,
142 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ) |
| 144 | | ffvelcdm 7101 |
. . . . . . . . . . . . . . . 16
⊢
((seq𝑀( + , 𝐹):𝑍⟶ℝ ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ) |
| 145 | 140, 43, 144 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ) |
| 146 | 143, 145 | resubcld 11691 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗)) ∈ ℝ) |
| 147 | 146 | recnd 11289 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗)) ∈ ℂ) |
| 148 | 147 | abscld 15475 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ∈ ℝ) |
| 149 | 148 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ∈ ℝ) |
| 150 | 126, 123 | eqeltrd 2841 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘(𝐺‘(𝑗 + 1))) ∈ ℝ) |
| 151 | 150 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘(𝐺‘(𝑗 + 1))) ∈ ℝ) |
| 152 | | rpre 13043 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
| 153 | 152 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑥 ∈ ℝ) |
| 154 | | lelttr 11351 |
. . . . . . . . . . 11
⊢
(((abs‘((seq𝑀(
+ , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ∈ ℝ ∧ (abs‘(𝐺‘(𝑗 + 1))) ∈ ℝ ∧ 𝑥 ∈ ℝ) →
(((abs‘((seq𝑀( + ,
𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (abs‘(𝐺‘(𝑗 + 1))) ∧ (abs‘(𝐺‘(𝑗 + 1))) < 𝑥) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)) |
| 155 | 149, 151,
153, 154 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) →
(((abs‘((seq𝑀( + ,
𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (abs‘(𝐺‘(𝑗 + 1))) ∧ (abs‘(𝐺‘(𝑗 + 1))) < 𝑥) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)) |
| 156 | 128, 155 | mpand 695 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((abs‘(𝐺‘(𝑗 + 1))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)) |
| 157 | 140 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → seq𝑀( + , 𝐹):𝑍⟶ℝ) |
| 158 | 157, 141,
142 | syl2an 596 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ) |
| 159 | 156, 158 | jctild 525 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((abs‘(𝐺‘(𝑗 + 1))) < 𝑥 → ((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))) |
| 160 | 159 | anassrs 467 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑗)) → ((abs‘(𝐺‘(𝑗 + 1))) < 𝑥 → ((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))) |
| 161 | 160 | ralrimdva 3154 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → ((abs‘(𝐺‘(𝑗 + 1))) < 𝑥 → ∀𝑛 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))) |
| 162 | 24, 161 | syld 47 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(𝐺‘𝑛)) < 𝑥 → ∀𝑛 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))) |
| 163 | 162 | reximdva 3168 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(𝐺‘𝑛)) < 𝑥 → ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))) |
| 164 | 163 | ralimdva 3167 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(𝐺‘𝑛)) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))) |
| 165 | 14, 164 | mpd 15 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)) |
| 166 | 1, 3, 165 | caurcvg2 15714 |
1
⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |