Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackval2 Structured version   Visualization version   GIF version

Theorem ackval2 48662
Description: The Ackermann function at 2. (Contributed by AV, 4-May-2024.)
Assertion
Ref Expression
ackval2 (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3))

Proof of Theorem ackval2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 df-2 12303 . . 3 2 = (1 + 1)
21fveq2i 6879 . 2 (Ack‘2) = (Ack‘(1 + 1))
3 1nn0 12517 . . 3 1 ∈ ℕ0
4 ackvalsuc1mpt 48658 . . 3 (1 ∈ ℕ0 → (Ack‘(1 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1)))
53, 4ax-mp 5 . 2 (Ack‘(1 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1))
6 peano2nn0 12541 . . . . . 6 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
7 2nn0 12518 . . . . . 6 2 ∈ ℕ0
8 ackval1 48661 . . . . . . 7 (Ack‘1) = (𝑖 ∈ ℕ0 ↦ (𝑖 + 2))
98itcovalpc 48652 . . . . . 6 (((𝑛 + 1) ∈ ℕ0 ∧ 2 ∈ ℕ0) → ((IterComp‘(Ack‘1))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1)))))
106, 7, 9sylancl 586 . . . . 5 (𝑛 ∈ ℕ0 → ((IterComp‘(Ack‘1))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1)))))
1110fveq1d 6878 . . . 4 (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1) = ((𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1))))‘1))
12 eqidd 2736 . . . . 5 (𝑛 ∈ ℕ0 → (𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1)))) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1)))))
13 oveq1 7412 . . . . . 6 (𝑖 = 1 → (𝑖 + (2 · (𝑛 + 1))) = (1 + (2 · (𝑛 + 1))))
1413adantl 481 . . . . 5 ((𝑛 ∈ ℕ0𝑖 = 1) → (𝑖 + (2 · (𝑛 + 1))) = (1 + (2 · (𝑛 + 1))))
153a1i 11 . . . . 5 (𝑛 ∈ ℕ0 → 1 ∈ ℕ0)
16 ovexd 7440 . . . . 5 (𝑛 ∈ ℕ0 → (1 + (2 · (𝑛 + 1))) ∈ V)
1712, 14, 15, 16fvmptd 6993 . . . 4 (𝑛 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1))))‘1) = (1 + (2 · (𝑛 + 1))))
18 nn0cn 12511 . . . . 5 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
19 1cnd 11230 . . . . . . 7 (𝑛 ∈ ℂ → 1 ∈ ℂ)
20 2cnd 12318 . . . . . . . 8 (𝑛 ∈ ℂ → 2 ∈ ℂ)
21 peano2cn 11407 . . . . . . . 8 (𝑛 ∈ ℂ → (𝑛 + 1) ∈ ℂ)
2220, 21mulcld 11255 . . . . . . 7 (𝑛 ∈ ℂ → (2 · (𝑛 + 1)) ∈ ℂ)
2319, 22addcomd 11437 . . . . . 6 (𝑛 ∈ ℂ → (1 + (2 · (𝑛 + 1))) = ((2 · (𝑛 + 1)) + 1))
24 id 22 . . . . . . . 8 (𝑛 ∈ ℂ → 𝑛 ∈ ℂ)
2520, 24, 19adddid 11259 . . . . . . 7 (𝑛 ∈ ℂ → (2 · (𝑛 + 1)) = ((2 · 𝑛) + (2 · 1)))
2625oveq1d 7420 . . . . . 6 (𝑛 ∈ ℂ → ((2 · (𝑛 + 1)) + 1) = (((2 · 𝑛) + (2 · 1)) + 1))
2720, 24mulcld 11255 . . . . . . . 8 (𝑛 ∈ ℂ → (2 · 𝑛) ∈ ℂ)
2820, 19mulcld 11255 . . . . . . . 8 (𝑛 ∈ ℂ → (2 · 1) ∈ ℂ)
2927, 28, 19addassd 11257 . . . . . . 7 (𝑛 ∈ ℂ → (((2 · 𝑛) + (2 · 1)) + 1) = ((2 · 𝑛) + ((2 · 1) + 1)))
30 2t1e2 12403 . . . . . . . . . . 11 (2 · 1) = 2
3130oveq1i 7415 . . . . . . . . . 10 ((2 · 1) + 1) = (2 + 1)
32 2p1e3 12382 . . . . . . . . . 10 (2 + 1) = 3
3331, 32eqtri 2758 . . . . . . . . 9 ((2 · 1) + 1) = 3
3433a1i 11 . . . . . . . 8 (𝑛 ∈ ℂ → ((2 · 1) + 1) = 3)
3534oveq2d 7421 . . . . . . 7 (𝑛 ∈ ℂ → ((2 · 𝑛) + ((2 · 1) + 1)) = ((2 · 𝑛) + 3))
3629, 35eqtrd 2770 . . . . . 6 (𝑛 ∈ ℂ → (((2 · 𝑛) + (2 · 1)) + 1) = ((2 · 𝑛) + 3))
3723, 26, 363eqtrd 2774 . . . . 5 (𝑛 ∈ ℂ → (1 + (2 · (𝑛 + 1))) = ((2 · 𝑛) + 3))
3818, 37syl 17 . . . 4 (𝑛 ∈ ℕ0 → (1 + (2 · (𝑛 + 1))) = ((2 · 𝑛) + 3))
3911, 17, 383eqtrd 2774 . . 3 (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1) = ((2 · 𝑛) + 3))
4039mpteq2ia 5216 . 2 (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3))
412, 5, 403eqtri 2762 1 (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  Vcvv 3459  cmpt 5201  cfv 6531  (class class class)co 7405  cc 11127  1c1 11130   + caddc 11132   · cmul 11134  2c2 12295  3c3 12296  0cn0 12501  IterCompcitco 48637  Ackcack 48638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-seq 14020  df-itco 48639  df-ack 48640
This theorem is referenced by:  ackval3  48663  ackval2012  48671
  Copyright terms: Public domain W3C validator