Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackval2 Structured version   Visualization version   GIF version

Theorem ackval2 48671
Description: The Ackermann function at 2. (Contributed by AV, 4-May-2024.)
Assertion
Ref Expression
ackval2 (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3))

Proof of Theorem ackval2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 df-2 12249 . . 3 2 = (1 + 1)
21fveq2i 6861 . 2 (Ack‘2) = (Ack‘(1 + 1))
3 1nn0 12458 . . 3 1 ∈ ℕ0
4 ackvalsuc1mpt 48667 . . 3 (1 ∈ ℕ0 → (Ack‘(1 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1)))
53, 4ax-mp 5 . 2 (Ack‘(1 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1))
6 peano2nn0 12482 . . . . . 6 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
7 2nn0 12459 . . . . . 6 2 ∈ ℕ0
8 ackval1 48670 . . . . . . 7 (Ack‘1) = (𝑖 ∈ ℕ0 ↦ (𝑖 + 2))
98itcovalpc 48661 . . . . . 6 (((𝑛 + 1) ∈ ℕ0 ∧ 2 ∈ ℕ0) → ((IterComp‘(Ack‘1))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1)))))
106, 7, 9sylancl 586 . . . . 5 (𝑛 ∈ ℕ0 → ((IterComp‘(Ack‘1))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1)))))
1110fveq1d 6860 . . . 4 (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1) = ((𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1))))‘1))
12 eqidd 2730 . . . . 5 (𝑛 ∈ ℕ0 → (𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1)))) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1)))))
13 oveq1 7394 . . . . . 6 (𝑖 = 1 → (𝑖 + (2 · (𝑛 + 1))) = (1 + (2 · (𝑛 + 1))))
1413adantl 481 . . . . 5 ((𝑛 ∈ ℕ0𝑖 = 1) → (𝑖 + (2 · (𝑛 + 1))) = (1 + (2 · (𝑛 + 1))))
153a1i 11 . . . . 5 (𝑛 ∈ ℕ0 → 1 ∈ ℕ0)
16 ovexd 7422 . . . . 5 (𝑛 ∈ ℕ0 → (1 + (2 · (𝑛 + 1))) ∈ V)
1712, 14, 15, 16fvmptd 6975 . . . 4 (𝑛 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1))))‘1) = (1 + (2 · (𝑛 + 1))))
18 nn0cn 12452 . . . . 5 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
19 1cnd 11169 . . . . . . 7 (𝑛 ∈ ℂ → 1 ∈ ℂ)
20 2cnd 12264 . . . . . . . 8 (𝑛 ∈ ℂ → 2 ∈ ℂ)
21 peano2cn 11346 . . . . . . . 8 (𝑛 ∈ ℂ → (𝑛 + 1) ∈ ℂ)
2220, 21mulcld 11194 . . . . . . 7 (𝑛 ∈ ℂ → (2 · (𝑛 + 1)) ∈ ℂ)
2319, 22addcomd 11376 . . . . . 6 (𝑛 ∈ ℂ → (1 + (2 · (𝑛 + 1))) = ((2 · (𝑛 + 1)) + 1))
24 id 22 . . . . . . . 8 (𝑛 ∈ ℂ → 𝑛 ∈ ℂ)
2520, 24, 19adddid 11198 . . . . . . 7 (𝑛 ∈ ℂ → (2 · (𝑛 + 1)) = ((2 · 𝑛) + (2 · 1)))
2625oveq1d 7402 . . . . . 6 (𝑛 ∈ ℂ → ((2 · (𝑛 + 1)) + 1) = (((2 · 𝑛) + (2 · 1)) + 1))
2720, 24mulcld 11194 . . . . . . . 8 (𝑛 ∈ ℂ → (2 · 𝑛) ∈ ℂ)
2820, 19mulcld 11194 . . . . . . . 8 (𝑛 ∈ ℂ → (2 · 1) ∈ ℂ)
2927, 28, 19addassd 11196 . . . . . . 7 (𝑛 ∈ ℂ → (((2 · 𝑛) + (2 · 1)) + 1) = ((2 · 𝑛) + ((2 · 1) + 1)))
30 2t1e2 12344 . . . . . . . . . . 11 (2 · 1) = 2
3130oveq1i 7397 . . . . . . . . . 10 ((2 · 1) + 1) = (2 + 1)
32 2p1e3 12323 . . . . . . . . . 10 (2 + 1) = 3
3331, 32eqtri 2752 . . . . . . . . 9 ((2 · 1) + 1) = 3
3433a1i 11 . . . . . . . 8 (𝑛 ∈ ℂ → ((2 · 1) + 1) = 3)
3534oveq2d 7403 . . . . . . 7 (𝑛 ∈ ℂ → ((2 · 𝑛) + ((2 · 1) + 1)) = ((2 · 𝑛) + 3))
3629, 35eqtrd 2764 . . . . . 6 (𝑛 ∈ ℂ → (((2 · 𝑛) + (2 · 1)) + 1) = ((2 · 𝑛) + 3))
3723, 26, 363eqtrd 2768 . . . . 5 (𝑛 ∈ ℂ → (1 + (2 · (𝑛 + 1))) = ((2 · 𝑛) + 3))
3818, 37syl 17 . . . 4 (𝑛 ∈ ℕ0 → (1 + (2 · (𝑛 + 1))) = ((2 · 𝑛) + 3))
3911, 17, 383eqtrd 2768 . . 3 (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1) = ((2 · 𝑛) + 3))
4039mpteq2ia 5202 . 2 (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3))
412, 5, 403eqtri 2756 1 (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3447  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  1c1 11069   + caddc 11071   · cmul 11073  2c2 12241  3c3 12242  0cn0 12442  IterCompcitco 48646  Ackcack 48647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-itco 48648  df-ack 48649
This theorem is referenced by:  ackval3  48672  ackval2012  48680
  Copyright terms: Public domain W3C validator