Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackval2 Structured version   Visualization version   GIF version

Theorem ackval2 48070
Description: The Ackermann function at 2. (Contributed by AV, 4-May-2024.)
Assertion
Ref Expression
ackval2 (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3))

Proof of Theorem ackval2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 df-2 12327 . . 3 2 = (1 + 1)
21fveq2i 6904 . 2 (Ack‘2) = (Ack‘(1 + 1))
3 1nn0 12540 . . 3 1 ∈ ℕ0
4 ackvalsuc1mpt 48066 . . 3 (1 ∈ ℕ0 → (Ack‘(1 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1)))
53, 4ax-mp 5 . 2 (Ack‘(1 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1))
6 peano2nn0 12564 . . . . . 6 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
7 2nn0 12541 . . . . . 6 2 ∈ ℕ0
8 ackval1 48069 . . . . . . 7 (Ack‘1) = (𝑖 ∈ ℕ0 ↦ (𝑖 + 2))
98itcovalpc 48060 . . . . . 6 (((𝑛 + 1) ∈ ℕ0 ∧ 2 ∈ ℕ0) → ((IterComp‘(Ack‘1))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1)))))
106, 7, 9sylancl 584 . . . . 5 (𝑛 ∈ ℕ0 → ((IterComp‘(Ack‘1))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1)))))
1110fveq1d 6903 . . . 4 (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1) = ((𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1))))‘1))
12 eqidd 2727 . . . . 5 (𝑛 ∈ ℕ0 → (𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1)))) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1)))))
13 oveq1 7431 . . . . . 6 (𝑖 = 1 → (𝑖 + (2 · (𝑛 + 1))) = (1 + (2 · (𝑛 + 1))))
1413adantl 480 . . . . 5 ((𝑛 ∈ ℕ0𝑖 = 1) → (𝑖 + (2 · (𝑛 + 1))) = (1 + (2 · (𝑛 + 1))))
153a1i 11 . . . . 5 (𝑛 ∈ ℕ0 → 1 ∈ ℕ0)
16 ovexd 7459 . . . . 5 (𝑛 ∈ ℕ0 → (1 + (2 · (𝑛 + 1))) ∈ V)
1712, 14, 15, 16fvmptd 7016 . . . 4 (𝑛 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1))))‘1) = (1 + (2 · (𝑛 + 1))))
18 nn0cn 12534 . . . . 5 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
19 1cnd 11259 . . . . . . 7 (𝑛 ∈ ℂ → 1 ∈ ℂ)
20 2cnd 12342 . . . . . . . 8 (𝑛 ∈ ℂ → 2 ∈ ℂ)
21 peano2cn 11436 . . . . . . . 8 (𝑛 ∈ ℂ → (𝑛 + 1) ∈ ℂ)
2220, 21mulcld 11284 . . . . . . 7 (𝑛 ∈ ℂ → (2 · (𝑛 + 1)) ∈ ℂ)
2319, 22addcomd 11466 . . . . . 6 (𝑛 ∈ ℂ → (1 + (2 · (𝑛 + 1))) = ((2 · (𝑛 + 1)) + 1))
24 id 22 . . . . . . . 8 (𝑛 ∈ ℂ → 𝑛 ∈ ℂ)
2520, 24, 19adddid 11288 . . . . . . 7 (𝑛 ∈ ℂ → (2 · (𝑛 + 1)) = ((2 · 𝑛) + (2 · 1)))
2625oveq1d 7439 . . . . . 6 (𝑛 ∈ ℂ → ((2 · (𝑛 + 1)) + 1) = (((2 · 𝑛) + (2 · 1)) + 1))
2720, 24mulcld 11284 . . . . . . . 8 (𝑛 ∈ ℂ → (2 · 𝑛) ∈ ℂ)
2820, 19mulcld 11284 . . . . . . . 8 (𝑛 ∈ ℂ → (2 · 1) ∈ ℂ)
2927, 28, 19addassd 11286 . . . . . . 7 (𝑛 ∈ ℂ → (((2 · 𝑛) + (2 · 1)) + 1) = ((2 · 𝑛) + ((2 · 1) + 1)))
30 2t1e2 12427 . . . . . . . . . . 11 (2 · 1) = 2
3130oveq1i 7434 . . . . . . . . . 10 ((2 · 1) + 1) = (2 + 1)
32 2p1e3 12406 . . . . . . . . . 10 (2 + 1) = 3
3331, 32eqtri 2754 . . . . . . . . 9 ((2 · 1) + 1) = 3
3433a1i 11 . . . . . . . 8 (𝑛 ∈ ℂ → ((2 · 1) + 1) = 3)
3534oveq2d 7440 . . . . . . 7 (𝑛 ∈ ℂ → ((2 · 𝑛) + ((2 · 1) + 1)) = ((2 · 𝑛) + 3))
3629, 35eqtrd 2766 . . . . . 6 (𝑛 ∈ ℂ → (((2 · 𝑛) + (2 · 1)) + 1) = ((2 · 𝑛) + 3))
3723, 26, 363eqtrd 2770 . . . . 5 (𝑛 ∈ ℂ → (1 + (2 · (𝑛 + 1))) = ((2 · 𝑛) + 3))
3818, 37syl 17 . . . 4 (𝑛 ∈ ℕ0 → (1 + (2 · (𝑛 + 1))) = ((2 · 𝑛) + 3))
3911, 17, 383eqtrd 2770 . . 3 (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1) = ((2 · 𝑛) + 3))
4039mpteq2ia 5256 . 2 (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3))
412, 5, 403eqtri 2758 1 (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  Vcvv 3462  cmpt 5236  cfv 6554  (class class class)co 7424  cc 11156  1c1 11159   + caddc 11161   · cmul 11163  2c2 12319  3c3 12320  0cn0 12524  IterCompcitco 48045  Ackcack 48046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-seq 14022  df-itco 48047  df-ack 48048
This theorem is referenced by:  ackval3  48071  ackval2012  48079
  Copyright terms: Public domain W3C validator