MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iseralt Structured version   Visualization version   GIF version

Theorem iseralt 15592
Description: The alternating series test. If 𝐺(𝑘) is a decreasing sequence that converges to 0, then Σ𝑘𝑍(-1↑𝑘) · 𝐺(𝑘) is a convergent series. (Note that the first term is positive if 𝑀 is even, and negative if 𝑀 is odd. If the parity of your series does not match up with this, you will need to post-compose the series with multiplication by -1 using isermulc2 15565.) (Contributed by Mario Carneiro, 7-Apr-2015.) (Proof shortened by AV, 9-Jul-2022.)
Hypotheses
Ref Expression
iseralt.1 𝑍 = (ℤ𝑀)
iseralt.2 (𝜑𝑀 ∈ ℤ)
iseralt.3 (𝜑𝐺:𝑍⟶ℝ)
iseralt.4 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
iseralt.5 (𝜑𝐺 ⇝ 0)
iseralt.6 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
Assertion
Ref Expression
iseralt (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍

Proof of Theorem iseralt
Dummy variables 𝑗 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseralt.1 . 2 𝑍 = (ℤ𝑀)
2 seqex 13910 . . 3 seq𝑀( + , 𝐹) ∈ V
32a1i 11 . 2 (𝜑 → seq𝑀( + , 𝐹) ∈ V)
4 iseralt.5 . . . 4 (𝜑𝐺 ⇝ 0)
5 iseralt.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
6 climrel 15399 . . . . . . 7 Rel ⇝
76brrelex1i 5675 . . . . . 6 (𝐺 ⇝ 0 → 𝐺 ∈ V)
84, 7syl 17 . . . . 5 (𝜑𝐺 ∈ V)
9 eqidd 2730 . . . . 5 ((𝜑𝑛𝑍) → (𝐺𝑛) = (𝐺𝑛))
10 iseralt.3 . . . . . . 7 (𝜑𝐺:𝑍⟶ℝ)
1110ffvelcdmda 7018 . . . . . 6 ((𝜑𝑛𝑍) → (𝐺𝑛) ∈ ℝ)
1211recnd 11143 . . . . 5 ((𝜑𝑛𝑍) → (𝐺𝑛) ∈ ℂ)
131, 5, 8, 9, 12clim0c 15414 . . . 4 (𝜑 → (𝐺 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(𝐺𝑛)) < 𝑥))
144, 13mpbid 232 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(𝐺𝑛)) < 𝑥)
15 simpr 484 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑗𝑍)
1615, 1eleqtrdi 2838 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
17 eluzelz 12745 . . . . . . . 8 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
18 uzid 12750 . . . . . . . 8 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
1916, 17, 183syl 18 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → 𝑗 ∈ (ℤ𝑗))
20 peano2uz 12802 . . . . . . 7 (𝑗 ∈ (ℤ𝑗) → (𝑗 + 1) ∈ (ℤ𝑗))
21 2fveq3 6827 . . . . . . . . 9 (𝑛 = (𝑗 + 1) → (abs‘(𝐺𝑛)) = (abs‘(𝐺‘(𝑗 + 1))))
2221breq1d 5102 . . . . . . . 8 (𝑛 = (𝑗 + 1) → ((abs‘(𝐺𝑛)) < 𝑥 ↔ (abs‘(𝐺‘(𝑗 + 1))) < 𝑥))
2322rspcv 3573 . . . . . . 7 ((𝑗 + 1) ∈ (ℤ𝑗) → (∀𝑛 ∈ (ℤ𝑗)(abs‘(𝐺𝑛)) < 𝑥 → (abs‘(𝐺‘(𝑗 + 1))) < 𝑥))
2419, 20, 233syl 18 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑛 ∈ (ℤ𝑗)(abs‘(𝐺𝑛)) < 𝑥 → (abs‘(𝐺‘(𝑗 + 1))) < 𝑥))
25 eluzelz 12745 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (ℤ𝑗) → 𝑛 ∈ ℤ)
2625ad2antll 729 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑛 ∈ ℤ)
2726zcnd 12581 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑛 ∈ ℂ)
2817, 1eleq2s 2846 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗𝑍𝑗 ∈ ℤ)
2928ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ ℤ)
3029zcnd 12581 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ ℂ)
3127, 30subcld 11475 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑛𝑗) ∈ ℂ)
32 2cnd 12206 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 2 ∈ ℂ)
33 2ne0 12232 . . . . . . . . . . . . . . . . . . . . 21 2 ≠ 0
3433a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 2 ≠ 0)
3531, 32, 34divcan2d 11902 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (2 · ((𝑛𝑗) / 2)) = (𝑛𝑗))
3635oveq2d 7365 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑗 + (2 · ((𝑛𝑗) / 2))) = (𝑗 + (𝑛𝑗)))
3730, 27pncan3d 11478 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑗 + (𝑛𝑗)) = 𝑛)
3836, 37eqtr2d 2765 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑛 = (𝑗 + (2 · ((𝑛𝑗) / 2))))
3938adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → 𝑛 = (𝑗 + (2 · ((𝑛𝑗) / 2))))
4039fveq2d 6826 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘(𝑗 + (2 · ((𝑛𝑗) / 2)))))
4140fvoveq1d 7371 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑗 + (2 · ((𝑛𝑗) / 2)))) − (seq𝑀( + , 𝐹)‘𝑗))))
42 simpll 766 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → 𝜑)
43 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑗𝑍)
4443ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → 𝑗𝑍)
45 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → ((𝑛𝑗) / 2) ∈ ℤ)
4626, 29zsubcld 12585 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑛𝑗) ∈ ℤ)
4746zred 12580 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑛𝑗) ∈ ℝ)
48 2rp 12898 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ+
4948a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 2 ∈ ℝ+)
50 eluzle 12748 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (ℤ𝑗) → 𝑗𝑛)
5150ad2antll 729 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑗𝑛)
5226zred 12580 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑛 ∈ ℝ)
5329zred 12580 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ ℝ)
5452, 53subge0d 11710 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (0 ≤ (𝑛𝑗) ↔ 𝑗𝑛))
5551, 54mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 0 ≤ (𝑛𝑗))
5647, 49, 55divge0d 12977 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 0 ≤ ((𝑛𝑗) / 2))
5756adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → 0 ≤ ((𝑛𝑗) / 2))
58 elnn0z 12484 . . . . . . . . . . . . . . . 16 (((𝑛𝑗) / 2) ∈ ℕ0 ↔ (((𝑛𝑗) / 2) ∈ ℤ ∧ 0 ≤ ((𝑛𝑗) / 2)))
5945, 57, 58sylanbrc 583 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → ((𝑛𝑗) / 2) ∈ ℕ0)
60 iseralt.4 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 1)) ≤ (𝐺𝑘))
61 iseralt.6 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((-1↑𝑘) · (𝐺𝑘)))
621, 5, 10, 60, 4, 61iseraltlem3 15591 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍 ∧ ((𝑛𝑗) / 2) ∈ ℕ0) → ((abs‘((seq𝑀( + , 𝐹)‘(𝑗 + (2 · ((𝑛𝑗) / 2)))) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)) ∧ (abs‘((seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((𝑛𝑗) / 2))) + 1)) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1))))
6362simpld 494 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍 ∧ ((𝑛𝑗) / 2) ∈ ℕ0) → (abs‘((seq𝑀( + , 𝐹)‘(𝑗 + (2 · ((𝑛𝑗) / 2)))) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))
6442, 44, 59, 63syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → (abs‘((seq𝑀( + , 𝐹)‘(𝑗 + (2 · ((𝑛𝑗) / 2)))) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))
6541, 64eqbrtrd 5114 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ ((𝑛𝑗) / 2) ∈ ℤ) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))
66 2div2e1 12264 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 / 2) = 1
6766oveq2i 7360 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑛𝑗) + 1) / 2) − (2 / 2)) = ((((𝑛𝑗) + 1) / 2) − 1)
68 peano2cn 11288 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛𝑗) ∈ ℂ → ((𝑛𝑗) + 1) ∈ ℂ)
6931, 68syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑛𝑗) + 1) ∈ ℂ)
7069, 32, 32, 34divsubdird 11939 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((((𝑛𝑗) + 1) − 2) / 2) = ((((𝑛𝑗) + 1) / 2) − (2 / 2)))
71 df-2 12191 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 = (1 + 1)
7271oveq2i 7360 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑛𝑗) + 1) − 2) = (((𝑛𝑗) + 1) − (1 + 1))
73 ax-1cn 11067 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1 ∈ ℂ
7473a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 1 ∈ ℂ)
7531, 74, 74pnpcan2d 11513 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (((𝑛𝑗) + 1) − (1 + 1)) = ((𝑛𝑗) − 1))
7672, 75eqtrid 2776 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (((𝑛𝑗) + 1) − 2) = ((𝑛𝑗) − 1))
7776oveq1d 7364 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((((𝑛𝑗) + 1) − 2) / 2) = (((𝑛𝑗) − 1) / 2))
7870, 77eqtr3d 2766 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((((𝑛𝑗) + 1) / 2) − (2 / 2)) = (((𝑛𝑗) − 1) / 2))
7967, 78eqtr3id 2778 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((((𝑛𝑗) + 1) / 2) − 1) = (((𝑛𝑗) − 1) / 2))
8079oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (2 · ((((𝑛𝑗) + 1) / 2) − 1)) = (2 · (((𝑛𝑗) − 1) / 2)))
81 subcl 11362 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛𝑗) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛𝑗) − 1) ∈ ℂ)
8231, 73, 81sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑛𝑗) − 1) ∈ ℂ)
8382, 32, 34divcan2d 11902 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (2 · (((𝑛𝑗) − 1) / 2)) = ((𝑛𝑗) − 1))
8427, 30, 74sub32d 11507 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑛𝑗) − 1) = ((𝑛 − 1) − 𝑗))
8580, 83, 843eqtrd 2768 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (2 · ((((𝑛𝑗) + 1) / 2) − 1)) = ((𝑛 − 1) − 𝑗))
8685oveq2d 7365 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) = (𝑗 + ((𝑛 − 1) − 𝑗)))
87 subcl 11362 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − 1) ∈ ℂ)
8827, 73, 87sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑛 − 1) ∈ ℂ)
8930, 88pncan3d 11478 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑗 + ((𝑛 − 1) − 𝑗)) = (𝑛 − 1))
9086, 89eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) = (𝑛 − 1))
9190oveq1d 7364 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) + 1) = ((𝑛 − 1) + 1))
92 npcan 11372 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
9327, 73, 92sylancl 586 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑛 − 1) + 1) = 𝑛)
9491, 93eqtr2d 2765 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑛 = ((𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) + 1))
9594adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → 𝑛 = ((𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) + 1))
9695fveq2d 6826 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) + 1)))
9796fvoveq1d 7371 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) = (abs‘((seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) + 1)) − (seq𝑀( + , 𝐹)‘𝑗))))
98 simpll 766 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → 𝜑)
9943ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → 𝑗𝑍)
100 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → (((𝑛𝑗) + 1) / 2) ∈ ℤ)
101 uznn0sub 12774 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (ℤ𝑗) → (𝑛𝑗) ∈ ℕ0)
102101ad2antll 729 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑛𝑗) ∈ ℕ0)
103 nn0p1nn 12423 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛𝑗) ∈ ℕ0 → ((𝑛𝑗) + 1) ∈ ℕ)
104102, 103syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑛𝑗) + 1) ∈ ℕ)
105104nnrpd 12935 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑛𝑗) + 1) ∈ ℝ+)
106105rphalfcld 12949 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (((𝑛𝑗) + 1) / 2) ∈ ℝ+)
107106rpgt0d 12940 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 0 < (((𝑛𝑗) + 1) / 2))
108107adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → 0 < (((𝑛𝑗) + 1) / 2))
109 elnnz 12481 . . . . . . . . . . . . . . . . 17 ((((𝑛𝑗) + 1) / 2) ∈ ℕ ↔ ((((𝑛𝑗) + 1) / 2) ∈ ℤ ∧ 0 < (((𝑛𝑗) + 1) / 2)))
110100, 108, 109sylanbrc 583 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → (((𝑛𝑗) + 1) / 2) ∈ ℕ)
111 nnm1nn0 12425 . . . . . . . . . . . . . . . 16 ((((𝑛𝑗) + 1) / 2) ∈ ℕ → ((((𝑛𝑗) + 1) / 2) − 1) ∈ ℕ0)
112110, 111syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → ((((𝑛𝑗) + 1) / 2) − 1) ∈ ℕ0)
1131, 5, 10, 60, 4, 61iseraltlem3 15591 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍 ∧ ((((𝑛𝑗) + 1) / 2) − 1) ∈ ℕ0) → ((abs‘((seq𝑀( + , 𝐹)‘(𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1)))) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)) ∧ (abs‘((seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) + 1)) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1))))
114113simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍 ∧ ((((𝑛𝑗) + 1) / 2) − 1) ∈ ℕ0) → (abs‘((seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) + 1)) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))
11598, 99, 112, 114syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → (abs‘((seq𝑀( + , 𝐹)‘((𝑗 + (2 · ((((𝑛𝑗) + 1) / 2) − 1))) + 1)) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))
11697, 115eqbrtrd 5114 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ (((𝑛𝑗) + 1) / 2) ∈ ℤ) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))
117 zeo 12562 . . . . . . . . . . . . . 14 ((𝑛𝑗) ∈ ℤ → (((𝑛𝑗) / 2) ∈ ℤ ∨ (((𝑛𝑗) + 1) / 2) ∈ ℤ))
11846, 117syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (((𝑛𝑗) / 2) ∈ ℤ ∨ (((𝑛𝑗) + 1) / 2) ∈ ℤ))
11965, 116, 118mpjaodan 960 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (𝐺‘(𝑗 + 1)))
1201peano2uzs 12803 . . . . . . . . . . . . . . 15 (𝑗𝑍 → (𝑗 + 1) ∈ 𝑍)
121120adantr 480 . . . . . . . . . . . . . 14 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑗 + 1) ∈ 𝑍)
122 ffvelcdm 7015 . . . . . . . . . . . . . 14 ((𝐺:𝑍⟶ℝ ∧ (𝑗 + 1) ∈ 𝑍) → (𝐺‘(𝑗 + 1)) ∈ ℝ)
12310, 121, 122syl2an 596 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝐺‘(𝑗 + 1)) ∈ ℝ)
1241, 5, 10, 60, 4iseraltlem1 15589 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 + 1) ∈ 𝑍) → 0 ≤ (𝐺‘(𝑗 + 1)))
125121, 124sylan2 593 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 0 ≤ (𝐺‘(𝑗 + 1)))
126123, 125absidd 15330 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘(𝐺‘(𝑗 + 1))) = (𝐺‘(𝑗 + 1)))
127119, 126breqtrrd 5120 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (abs‘(𝐺‘(𝑗 + 1))))
128127adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (abs‘(𝐺‘(𝑗 + 1))))
129 neg1rr 12114 . . . . . . . . . . . . . . . . . . . . 21 -1 ∈ ℝ
130129a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → -1 ∈ ℝ)
131 neg1ne0 12115 . . . . . . . . . . . . . . . . . . . . 21 -1 ≠ 0
132131a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → -1 ≠ 0)
133 eluzelz 12745 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
134133, 1eleq2s 2846 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝑍𝑘 ∈ ℤ)
135134adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → 𝑘 ∈ ℤ)
136130, 132, 135reexpclzd 14156 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → (-1↑𝑘) ∈ ℝ)
13710ffvelcdmda 7018 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
138136, 137remulcld 11145 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → ((-1↑𝑘) · (𝐺𝑘)) ∈ ℝ)
13961, 138eqeltrd 2828 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
1401, 5, 139serfre 13938 . . . . . . . . . . . . . . . 16 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
1411uztrn2 12754 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
142 ffvelcdm 7015 . . . . . . . . . . . . . . . 16 ((seq𝑀( + , 𝐹):𝑍⟶ℝ ∧ 𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ)
143140, 141, 142syl2an 596 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ)
144 ffvelcdm 7015 . . . . . . . . . . . . . . . 16 ((seq𝑀( + , 𝐹):𝑍⟶ℝ ∧ 𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ)
145140, 43, 144syl2an 596 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ)
146143, 145resubcld 11548 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗)) ∈ ℝ)
147146recnd 11143 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗)) ∈ ℂ)
148147abscld 15346 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ∈ ℝ)
149148adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ∈ ℝ)
150126, 123eqeltrd 2828 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘(𝐺‘(𝑗 + 1))) ∈ ℝ)
151150adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘(𝐺‘(𝑗 + 1))) ∈ ℝ)
152 rpre 12902 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
153152ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑥 ∈ ℝ)
154 lelttr 11206 . . . . . . . . . . 11 (((abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ∈ ℝ ∧ (abs‘(𝐺‘(𝑗 + 1))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (abs‘(𝐺‘(𝑗 + 1))) ∧ (abs‘(𝐺‘(𝑗 + 1))) < 𝑥) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))
155149, 151, 153, 154syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (((abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) ≤ (abs‘(𝐺‘(𝑗 + 1))) ∧ (abs‘(𝐺‘(𝑗 + 1))) < 𝑥) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))
156128, 155mpand 695 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((abs‘(𝐺‘(𝑗 + 1))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))
157140adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → seq𝑀( + , 𝐹):𝑍⟶ℝ)
158157, 141, 142syl2an 596 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ)
159156, 158jctild 525 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((abs‘(𝐺‘(𝑗 + 1))) < 𝑥 → ((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)))
160159anassrs 467 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑛 ∈ (ℤ𝑗)) → ((abs‘(𝐺‘(𝑗 + 1))) < 𝑥 → ((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)))
161160ralrimdva 3129 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → ((abs‘(𝐺‘(𝑗 + 1))) < 𝑥 → ∀𝑛 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)))
16224, 161syld 47 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑛 ∈ (ℤ𝑗)(abs‘(𝐺𝑛)) < 𝑥 → ∀𝑛 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)))
163162reximdva 3142 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(𝐺𝑛)) < 𝑥 → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)))
164163ralimdva 3141 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘(𝐺𝑛)) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)))
16514, 164mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))
1661, 3, 165caurcvg2 15585 1 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3436   class class class wbr 5092  dom cdm 5619  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  cmin 11347  -cneg 11348   / cdiv 11777  cn 12128  2c2 12183  0cn0 12384  cz 12471  cuz 12735  +crp 12893  seqcseq 13908  cexp 13968  abscabs 15141  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-fz 13411  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396
This theorem is referenced by:  leibpi  26850
  Copyright terms: Public domain W3C validator