| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval1 | Structured version Visualization version GIF version | ||
| Description: The Ackermann function at 1. (Contributed by AV, 4-May-2024.) |
| Ref | Expression |
|---|---|
| ackval1 | ⊢ (Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1e0p1 12667 | . . 3 ⊢ 1 = (0 + 1) | |
| 2 | 1 | fveq2i 6843 | . 2 ⊢ (Ack‘1) = (Ack‘(0 + 1)) |
| 3 | 0nn0 12433 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 4 | ackvalsuc1mpt 48640 | . . 3 ⊢ (0 ∈ ℕ0 → (Ack‘(0 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1))) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ (Ack‘(0 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1)) |
| 6 | peano2nn0 12458 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0) | |
| 7 | 1nn0 12434 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 8 | ackval0 48642 | . . . . . . . 8 ⊢ (Ack‘0) = (𝑖 ∈ ℕ0 ↦ (𝑖 + 1)) | |
| 9 | 8 | itcovalpc 48634 | . . . . . . 7 ⊢ (((𝑛 + 1) ∈ ℕ0 ∧ 1 ∈ ℕ0) → ((IterComp‘(Ack‘0))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (1 · (𝑛 + 1))))) |
| 10 | 6, 7, 9 | sylancl 586 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → ((IterComp‘(Ack‘0))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (1 · (𝑛 + 1))))) |
| 11 | nn0cn 12428 | . . . . . . . . . 10 ⊢ ((𝑛 + 1) ∈ ℕ0 → (𝑛 + 1) ∈ ℂ) | |
| 12 | 6, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℂ) |
| 13 | 12 | mullidd 11168 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ0 → (1 · (𝑛 + 1)) = (𝑛 + 1)) |
| 14 | 13 | oveq2d 7385 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ0 → (𝑖 + (1 · (𝑛 + 1))) = (𝑖 + (𝑛 + 1))) |
| 15 | 14 | mpteq2dv 5196 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → (𝑖 ∈ ℕ0 ↦ (𝑖 + (1 · (𝑛 + 1)))) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1)))) |
| 16 | 10, 15 | eqtrd 2764 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → ((IterComp‘(Ack‘0))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1)))) |
| 17 | 16 | fveq1d 6842 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1) = ((𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1)))‘1)) |
| 18 | eqidd 2730 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → (𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1))) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1)))) | |
| 19 | oveq1 7376 | . . . . . 6 ⊢ (𝑖 = 1 → (𝑖 + (𝑛 + 1)) = (1 + (𝑛 + 1))) | |
| 20 | 19 | adantl 481 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ 𝑖 = 1) → (𝑖 + (𝑛 + 1)) = (1 + (𝑛 + 1))) |
| 21 | 7 | a1i 11 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → 1 ∈ ℕ0) |
| 22 | ovexd 7404 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → (1 + (𝑛 + 1)) ∈ V) | |
| 23 | 18, 20, 21, 22 | fvmptd 6957 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1)))‘1) = (1 + (𝑛 + 1))) |
| 24 | 1cnd 11145 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → 1 ∈ ℂ) | |
| 25 | nn0cn 12428 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ0 → 𝑛 ∈ ℂ) | |
| 26 | peano2cn 11322 | . . . . . . 7 ⊢ (𝑛 ∈ ℂ → (𝑛 + 1) ∈ ℂ) | |
| 27 | 25, 26 | syl 17 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℂ) |
| 28 | 24, 27 | addcomd 11352 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → (1 + (𝑛 + 1)) = ((𝑛 + 1) + 1)) |
| 29 | 25, 24, 24 | addassd 11172 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → ((𝑛 + 1) + 1) = (𝑛 + (1 + 1))) |
| 30 | 1p1e2 12282 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 31 | 30 | oveq2i 7380 | . . . . . 6 ⊢ (𝑛 + (1 + 1)) = (𝑛 + 2) |
| 32 | 31 | a1i 11 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → (𝑛 + (1 + 1)) = (𝑛 + 2)) |
| 33 | 28, 29, 32 | 3eqtrd 2768 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → (1 + (𝑛 + 1)) = (𝑛 + 2)) |
| 34 | 17, 23, 33 | 3eqtrd 2768 | . . 3 ⊢ (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1) = (𝑛 + 2)) |
| 35 | 34 | mpteq2ia 5197 | . 2 ⊢ (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) |
| 36 | 2, 5, 35 | 3eqtri 2756 | 1 ⊢ (Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3444 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 2c2 12217 ℕ0cn0 12418 IterCompcitco 48619 Ackcack 48620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-seq 13943 df-itco 48621 df-ack 48622 |
| This theorem is referenced by: ackval2 48644 ackval1012 48652 |
| Copyright terms: Public domain | W3C validator |