Step | Hyp | Ref
| Expression |
1 | | iseralt.1 |
. 2
⊢ 𝑍 =
(ℤ≥‘𝑀) |
2 | | seqex 13576 |
. . 3
⊢ seq𝑀( + , 𝐹) ∈ V |
3 | 2 | a1i 11 |
. 2
⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ V) |
4 | | iseralt.5 |
. . . 4
⊢ (𝜑 → 𝐺 ⇝ 0) |
5 | | iseralt.2 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
6 | | climrel 15053 |
. . . . . . 7
⊢ Rel
⇝ |
7 | 6 | brrelex1i 5605 |
. . . . . 6
⊢ (𝐺 ⇝ 0 → 𝐺 ∈ V) |
8 | 4, 7 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ V) |
9 | | eqidd 2738 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐺‘𝑛) = (𝐺‘𝑛)) |
10 | | iseralt.3 |
. . . . . . 7
⊢ (𝜑 → 𝐺:𝑍⟶ℝ) |
11 | 10 | ffvelrnda 6904 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐺‘𝑛) ∈ ℝ) |
12 | 11 | recnd 10861 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐺‘𝑛) ∈ ℂ) |
13 | 1, 5, 8, 9, 12 | clim0c 15068 |
. . . 4
⊢ (𝜑 → (𝐺 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(𝐺‘𝑛)) < 𝑥)) |
14 | 4, 13 | mpbid 235 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(𝐺‘𝑛)) < 𝑥) |
15 | | simpr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) |
16 | 15, 1 | eleqtrdi 2848 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
17 | | eluzelz 12448 |
. . . . . . . 8
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ ℤ) |
18 | | uzid 12453 |
. . . . . . . 8
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
(ℤ≥‘𝑗)) |
19 | 16, 17, 18 | 3syl 18 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑗)) |
20 | | peano2uz 12497 |
. . . . . . 7
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → (𝑗 + 1) ∈
(ℤ≥‘𝑗)) |
21 | | 2fveq3 6722 |
. . . . . . . . 9
⊢ (𝑛 = (𝑗 + 1) → (abs‘(𝐺‘𝑛)) = (abs‘(𝐺‘(𝑗 + 1)))) |
22 | 21 | breq1d 5063 |
. . . . . . . 8
⊢ (𝑛 = (𝑗 + 1) → ((abs‘(𝐺‘𝑛)) < 𝑥 ↔ (abs‘(𝐺‘(𝑗 + 1))) < 𝑥)) |
23 | 22 | rspcv 3532 |
. . . . . . 7
⊢ ((𝑗 + 1) ∈
(ℤ≥‘𝑗) → (∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(𝐺‘𝑛)) < 𝑥 → (abs‘(𝐺‘(𝑗 + 1))) < 𝑥)) |
24 | 19, 20, 23 | 3syl 18 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(𝐺‘𝑛)) < 𝑥 → (abs‘(𝐺‘(𝑗 + 1))) < 𝑥)) |
25 | | eluzelz 12448 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈
(ℤ≥‘𝑗) → 𝑛 ∈ ℤ) |
26 | 25 | ad2antll 729 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑛 ∈ ℤ) |
27 | 26 | zcnd 12283 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑛 ∈ ℂ) |
28 | 17, 1 | eleq2s 2856 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ) |
29 | 28 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑗 ∈ ℤ) |
30 | 29 | zcnd 12283 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑗 ∈ ℂ) |
31 | 27, 30 | subcld 11189 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑛 − 𝑗) ∈ ℂ) |
32 | | 2cnd 11908 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 2 ∈
ℂ) |
33 | | 2ne0 11934 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 2 ≠
0 |
34 | 33 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 2 ≠
0) |
35 | 31, 32, 34 | divcan2d 11610 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (2 · ((𝑛 − 𝑗) / 2)) = (𝑛 − 𝑗)) |
36 | 35 | oveq2d 7229 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑗 + (2 · ((𝑛 − 𝑗) / 2))) = (𝑗 + (𝑛 − 𝑗))) |
37 | 30, 27 | pncan3d 11192 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑗 + (𝑛 − 𝑗)) = 𝑛) |
38 | 36, 37 | eqtr2d 2778 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑛 = (𝑗 + (2 · ((𝑛 − 𝑗) / 2)))) |
39 | 38 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ ((𝑛 − 𝑗) / 2) ∈ ℤ) → 𝑛 = (𝑗 + (2 · ((𝑛 − 𝑗) / 2)))) |
40 | 39 | fveq2d 6721 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ ((𝑛 − 𝑗) / 2) ∈ ℤ) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘(𝑗 + (2 · ((𝑛 − 𝑗) / 2))))) |
41 | 40 | fvoveq1d 7235 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ ((𝑛 − 𝑗) / 2) ∈ ℤ) →
(abs‘((seq𝑀( + ,
𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑗 + (2 · ((𝑛 − 𝑗) / 2)))) − (seq𝑀( + , 𝐹)‘𝑗)))) |
42 | | simpll 767 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ ((𝑛 − 𝑗) / 2) ∈ ℤ) → 𝜑) |
43 | | simpl 486 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗)) → 𝑗 ∈ 𝑍) |
44 | 43 | ad2antlr 727 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ ((𝑛 − 𝑗) / 2) ∈ ℤ) → 𝑗 ∈ 𝑍) |
45 | | simpr 488 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ ((𝑛 − 𝑗) / 2) ∈ ℤ) → ((𝑛 − 𝑗) / 2) ∈ ℤ) |
46 | 26, 29 | zsubcld 12287 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑛 − 𝑗) ∈ ℤ) |
47 | 46 | zred 12282 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑛 − 𝑗) ∈ ℝ) |
48 | | 2rp 12591 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℝ+ |
49 | 48 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 2 ∈
ℝ+) |
50 | | eluzle 12451 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈
(ℤ≥‘𝑗) → 𝑗 ≤ 𝑛) |
51 | 50 | ad2antll 729 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑗 ≤ 𝑛) |
52 | 26 | zred 12282 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑛 ∈ ℝ) |
53 | 29 | zred 12282 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑗 ∈ ℝ) |
54 | 52, 53 | subge0d 11422 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (0 ≤ (𝑛 − 𝑗) ↔ 𝑗 ≤ 𝑛)) |
55 | 51, 54 | mpbird 260 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 0 ≤ (𝑛 − 𝑗)) |
56 | 47, 49, 55 | divge0d 12668 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 0 ≤ ((𝑛 − 𝑗) / 2)) |
57 | 56 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ ((𝑛 − 𝑗) / 2) ∈ ℤ) → 0 ≤ ((𝑛 − 𝑗) / 2)) |
58 | | elnn0z 12189 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 − 𝑗) / 2) ∈ ℕ0 ↔
(((𝑛 − 𝑗) / 2) ∈ ℤ ∧ 0
≤ ((𝑛 − 𝑗) / 2))) |
59 | 45, 57, 58 | sylanbrc 586 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ ((𝑛 − 𝑗) / 2) ∈ ℤ) → ((𝑛 − 𝑗) / 2) ∈
ℕ0) |
60 | | iseralt.4 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺‘𝑘)) |
61 | | iseralt.6 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = ((-1↑𝑘) · (𝐺‘𝑘))) |
62 | 1, 5, 10, 60, 4, 61 | iseraltlem3 15247 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ((𝑛 − 𝑗) / 2) ∈ ℕ0) →
((abs‘((seq𝑀( + ,
𝐹)‘(𝑗 + (2 · ((𝑛 − 𝑗) / 2)))) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)) ∧ (abs‘((seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((𝑛 − 𝑗) / 2))) + 1)) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))) |
63 | 62 | simpld 498 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ((𝑛 − 𝑗) / 2) ∈ ℕ0) →
(abs‘((seq𝑀( + ,
𝐹)‘(𝑗 + (2 · ((𝑛 − 𝑗) / 2)))) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1))) |
64 | 42, 44, 59, 63 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ ((𝑛 − 𝑗) / 2) ∈ ℤ) →
(abs‘((seq𝑀( + ,
𝐹)‘(𝑗 + (2 · ((𝑛 − 𝑗) / 2)))) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1))) |
65 | 41, 64 | eqbrtrd 5075 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ ((𝑛 − 𝑗) / 2) ∈ ℤ) →
(abs‘((seq𝑀( + ,
𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1))) |
66 | | 2div2e1 11971 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (2 / 2) =
1 |
67 | 66 | oveq2i 7224 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑛 − 𝑗) + 1) / 2) − (2 / 2)) = ((((𝑛 − 𝑗) + 1) / 2) − 1) |
68 | | peano2cn 11004 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑛 − 𝑗) ∈ ℂ → ((𝑛 − 𝑗) + 1) ∈ ℂ) |
69 | 31, 68 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝑛 − 𝑗) + 1) ∈ ℂ) |
70 | 69, 32, 32, 34 | divsubdird 11647 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((((𝑛 − 𝑗) + 1) − 2) / 2) = ((((𝑛 − 𝑗) + 1) / 2) − (2 /
2))) |
71 | | df-2 11893 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 2 = (1 +
1) |
72 | 71 | oveq2i 7224 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑛 − 𝑗) + 1) − 2) = (((𝑛 − 𝑗) + 1) − (1 + 1)) |
73 | | ax-1cn 10787 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 1 ∈
ℂ |
74 | 73 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 1 ∈
ℂ) |
75 | 31, 74, 74 | pnpcan2d 11227 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (((𝑛 − 𝑗) + 1) − (1 + 1)) = ((𝑛 − 𝑗) − 1)) |
76 | 72, 75 | syl5eq 2790 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (((𝑛 − 𝑗) + 1) − 2) = ((𝑛 − 𝑗) − 1)) |
77 | 76 | oveq1d 7228 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((((𝑛 − 𝑗) + 1) − 2) / 2) = (((𝑛 − 𝑗) − 1) / 2)) |
78 | 70, 77 | eqtr3d 2779 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((((𝑛 − 𝑗) + 1) / 2) − (2 / 2)) = (((𝑛 − 𝑗) − 1) / 2)) |
79 | 67, 78 | eqtr3id 2792 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((((𝑛 − 𝑗) + 1) / 2) − 1) = (((𝑛 − 𝑗) − 1) / 2)) |
80 | 79 | oveq2d 7229 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1)) = (2 ·
(((𝑛 − 𝑗) − 1) /
2))) |
81 | | subcl 11077 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑛 − 𝑗) ∈ ℂ ∧ 1 ∈ ℂ)
→ ((𝑛 − 𝑗) − 1) ∈
ℂ) |
82 | 31, 73, 81 | sylancl 589 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝑛 − 𝑗) − 1) ∈ ℂ) |
83 | 82, 32, 34 | divcan2d 11610 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (2 · (((𝑛 − 𝑗) − 1) / 2)) = ((𝑛 − 𝑗) − 1)) |
84 | 27, 30, 74 | sub32d 11221 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝑛 − 𝑗) − 1) = ((𝑛 − 1) − 𝑗)) |
85 | 80, 83, 84 | 3eqtrd 2781 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1)) = ((𝑛 − 1) − 𝑗)) |
86 | 85 | oveq2d 7229 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑗 + (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1))) = (𝑗 + ((𝑛 − 1) − 𝑗))) |
87 | | subcl 11077 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑛 −
1) ∈ ℂ) |
88 | 27, 73, 87 | sylancl 589 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑛 − 1) ∈ ℂ) |
89 | 30, 88 | pncan3d 11192 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑗 + ((𝑛 − 1) − 𝑗)) = (𝑛 − 1)) |
90 | 86, 89 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑗 + (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1))) = (𝑛 − 1)) |
91 | 90 | oveq1d 7228 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝑗 + (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1))) + 1) = ((𝑛 − 1) +
1)) |
92 | | npcan 11087 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑛 −
1) + 1) = 𝑛) |
93 | 27, 73, 92 | sylancl 589 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝑛 − 1) + 1) = 𝑛) |
94 | 91, 93 | eqtr2d 2778 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑛 = ((𝑗 + (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1))) +
1)) |
95 | 94 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ) → 𝑛 = ((𝑗 + (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1))) +
1)) |
96 | 95 | fveq2d 6721 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1))) +
1))) |
97 | 96 | fvoveq1d 7235 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ) →
(abs‘((seq𝑀( + ,
𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) = (abs‘((seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1))) + 1)) −
(seq𝑀( + , 𝐹)‘𝑗)))) |
98 | | simpll 767 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ) → 𝜑) |
99 | 43 | ad2antlr 727 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ) → 𝑗 ∈ 𝑍) |
100 | | simpr 488 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ) → (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ) |
101 | | uznn0sub 12473 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈
(ℤ≥‘𝑗) → (𝑛 − 𝑗) ∈
ℕ0) |
102 | 101 | ad2antll 729 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑛 − 𝑗) ∈
ℕ0) |
103 | | nn0p1nn 12129 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 − 𝑗) ∈ ℕ0 → ((𝑛 − 𝑗) + 1) ∈ ℕ) |
104 | 102, 103 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝑛 − 𝑗) + 1) ∈ ℕ) |
105 | 104 | nnrpd 12626 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝑛 − 𝑗) + 1) ∈
ℝ+) |
106 | 105 | rphalfcld 12640 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (((𝑛 − 𝑗) + 1) / 2) ∈
ℝ+) |
107 | 106 | rpgt0d 12631 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 0 < (((𝑛 − 𝑗) + 1) / 2)) |
108 | 107 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ) → 0 <
(((𝑛 − 𝑗) + 1) / 2)) |
109 | | elnnz 12186 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑛 − 𝑗) + 1) / 2) ∈ ℕ ↔ ((((𝑛 − 𝑗) + 1) / 2) ∈ ℤ ∧ 0 <
(((𝑛 − 𝑗) + 1) / 2))) |
110 | 100, 108,
109 | sylanbrc 586 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ) → (((𝑛 − 𝑗) + 1) / 2) ∈ ℕ) |
111 | | nnm1nn0 12131 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 − 𝑗) + 1) / 2) ∈ ℕ → ((((𝑛 − 𝑗) + 1) / 2) − 1) ∈
ℕ0) |
112 | 110, 111 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ) → ((((𝑛 − 𝑗) + 1) / 2) − 1) ∈
ℕ0) |
113 | 1, 5, 10, 60, 4, 61 | iseraltlem3 15247 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ((((𝑛 − 𝑗) + 1) / 2) − 1) ∈
ℕ0) → ((abs‘((seq𝑀( + , 𝐹)‘(𝑗 + (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1)))) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)) ∧ (abs‘((seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1))) + 1)) −
(seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))) |
114 | 113 | simprd 499 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ((((𝑛 − 𝑗) + 1) / 2) − 1) ∈
ℕ0) → (abs‘((seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1))) + 1)) −
(seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1))) |
115 | 98, 99, 112, 114 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ) →
(abs‘((seq𝑀( + ,
𝐹)‘((𝑗 + (2 · ((((𝑛 − 𝑗) + 1) / 2) − 1))) + 1)) −
(seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1))) |
116 | 97, 115 | eqbrtrd 5075 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ) →
(abs‘((seq𝑀( + ,
𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1))) |
117 | | zeo 12263 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 − 𝑗) ∈ ℤ → (((𝑛 − 𝑗) / 2) ∈ ℤ ∨ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ)) |
118 | 46, 117 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (((𝑛 − 𝑗) / 2) ∈ ℤ ∨ (((𝑛 − 𝑗) + 1) / 2) ∈ ℤ)) |
119 | 65, 116, 118 | mpjaodan 959 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1))) |
120 | 1 | peano2uzs 12498 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ 𝑍 → (𝑗 + 1) ∈ 𝑍) |
121 | 120 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗)) → (𝑗 + 1) ∈ 𝑍) |
122 | | ffvelrn 6902 |
. . . . . . . . . . . . . 14
⊢ ((𝐺:𝑍⟶ℝ ∧ (𝑗 + 1) ∈ 𝑍) → (𝐺‘(𝑗 + 1)) ∈ ℝ) |
123 | 10, 121, 122 | syl2an 599 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝐺‘(𝑗 + 1)) ∈ ℝ) |
124 | 1, 5, 10, 60, 4 | iseraltlem1 15245 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 + 1) ∈ 𝑍) → 0 ≤ (𝐺‘(𝑗 + 1))) |
125 | 121, 124 | sylan2 596 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 0 ≤ (𝐺‘(𝑗 + 1))) |
126 | 123, 125 | absidd 14986 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘(𝐺‘(𝑗 + 1))) = (𝐺‘(𝑗 + 1))) |
127 | 119, 126 | breqtrrd 5081 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (abs‘(𝐺‘(𝑗 + 1)))) |
128 | 127 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (abs‘(𝐺‘(𝑗 + 1)))) |
129 | | neg1rr 11945 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ -1 ∈
ℝ |
130 | 129 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -1 ∈ ℝ) |
131 | | neg1ne0 11946 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ -1 ≠
0 |
132 | 131 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → -1 ≠ 0) |
133 | | eluzelz 12448 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℤ) |
134 | 133, 1 | eleq2s 2856 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
135 | 134 | adantl 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℤ) |
136 | 130, 132,
135 | reexpclzd 13816 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (-1↑𝑘) ∈ ℝ) |
137 | 10 | ffvelrnda 6904 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) |
138 | 136, 137 | remulcld 10863 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((-1↑𝑘) · (𝐺‘𝑘)) ∈ ℝ) |
139 | 61, 138 | eqeltrd 2838 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
140 | 1, 5, 139 | serfre 13605 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ) |
141 | 1 | uztrn2 12457 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗)) → 𝑛 ∈ 𝑍) |
142 | | ffvelrn 6902 |
. . . . . . . . . . . . . . . 16
⊢
((seq𝑀( + , 𝐹):𝑍⟶ℝ ∧ 𝑛 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ) |
143 | 140, 141,
142 | syl2an 599 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ) |
144 | | ffvelrn 6902 |
. . . . . . . . . . . . . . . 16
⊢
((seq𝑀( + , 𝐹):𝑍⟶ℝ ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ) |
145 | 140, 43, 144 | syl2an 599 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ) |
146 | 143, 145 | resubcld 11260 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗)) ∈ ℝ) |
147 | 146 | recnd 10861 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗)) ∈ ℂ) |
148 | 147 | abscld 15000 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ∈ ℝ) |
149 | 148 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ∈ ℝ) |
150 | 126, 123 | eqeltrd 2838 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘(𝐺‘(𝑗 + 1))) ∈ ℝ) |
151 | 150 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘(𝐺‘(𝑗 + 1))) ∈ ℝ) |
152 | | rpre 12594 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
153 | 152 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑥 ∈ ℝ) |
154 | | lelttr 10923 |
. . . . . . . . . . 11
⊢
(((abs‘((seq𝑀(
+ , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ∈ ℝ ∧ (abs‘(𝐺‘(𝑗 + 1))) ∈ ℝ ∧ 𝑥 ∈ ℝ) →
(((abs‘((seq𝑀( + ,
𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (abs‘(𝐺‘(𝑗 + 1))) ∧ (abs‘(𝐺‘(𝑗 + 1))) < 𝑥) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)) |
155 | 149, 151,
153, 154 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) →
(((abs‘((seq𝑀( + ,
𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (abs‘(𝐺‘(𝑗 + 1))) ∧ (abs‘(𝐺‘(𝑗 + 1))) < 𝑥) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)) |
156 | 128, 155 | mpand 695 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((abs‘(𝐺‘(𝑗 + 1))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)) |
157 | 140 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → seq𝑀( + , 𝐹):𝑍⟶ℝ) |
158 | 157, 141,
142 | syl2an 599 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ) |
159 | 156, 158 | jctild 529 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((abs‘(𝐺‘(𝑗 + 1))) < 𝑥 → ((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))) |
160 | 159 | anassrs 471 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑗)) → ((abs‘(𝐺‘(𝑗 + 1))) < 𝑥 → ((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))) |
161 | 160 | ralrimdva 3110 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → ((abs‘(𝐺‘(𝑗 + 1))) < 𝑥 → ∀𝑛 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))) |
162 | 24, 161 | syld 47 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(𝐺‘𝑛)) < 𝑥 → ∀𝑛 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))) |
163 | 162 | reximdva 3193 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(𝐺‘𝑛)) < 𝑥 → ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))) |
164 | 163 | ralimdva 3100 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘(𝐺‘𝑛)) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))) |
165 | 14, 164 | mpd 15 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)) |
166 | 1, 3, 165 | caurcvg2 15241 |
1
⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |