MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facndiv Structured version   Visualization version   GIF version

Theorem facndiv 13498
Description: No positive integer (greater than one) divides the factorial plus one of an equal or larger number. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
facndiv (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ¬ (((!‘𝑀) + 1) / 𝑁) ∈ ℤ)

Proof of Theorem facndiv
StepHypRef Expression
1 nnre 11493 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2 recnz 11906 . . . 4 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → ¬ (1 / 𝑁) ∈ ℤ)
31, 2sylan 580 . . 3 ((𝑁 ∈ ℕ ∧ 1 < 𝑁) → ¬ (1 / 𝑁) ∈ ℤ)
43ad2ant2lr 744 . 2 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ¬ (1 / 𝑁) ∈ ℤ)
5 facdiv 13497 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑁𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ)
653expa 1111 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ)
76nnzd 11935 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁𝑀) → ((!‘𝑀) / 𝑁) ∈ ℤ)
87adantrl 712 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((!‘𝑀) / 𝑁) ∈ ℤ)
9 zsubcl 11873 . . . . 5 (((((!‘𝑀) + 1) / 𝑁) ∈ ℤ ∧ ((!‘𝑀) / 𝑁) ∈ ℤ) → ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) ∈ ℤ)
109ex 413 . . . 4 ((((!‘𝑀) + 1) / 𝑁) ∈ ℤ → (((!‘𝑀) / 𝑁) ∈ ℤ → ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) ∈ ℤ))
118, 10syl5com 31 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((((!‘𝑀) + 1) / 𝑁) ∈ ℤ → ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) ∈ ℤ))
12 faccl 13493 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℕ)
1312nncnd 11502 . . . . . . . 8 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℂ)
14 peano2cn 10659 . . . . . . . 8 ((!‘𝑀) ∈ ℂ → ((!‘𝑀) + 1) ∈ ℂ)
1513, 14syl 17 . . . . . . 7 (𝑀 ∈ ℕ0 → ((!‘𝑀) + 1) ∈ ℂ)
1615ad2antrr 722 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((!‘𝑀) + 1) ∈ ℂ)
1713ad2antrr 722 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → (!‘𝑀) ∈ ℂ)
18 nncn 11494 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
19 nnne0 11519 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
2018, 19jca 512 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
2120ad2antlr 723 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
22 divsubdir 11182 . . . . . 6 ((((!‘𝑀) + 1) ∈ ℂ ∧ (!‘𝑀) ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → ((((!‘𝑀) + 1) − (!‘𝑀)) / 𝑁) = ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)))
2316, 17, 21, 22syl3anc 1364 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((((!‘𝑀) + 1) − (!‘𝑀)) / 𝑁) = ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)))
24 ax-1cn 10441 . . . . . . . 8 1 ∈ ℂ
25 pncan2 10740 . . . . . . . 8 (((!‘𝑀) ∈ ℂ ∧ 1 ∈ ℂ) → (((!‘𝑀) + 1) − (!‘𝑀)) = 1)
2613, 24, 25sylancl 586 . . . . . . 7 (𝑀 ∈ ℕ0 → (((!‘𝑀) + 1) − (!‘𝑀)) = 1)
2726oveq1d 7031 . . . . . 6 (𝑀 ∈ ℕ0 → ((((!‘𝑀) + 1) − (!‘𝑀)) / 𝑁) = (1 / 𝑁))
2827ad2antrr 722 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((((!‘𝑀) + 1) − (!‘𝑀)) / 𝑁) = (1 / 𝑁))
2923, 28eqtr3d 2833 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) = (1 / 𝑁))
3029eleq1d 2867 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → (((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) ∈ ℤ ↔ (1 / 𝑁) ∈ ℤ))
3111, 30sylibd 240 . 2 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((((!‘𝑀) + 1) / 𝑁) ∈ ℤ → (1 / 𝑁) ∈ ℤ))
324, 31mtod 199 1 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ¬ (((!‘𝑀) + 1) / 𝑁) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1522  wcel 2081  wne 2984   class class class wbr 4962  cfv 6225  (class class class)co 7016  cc 10381  cr 10382  0cc0 10383  1c1 10384   + caddc 10386   < clt 10521  cle 10522  cmin 10717   / cdiv 11145  cn 11486  0cn0 11745  cz 11829  !cfa 13483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-n0 11746  df-z 11830  df-uz 12094  df-seq 13220  df-fac 13484
This theorem is referenced by:  infpnlem1  16075
  Copyright terms: Public domain W3C validator