MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseralt Structured version   Visualization version   GIF version

Theorem iseralt 15651
Description: The alternating series test. If 𝐺(𝑘) is a decreasing sequence that converges to 0, then Σ𝑘𝑍(-1↑𝑘) · 𝐺(𝑘) is a convergent series. (Note that the first term is positive if 𝑀 is even, and negative if 𝑀 is odd. If the parity of your series does not match up with this, you will need to post-compose the series with multiplication by -1 using isermulc2 15624.) (Contributed by Mario Carneiro, 7-Apr-2015.) (Proof shortened by AV, 9-Jul-2022.)
Hypotheses
Ref Expression
iseralt.1 𝑍 = (ℤ𝑀)
iseralt.2 (𝜑𝑀 ∈ ℤ)
iseralt.3 (𝜑𝐺:𝑍⟶ℝ)
iseralt.4 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
iseralt.5 (𝜑𝐺 ⇝ 0)
iseralt.6 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
Assertion
Ref Expression
iseralt (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍

Proof of Theorem iseralt
Dummy variables 𝑗 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseralt.1 . 2 𝑍 = (ℤ𝑀)
2 seqex 13968 . . 3 seq𝑀( + , 𝐹) ∈ V
32a1i 11 . 2 (𝜑 → seq𝑀( + , 𝐹) ∈ V)
4 iseralt.5 . . . 4 (𝜑𝐺 ⇝ 0)
5 iseralt.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
6 climrel 15458 . . . . . . 7 Rel ⇝
76brrelex1i 5694 . . . . . 6 (𝐺 ⇝ 0 → 𝐺 ∈ V)
84, 7syl 17 . . . . 5 (𝜑𝐺 ∈ V)
9 eqidd 2730 . . . . 5 ((𝜑𝑛𝑍) → (𝐺𝑛) = (𝐺𝑛))
10 iseralt.3 . . . . . . 7 (𝜑𝐺:𝑍⟶ℝ)
1110ffvelcdmda 7056 . . . . . 6 ((𝜑𝑛𝑍) → (𝐺𝑛) ∈ ℝ)
1211recnd 11202 . . . . 5 ((𝜑𝑛𝑍) → (𝐺𝑛) ∈ ℂ)
131, 5, 8, 9, 12clim0c 15473 . . . 4 (𝜑 → (𝐺 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(𝐺𝑛)) < 𝑥))
144, 13mpbid 232 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(𝐺𝑛)) < 𝑥)
15 simpr 484 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑗𝑍)
1615, 1eleqtrdi 2838 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
17 eluzelz 12803 . . . . . . . 8 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
18 uzid 12808 . . . . . . . 8 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
1916, 17, 183syl 18 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑗 ∈ (ℤ𝑗))
20 peano2uz 12860 . . . . . . 7 (𝑗 ∈ (ℤ𝑗) → (𝑗 + 1) ∈ (ℤ𝑗))
21 2fveq3 6863 . . . . . . . . 9 (𝑛 = (𝑗 + 1) → (abs‘(𝐺𝑛)) = (abs‘(𝐺‘(𝑗 + 1))))
2221breq1d 5117 . . . . . . . 8 (𝑛 = (𝑗 + 1) → ((abs‘(𝐺𝑛)) < 𝑥 ↔ (abs‘(𝐺‘(𝑗 + 1))) < 𝑥))
2322rspcv 3584 . . . . . . 7 ((𝑗 + 1) ∈ (ℤ𝑗) → (∀𝑛 ∈ (ℤ𝑗)(abs‘(𝐺𝑛)) < 𝑥 → (abs‘(𝐺‘(𝑗 + 1))) < 𝑥))
2419, 20, 233syl 18 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑛 ∈ (ℤ𝑗)(abs‘(𝐺𝑛)) < 𝑥 → (abs‘(𝐺‘(𝑗 + 1))) < 𝑥))
25 eluzelz 12803 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (ℤ𝑗) → 𝑛 ∈ ℤ)
2625ad2antll 729 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑛 ∈ ℤ)
2726zcnd 12639 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑛 ∈ ℂ)
2817, 1eleq2s 2846 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗𝑍𝑗 ∈ ℤ)
2928ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ ℤ)
3029zcnd 12639 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ ℂ)
3127, 30subcld 11533 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑛𝑗) ∈ ℂ)
32 2cnd 12264 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 2 ∈ ℂ)
33 2ne0 12290 . . . . . . . . . . . . . . . . . . . . 21 2 ≠ 0
3433a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 2 ≠ 0)
3531, 32, 34divcan2d 11960 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (2 · ((𝑛𝑗) / 2)) = (𝑛𝑗))
3635oveq2d 7403 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑗 + (2 · ((𝑛𝑗) / 2))) = (𝑗 + (𝑛𝑗)))
3730, 27pncan3d 11536 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑗 + (𝑛𝑗)) = 𝑛)
3836, 37eqtr2d 2765 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑛 = (𝑗 + (2 · ((𝑛𝑗) / 2))))
3938adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → 𝑛 = (𝑗 + (2 · ((𝑛𝑗) / 2))))
4039fveq2d 6862 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘(𝑗 + (2 · ((𝑛𝑗) / 2)))))
4140fvoveq1d 7409 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑗 + (2 · ((𝑛𝑗) / 2)))) − (seq𝑀( + , 𝐹)‘𝑗))))
42 simpll 766 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → 𝜑)
43 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑗𝑍)
4443ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → 𝑗𝑍)
45 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → ((𝑛𝑗) / 2) ∈ ℤ)
4626, 29zsubcld 12643 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑛𝑗) ∈ ℤ)
4746zred 12638 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑛𝑗) ∈ ℝ)
48 2rp 12956 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ+
4948a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 2 ∈ ℝ+)
50 eluzle 12806 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (ℤ𝑗) → 𝑗𝑛)
5150ad2antll 729 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑗𝑛)
5226zred 12638 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑛 ∈ ℝ)
5329zred 12638 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ ℝ)
5452, 53subge0d 11768 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (0 ≤ (𝑛𝑗) ↔ 𝑗𝑛))
5551, 54mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 0 ≤ (𝑛𝑗))
5647, 49, 55divge0d 13035 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 0 ≤ ((𝑛𝑗) / 2))
5756adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → 0 ≤ ((𝑛𝑗) / 2))
58 elnn0z 12542 . . . . . . . . . . . . . . . 16 (((𝑛𝑗) / 2) ∈ ℕ0 ↔ (((𝑛𝑗) / 2) ∈ ℤ ∧ 0 ≤ ((𝑛𝑗) / 2)))
5945, 57, 58sylanbrc 583 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → ((𝑛𝑗) / 2) ∈ ℕ0)
60 iseralt.4 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
61 iseralt.6 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
621, 5, 10, 60, 4, 61iseraltlem3 15650 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍 ∧ ((𝑛𝑗) / 2) ∈ ℕ0) → ((abs‘((seq𝑀( + , 𝐹)‘(𝑗 + (2 · ((𝑛𝑗) / 2)))) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)) ∧ (abs‘((seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((𝑛𝑗) / 2))) + 1)) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1))))
6362simpld 494 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍 ∧ ((𝑛𝑗) / 2) ∈ ℕ0) → (abs‘((seq𝑀( + , 𝐹)‘(𝑗 + (2 · ((𝑛𝑗) / 2)))) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))
6442, 44, 59, 63syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → (abs‘((seq𝑀( + , 𝐹)‘(𝑗 + (2 · ((𝑛𝑗) / 2)))) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))
6541, 64eqbrtrd 5129 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))
66 2div2e1 12322 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 / 2) = 1
6766oveq2i 7398 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑛𝑗) + 1) / 2) − (2 / 2)) = ((((𝑛𝑗) + 1) / 2) − 1)
68 peano2cn 11346 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛𝑗) ∈ ℂ → ((𝑛𝑗) + 1) ∈ ℂ)
6931, 68syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑛𝑗) + 1) ∈ ℂ)
7069, 32, 32, 34divsubdird 11997 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((((𝑛𝑗) + 1) − 2) / 2) = ((((𝑛𝑗) + 1) / 2) − (2 / 2)))
71 df-2 12249 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 = (1 + 1)
7271oveq2i 7398 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑛𝑗) + 1) − 2) = (((𝑛𝑗) + 1) − (1 + 1))
73 ax-1cn 11126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1 ∈ ℂ
7473a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 1 ∈ ℂ)
7531, 74, 74pnpcan2d 11571 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (((𝑛𝑗) + 1) − (1 + 1)) = ((𝑛𝑗) − 1))
7672, 75eqtrid 2776 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (((𝑛𝑗) + 1) − 2) = ((𝑛𝑗) − 1))
7776oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((((𝑛𝑗) + 1) − 2) / 2) = (((𝑛𝑗) − 1) / 2))
7870, 77eqtr3d 2766 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((((𝑛𝑗) + 1) / 2) − (2 / 2)) = (((𝑛𝑗) − 1) / 2))
7967, 78eqtr3id 2778 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((((𝑛𝑗) + 1) / 2) − 1) = (((𝑛𝑗) − 1) / 2))
8079oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (2 · ((((𝑛𝑗) + 1) / 2) − 1)) = (2 · (((𝑛𝑗) − 1) / 2)))
81 subcl 11420 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛𝑗) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛𝑗) − 1) ∈ ℂ)
8231, 73, 81sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑛𝑗) − 1) ∈ ℂ)
8382, 32, 34divcan2d 11960 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (2 · (((𝑛𝑗) − 1) / 2)) = ((𝑛𝑗) − 1))
8427, 30, 74sub32d 11565 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑛𝑗) − 1) = ((𝑛 − 1) − 𝑗))
8580, 83, 843eqtrd 2768 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (2 · ((((𝑛𝑗) + 1) / 2) − 1)) = ((𝑛 − 1) − 𝑗))
8685oveq2d 7403 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) = (𝑗 + ((𝑛 − 1) − 𝑗)))
87 subcl 11420 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − 1) ∈ ℂ)
8827, 73, 87sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑛 − 1) ∈ ℂ)
8930, 88pncan3d 11536 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑗 + ((𝑛 − 1) − 𝑗)) = (𝑛 − 1))
9086, 89eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) = (𝑛 − 1))
9190oveq1d 7402 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) + 1) = ((𝑛 − 1) + 1))
92 npcan 11430 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
9327, 73, 92sylancl 586 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑛 − 1) + 1) = 𝑛)
9491, 93eqtr2d 2765 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑛 = ((𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) + 1))
9594adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → 𝑛 = ((𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) + 1))
9695fveq2d 6862 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) + 1)))
9796fvoveq1d 7409 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) = (abs‘((seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) + 1)) − (seq𝑀( + , 𝐹)‘𝑗))))
98 simpll 766 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → 𝜑)
9943ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → 𝑗𝑍)
100 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → (((𝑛𝑗) + 1) / 2) ∈ ℤ)
101 uznn0sub 12832 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (ℤ𝑗) → (𝑛𝑗) ∈ ℕ0)
102101ad2antll 729 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑛𝑗) ∈ ℕ0)
103 nn0p1nn 12481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛𝑗) ∈ ℕ0 → ((𝑛𝑗) + 1) ∈ ℕ)
104102, 103syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑛𝑗) + 1) ∈ ℕ)
105104nnrpd 12993 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑛𝑗) + 1) ∈ ℝ+)
106105rphalfcld 13007 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (((𝑛𝑗) + 1) / 2) ∈ ℝ+)
107106rpgt0d 12998 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 0 < (((𝑛𝑗) + 1) / 2))
108107adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → 0 < (((𝑛𝑗) + 1) / 2))
109 elnnz 12539 . . . . . . . . . . . . . . . . 17 ((((𝑛𝑗) + 1) / 2) ∈ ℕ ↔ ((((𝑛𝑗) + 1) / 2) ∈ ℤ ∧ 0 < (((𝑛𝑗) + 1) / 2)))
110100, 108, 109sylanbrc 583 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → (((𝑛𝑗) + 1) / 2) ∈ ℕ)
111 nnm1nn0 12483 . . . . . . . . . . . . . . . 16 ((((𝑛𝑗) + 1) / 2) ∈ ℕ → ((((𝑛𝑗) + 1) / 2) − 1) ∈ ℕ0)
112110, 111syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → ((((𝑛𝑗) + 1) / 2) − 1) ∈ ℕ0)
1131, 5, 10, 60, 4, 61iseraltlem3 15650 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍 ∧ ((((𝑛𝑗) + 1) / 2) − 1) ∈ ℕ0) → ((abs‘((seq𝑀( + , 𝐹)‘(𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1)))) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)) ∧ (abs‘((seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) + 1)) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1))))
114113simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍 ∧ ((((𝑛𝑗) + 1) / 2) − 1) ∈ ℕ0) → (abs‘((seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) + 1)) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))
11598, 99, 112, 114syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → (abs‘((seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) + 1)) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))
11697, 115eqbrtrd 5129 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))
117 zeo 12620 . . . . . . . . . . . . . 14 ((𝑛𝑗) ∈ ℤ → (((𝑛𝑗) / 2) ∈ ℤ ∨ (((𝑛𝑗) + 1) / 2) ∈ ℤ))
11846, 117syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (((𝑛𝑗) / 2) ∈ ℤ ∨ (((𝑛𝑗) + 1) / 2) ∈ ℤ))
11965, 116, 118mpjaodan 960 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))
1201peano2uzs 12861 . . . . . . . . . . . . . . 15 (𝑗𝑍 → (𝑗 + 1) ∈ 𝑍)
121120adantr 480 . . . . . . . . . . . . . 14 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑗 + 1) ∈ 𝑍)
122 ffvelcdm 7053 . . . . . . . . . . . . . 14 ((𝐺:𝑍⟶ℝ ∧ (𝑗 + 1) ∈ 𝑍) → (𝐺‘(𝑗 + 1)) ∈ ℝ)
12310, 121, 122syl2an 596 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝐺‘(𝑗 + 1)) ∈ ℝ)
1241, 5, 10, 60, 4iseraltlem1 15648 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 + 1) ∈ 𝑍) → 0 ≤ (𝐺‘(𝑗 + 1)))
125121, 124sylan2 593 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 0 ≤ (𝐺‘(𝑗 + 1)))
126123, 125absidd 15389 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘(𝐺‘(𝑗 + 1))) = (𝐺‘(𝑗 + 1)))
127119, 126breqtrrd 5135 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (abs‘(𝐺‘(𝑗 + 1))))
128127adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (abs‘(𝐺‘(𝑗 + 1))))
129 neg1rr 12172 . . . . . . . . . . . . . . . . . . . . 21 -1 ∈ ℝ
130129a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → -1 ∈ ℝ)
131 neg1ne0 12173 . . . . . . . . . . . . . . . . . . . . 21 -1 ≠ 0
132131a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → -1 ≠ 0)
133 eluzelz 12803 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
134133, 1eleq2s 2846 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝑍𝑘 ∈ ℤ)
135134adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → 𝑘 ∈ ℤ)
136130, 132, 135reexpclzd 14214 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → (-1↑𝑘) ∈ ℝ)
13710ffvelcdmda 7056 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
138136, 137remulcld 11204 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → ((-1↑𝑘) · (𝐺𝑘)) ∈ ℝ)
13961, 138eqeltrd 2828 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
1401, 5, 139serfre 13996 . . . . . . . . . . . . . . . 16 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
1411uztrn2 12812 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
142 ffvelcdm 7053 . . . . . . . . . . . . . . . 16 ((seq𝑀( + , 𝐹):𝑍⟶ℝ ∧ 𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ)
143140, 141, 142syl2an 596 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ)
144 ffvelcdm 7053 . . . . . . . . . . . . . . . 16 ((seq𝑀( + , 𝐹):𝑍⟶ℝ ∧ 𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ)
145140, 43, 144syl2an 596 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ)
146143, 145resubcld 11606 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗)) ∈ ℝ)
147146recnd 11202 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗)) ∈ ℂ)
148147abscld 15405 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ∈ ℝ)
149148adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ∈ ℝ)
150126, 123eqeltrd 2828 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘(𝐺‘(𝑗 + 1))) ∈ ℝ)
151150adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘(𝐺‘(𝑗 + 1))) ∈ ℝ)
152 rpre 12960 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
153152ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑥 ∈ ℝ)
154 lelttr 11264 . . . . . . . . . . 11 (((abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ∈ ℝ ∧ (abs‘(𝐺‘(𝑗 + 1))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (abs‘(𝐺‘(𝑗 + 1))) ∧ (abs‘(𝐺‘(𝑗 + 1))) < 𝑥) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))
155149, 151, 153, 154syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (((abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (abs‘(𝐺‘(𝑗 + 1))) ∧ (abs‘(𝐺‘(𝑗 + 1))) < 𝑥) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))
156128, 155mpand 695 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((abs‘(𝐺‘(𝑗 + 1))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))
157140adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → seq𝑀( + , 𝐹):𝑍⟶ℝ)
158157, 141, 142syl2an 596 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ)
159156, 158jctild 525 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((abs‘(𝐺‘(𝑗 + 1))) < 𝑥 → ((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)))
160159anassrs 467 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑛 ∈ (ℤ𝑗)) → ((abs‘(𝐺‘(𝑗 + 1))) < 𝑥 → ((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)))
161160ralrimdva 3133 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → ((abs‘(𝐺‘(𝑗 + 1))) < 𝑥 → ∀𝑛 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)))
16224, 161syld 47 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑛 ∈ (ℤ𝑗)(abs‘(𝐺𝑛)) < 𝑥 → ∀𝑛 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)))
163162reximdva 3146 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(𝐺𝑛)) < 𝑥 → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)))
164163ralimdva 3145 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(𝐺𝑛)) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)))
16514, 164mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))
1661, 3, 165caurcvg2 15644 1 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447   class class class wbr 5107  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  cz 12529  cuz 12793  +crp 12951  seqcseq 13966  cexp 14026  abscabs 15200  cli 15450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ico 13312  df-fz 13469  df-fl 13754  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455
This theorem is referenced by:  leibpi  26852
  Copyright terms: Public domain W3C validator