Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackval1 Structured version   Visualization version   GIF version

Theorem ackval1 48719
Description: The Ackermann function at 1. (Contributed by AV, 4-May-2024.)
Assertion
Ref Expression
ackval1 (Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2))

Proof of Theorem ackval1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 1e0p1 12630 . . 3 1 = (0 + 1)
21fveq2i 6825 . 2 (Ack‘1) = (Ack‘(0 + 1))
3 0nn0 12396 . . 3 0 ∈ ℕ0
4 ackvalsuc1mpt 48716 . . 3 (0 ∈ ℕ0 → (Ack‘(0 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1)))
53, 4ax-mp 5 . 2 (Ack‘(0 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1))
6 peano2nn0 12421 . . . . . . 7 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
7 1nn0 12397 . . . . . . 7 1 ∈ ℕ0
8 ackval0 48718 . . . . . . . 8 (Ack‘0) = (𝑖 ∈ ℕ0 ↦ (𝑖 + 1))
98itcovalpc 48710 . . . . . . 7 (((𝑛 + 1) ∈ ℕ0 ∧ 1 ∈ ℕ0) → ((IterComp‘(Ack‘0))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (1 · (𝑛 + 1)))))
106, 7, 9sylancl 586 . . . . . 6 (𝑛 ∈ ℕ0 → ((IterComp‘(Ack‘0))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (1 · (𝑛 + 1)))))
11 nn0cn 12391 . . . . . . . . . 10 ((𝑛 + 1) ∈ ℕ0 → (𝑛 + 1) ∈ ℂ)
126, 11syl 17 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℂ)
1312mullidd 11130 . . . . . . . 8 (𝑛 ∈ ℕ0 → (1 · (𝑛 + 1)) = (𝑛 + 1))
1413oveq2d 7362 . . . . . . 7 (𝑛 ∈ ℕ0 → (𝑖 + (1 · (𝑛 + 1))) = (𝑖 + (𝑛 + 1)))
1514mpteq2dv 5185 . . . . . 6 (𝑛 ∈ ℕ0 → (𝑖 ∈ ℕ0 ↦ (𝑖 + (1 · (𝑛 + 1)))) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1))))
1610, 15eqtrd 2766 . . . . 5 (𝑛 ∈ ℕ0 → ((IterComp‘(Ack‘0))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1))))
1716fveq1d 6824 . . . 4 (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1) = ((𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1)))‘1))
18 eqidd 2732 . . . . 5 (𝑛 ∈ ℕ0 → (𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1))) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1))))
19 oveq1 7353 . . . . . 6 (𝑖 = 1 → (𝑖 + (𝑛 + 1)) = (1 + (𝑛 + 1)))
2019adantl 481 . . . . 5 ((𝑛 ∈ ℕ0𝑖 = 1) → (𝑖 + (𝑛 + 1)) = (1 + (𝑛 + 1)))
217a1i 11 . . . . 5 (𝑛 ∈ ℕ0 → 1 ∈ ℕ0)
22 ovexd 7381 . . . . 5 (𝑛 ∈ ℕ0 → (1 + (𝑛 + 1)) ∈ V)
2318, 20, 21, 22fvmptd 6936 . . . 4 (𝑛 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1)))‘1) = (1 + (𝑛 + 1)))
24 1cnd 11107 . . . . . 6 (𝑛 ∈ ℕ0 → 1 ∈ ℂ)
25 nn0cn 12391 . . . . . . 7 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
26 peano2cn 11285 . . . . . . 7 (𝑛 ∈ ℂ → (𝑛 + 1) ∈ ℂ)
2725, 26syl 17 . . . . . 6 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℂ)
2824, 27addcomd 11315 . . . . 5 (𝑛 ∈ ℕ0 → (1 + (𝑛 + 1)) = ((𝑛 + 1) + 1))
2925, 24, 24addassd 11134 . . . . 5 (𝑛 ∈ ℕ0 → ((𝑛 + 1) + 1) = (𝑛 + (1 + 1)))
30 1p1e2 12245 . . . . . . 7 (1 + 1) = 2
3130oveq2i 7357 . . . . . 6 (𝑛 + (1 + 1)) = (𝑛 + 2)
3231a1i 11 . . . . 5 (𝑛 ∈ ℕ0 → (𝑛 + (1 + 1)) = (𝑛 + 2))
3328, 29, 323eqtrd 2770 . . . 4 (𝑛 ∈ ℕ0 → (1 + (𝑛 + 1)) = (𝑛 + 2))
3417, 23, 333eqtrd 2770 . . 3 (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1) = (𝑛 + 2))
3534mpteq2ia 5186 . 2 (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2))
362, 5, 353eqtri 2758 1 (Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  Vcvv 3436  cmpt 5172  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  2c2 12180  0cn0 12381  IterCompcitco 48695  Ackcack 48696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-seq 13909  df-itco 48697  df-ack 48698
This theorem is referenced by:  ackval2  48720  ackval1012  48728
  Copyright terms: Public domain W3C validator