Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackval2 Structured version   Visualization version   GIF version

Theorem ackval2 48675
Description: The Ackermann function at 2. (Contributed by AV, 4-May-2024.)
Assertion
Ref Expression
ackval2 (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3))

Proof of Theorem ackval2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 df-2 12256 . . 3 2 = (1 + 1)
21fveq2i 6864 . 2 (Ack‘2) = (Ack‘(1 + 1))
3 1nn0 12465 . . 3 1 ∈ ℕ0
4 ackvalsuc1mpt 48671 . . 3 (1 ∈ ℕ0 → (Ack‘(1 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1)))
53, 4ax-mp 5 . 2 (Ack‘(1 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1))
6 peano2nn0 12489 . . . . . 6 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
7 2nn0 12466 . . . . . 6 2 ∈ ℕ0
8 ackval1 48674 . . . . . . 7 (Ack‘1) = (𝑖 ∈ ℕ0 ↦ (𝑖 + 2))
98itcovalpc 48665 . . . . . 6 (((𝑛 + 1) ∈ ℕ0 ∧ 2 ∈ ℕ0) → ((IterComp‘(Ack‘1))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1)))))
106, 7, 9sylancl 586 . . . . 5 (𝑛 ∈ ℕ0 → ((IterComp‘(Ack‘1))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1)))))
1110fveq1d 6863 . . . 4 (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1) = ((𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1))))‘1))
12 eqidd 2731 . . . . 5 (𝑛 ∈ ℕ0 → (𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1)))) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1)))))
13 oveq1 7397 . . . . . 6 (𝑖 = 1 → (𝑖 + (2 · (𝑛 + 1))) = (1 + (2 · (𝑛 + 1))))
1413adantl 481 . . . . 5 ((𝑛 ∈ ℕ0𝑖 = 1) → (𝑖 + (2 · (𝑛 + 1))) = (1 + (2 · (𝑛 + 1))))
153a1i 11 . . . . 5 (𝑛 ∈ ℕ0 → 1 ∈ ℕ0)
16 ovexd 7425 . . . . 5 (𝑛 ∈ ℕ0 → (1 + (2 · (𝑛 + 1))) ∈ V)
1712, 14, 15, 16fvmptd 6978 . . . 4 (𝑛 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1))))‘1) = (1 + (2 · (𝑛 + 1))))
18 nn0cn 12459 . . . . 5 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
19 1cnd 11176 . . . . . . 7 (𝑛 ∈ ℂ → 1 ∈ ℂ)
20 2cnd 12271 . . . . . . . 8 (𝑛 ∈ ℂ → 2 ∈ ℂ)
21 peano2cn 11353 . . . . . . . 8 (𝑛 ∈ ℂ → (𝑛 + 1) ∈ ℂ)
2220, 21mulcld 11201 . . . . . . 7 (𝑛 ∈ ℂ → (2 · (𝑛 + 1)) ∈ ℂ)
2319, 22addcomd 11383 . . . . . 6 (𝑛 ∈ ℂ → (1 + (2 · (𝑛 + 1))) = ((2 · (𝑛 + 1)) + 1))
24 id 22 . . . . . . . 8 (𝑛 ∈ ℂ → 𝑛 ∈ ℂ)
2520, 24, 19adddid 11205 . . . . . . 7 (𝑛 ∈ ℂ → (2 · (𝑛 + 1)) = ((2 · 𝑛) + (2 · 1)))
2625oveq1d 7405 . . . . . 6 (𝑛 ∈ ℂ → ((2 · (𝑛 + 1)) + 1) = (((2 · 𝑛) + (2 · 1)) + 1))
2720, 24mulcld 11201 . . . . . . . 8 (𝑛 ∈ ℂ → (2 · 𝑛) ∈ ℂ)
2820, 19mulcld 11201 . . . . . . . 8 (𝑛 ∈ ℂ → (2 · 1) ∈ ℂ)
2927, 28, 19addassd 11203 . . . . . . 7 (𝑛 ∈ ℂ → (((2 · 𝑛) + (2 · 1)) + 1) = ((2 · 𝑛) + ((2 · 1) + 1)))
30 2t1e2 12351 . . . . . . . . . . 11 (2 · 1) = 2
3130oveq1i 7400 . . . . . . . . . 10 ((2 · 1) + 1) = (2 + 1)
32 2p1e3 12330 . . . . . . . . . 10 (2 + 1) = 3
3331, 32eqtri 2753 . . . . . . . . 9 ((2 · 1) + 1) = 3
3433a1i 11 . . . . . . . 8 (𝑛 ∈ ℂ → ((2 · 1) + 1) = 3)
3534oveq2d 7406 . . . . . . 7 (𝑛 ∈ ℂ → ((2 · 𝑛) + ((2 · 1) + 1)) = ((2 · 𝑛) + 3))
3629, 35eqtrd 2765 . . . . . 6 (𝑛 ∈ ℂ → (((2 · 𝑛) + (2 · 1)) + 1) = ((2 · 𝑛) + 3))
3723, 26, 363eqtrd 2769 . . . . 5 (𝑛 ∈ ℂ → (1 + (2 · (𝑛 + 1))) = ((2 · 𝑛) + 3))
3818, 37syl 17 . . . 4 (𝑛 ∈ ℕ0 → (1 + (2 · (𝑛 + 1))) = ((2 · 𝑛) + 3))
3911, 17, 383eqtrd 2769 . . 3 (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1) = ((2 · 𝑛) + 3))
4039mpteq2ia 5205 . 2 (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3))
412, 5, 403eqtri 2757 1 (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3450  cmpt 5191  cfv 6514  (class class class)co 7390  cc 11073  1c1 11076   + caddc 11078   · cmul 11080  2c2 12248  3c3 12249  0cn0 12449  IterCompcitco 48650  Ackcack 48651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-seq 13974  df-itco 48652  df-ack 48653
This theorem is referenced by:  ackval3  48676  ackval2012  48684
  Copyright terms: Public domain W3C validator