Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackval2 Structured version   Visualization version   GIF version

Theorem ackval2 48603
Description: The Ackermann function at 2. (Contributed by AV, 4-May-2024.)
Assertion
Ref Expression
ackval2 (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3))

Proof of Theorem ackval2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 df-2 12329 . . 3 2 = (1 + 1)
21fveq2i 6909 . 2 (Ack‘2) = (Ack‘(1 + 1))
3 1nn0 12542 . . 3 1 ∈ ℕ0
4 ackvalsuc1mpt 48599 . . 3 (1 ∈ ℕ0 → (Ack‘(1 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1)))
53, 4ax-mp 5 . 2 (Ack‘(1 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1))
6 peano2nn0 12566 . . . . . 6 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
7 2nn0 12543 . . . . . 6 2 ∈ ℕ0
8 ackval1 48602 . . . . . . 7 (Ack‘1) = (𝑖 ∈ ℕ0 ↦ (𝑖 + 2))
98itcovalpc 48593 . . . . . 6 (((𝑛 + 1) ∈ ℕ0 ∧ 2 ∈ ℕ0) → ((IterComp‘(Ack‘1))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1)))))
106, 7, 9sylancl 586 . . . . 5 (𝑛 ∈ ℕ0 → ((IterComp‘(Ack‘1))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1)))))
1110fveq1d 6908 . . . 4 (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1) = ((𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1))))‘1))
12 eqidd 2738 . . . . 5 (𝑛 ∈ ℕ0 → (𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1)))) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1)))))
13 oveq1 7438 . . . . . 6 (𝑖 = 1 → (𝑖 + (2 · (𝑛 + 1))) = (1 + (2 · (𝑛 + 1))))
1413adantl 481 . . . . 5 ((𝑛 ∈ ℕ0𝑖 = 1) → (𝑖 + (2 · (𝑛 + 1))) = (1 + (2 · (𝑛 + 1))))
153a1i 11 . . . . 5 (𝑛 ∈ ℕ0 → 1 ∈ ℕ0)
16 ovexd 7466 . . . . 5 (𝑛 ∈ ℕ0 → (1 + (2 · (𝑛 + 1))) ∈ V)
1712, 14, 15, 16fvmptd 7023 . . . 4 (𝑛 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (𝑖 + (2 · (𝑛 + 1))))‘1) = (1 + (2 · (𝑛 + 1))))
18 nn0cn 12536 . . . . 5 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
19 1cnd 11256 . . . . . . 7 (𝑛 ∈ ℂ → 1 ∈ ℂ)
20 2cnd 12344 . . . . . . . 8 (𝑛 ∈ ℂ → 2 ∈ ℂ)
21 peano2cn 11433 . . . . . . . 8 (𝑛 ∈ ℂ → (𝑛 + 1) ∈ ℂ)
2220, 21mulcld 11281 . . . . . . 7 (𝑛 ∈ ℂ → (2 · (𝑛 + 1)) ∈ ℂ)
2319, 22addcomd 11463 . . . . . 6 (𝑛 ∈ ℂ → (1 + (2 · (𝑛 + 1))) = ((2 · (𝑛 + 1)) + 1))
24 id 22 . . . . . . . 8 (𝑛 ∈ ℂ → 𝑛 ∈ ℂ)
2520, 24, 19adddid 11285 . . . . . . 7 (𝑛 ∈ ℂ → (2 · (𝑛 + 1)) = ((2 · 𝑛) + (2 · 1)))
2625oveq1d 7446 . . . . . 6 (𝑛 ∈ ℂ → ((2 · (𝑛 + 1)) + 1) = (((2 · 𝑛) + (2 · 1)) + 1))
2720, 24mulcld 11281 . . . . . . . 8 (𝑛 ∈ ℂ → (2 · 𝑛) ∈ ℂ)
2820, 19mulcld 11281 . . . . . . . 8 (𝑛 ∈ ℂ → (2 · 1) ∈ ℂ)
2927, 28, 19addassd 11283 . . . . . . 7 (𝑛 ∈ ℂ → (((2 · 𝑛) + (2 · 1)) + 1) = ((2 · 𝑛) + ((2 · 1) + 1)))
30 2t1e2 12429 . . . . . . . . . . 11 (2 · 1) = 2
3130oveq1i 7441 . . . . . . . . . 10 ((2 · 1) + 1) = (2 + 1)
32 2p1e3 12408 . . . . . . . . . 10 (2 + 1) = 3
3331, 32eqtri 2765 . . . . . . . . 9 ((2 · 1) + 1) = 3
3433a1i 11 . . . . . . . 8 (𝑛 ∈ ℂ → ((2 · 1) + 1) = 3)
3534oveq2d 7447 . . . . . . 7 (𝑛 ∈ ℂ → ((2 · 𝑛) + ((2 · 1) + 1)) = ((2 · 𝑛) + 3))
3629, 35eqtrd 2777 . . . . . 6 (𝑛 ∈ ℂ → (((2 · 𝑛) + (2 · 1)) + 1) = ((2 · 𝑛) + 3))
3723, 26, 363eqtrd 2781 . . . . 5 (𝑛 ∈ ℂ → (1 + (2 · (𝑛 + 1))) = ((2 · 𝑛) + 3))
3818, 37syl 17 . . . 4 (𝑛 ∈ ℕ0 → (1 + (2 · (𝑛 + 1))) = ((2 · 𝑛) + 3))
3911, 17, 383eqtrd 2781 . . 3 (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1) = ((2 · 𝑛) + 3))
4039mpteq2ia 5245 . 2 (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘1))‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3))
412, 5, 403eqtri 2769 1 (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  Vcvv 3480  cmpt 5225  cfv 6561  (class class class)co 7431  cc 11153  1c1 11156   + caddc 11158   · cmul 11160  2c2 12321  3c3 12322  0cn0 12526  IterCompcitco 48578  Ackcack 48579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-itco 48580  df-ack 48581
This theorem is referenced by:  ackval3  48604  ackval2012  48612
  Copyright terms: Public domain W3C validator