Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval1 | Structured version Visualization version GIF version |
Description: The Ackermann function at 1. (Contributed by AV, 4-May-2024.) |
Ref | Expression |
---|---|
ackval1 | ⊢ (Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1e0p1 12408 | . . 3 ⊢ 1 = (0 + 1) | |
2 | 1 | fveq2i 6759 | . 2 ⊢ (Ack‘1) = (Ack‘(0 + 1)) |
3 | 0nn0 12178 | . . 3 ⊢ 0 ∈ ℕ0 | |
4 | ackvalsuc1mpt 45912 | . . 3 ⊢ (0 ∈ ℕ0 → (Ack‘(0 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1))) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ (Ack‘(0 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1)) |
6 | peano2nn0 12203 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0) | |
7 | 1nn0 12179 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
8 | ackval0 45914 | . . . . . . . 8 ⊢ (Ack‘0) = (𝑖 ∈ ℕ0 ↦ (𝑖 + 1)) | |
9 | 8 | itcovalpc 45906 | . . . . . . 7 ⊢ (((𝑛 + 1) ∈ ℕ0 ∧ 1 ∈ ℕ0) → ((IterComp‘(Ack‘0))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (1 · (𝑛 + 1))))) |
10 | 6, 7, 9 | sylancl 585 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → ((IterComp‘(Ack‘0))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (1 · (𝑛 + 1))))) |
11 | nn0cn 12173 | . . . . . . . . . 10 ⊢ ((𝑛 + 1) ∈ ℕ0 → (𝑛 + 1) ∈ ℂ) | |
12 | 6, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℂ) |
13 | 12 | mulid2d 10924 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ0 → (1 · (𝑛 + 1)) = (𝑛 + 1)) |
14 | 13 | oveq2d 7271 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ0 → (𝑖 + (1 · (𝑛 + 1))) = (𝑖 + (𝑛 + 1))) |
15 | 14 | mpteq2dv 5172 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → (𝑖 ∈ ℕ0 ↦ (𝑖 + (1 · (𝑛 + 1)))) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1)))) |
16 | 10, 15 | eqtrd 2778 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → ((IterComp‘(Ack‘0))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1)))) |
17 | 16 | fveq1d 6758 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1) = ((𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1)))‘1)) |
18 | eqidd 2739 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → (𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1))) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1)))) | |
19 | oveq1 7262 | . . . . . 6 ⊢ (𝑖 = 1 → (𝑖 + (𝑛 + 1)) = (1 + (𝑛 + 1))) | |
20 | 19 | adantl 481 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ 𝑖 = 1) → (𝑖 + (𝑛 + 1)) = (1 + (𝑛 + 1))) |
21 | 7 | a1i 11 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → 1 ∈ ℕ0) |
22 | ovexd 7290 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → (1 + (𝑛 + 1)) ∈ V) | |
23 | 18, 20, 21, 22 | fvmptd 6864 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1)))‘1) = (1 + (𝑛 + 1))) |
24 | 1cnd 10901 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → 1 ∈ ℂ) | |
25 | nn0cn 12173 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ0 → 𝑛 ∈ ℂ) | |
26 | peano2cn 11077 | . . . . . . 7 ⊢ (𝑛 ∈ ℂ → (𝑛 + 1) ∈ ℂ) | |
27 | 25, 26 | syl 17 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℂ) |
28 | 24, 27 | addcomd 11107 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → (1 + (𝑛 + 1)) = ((𝑛 + 1) + 1)) |
29 | 25, 24, 24 | addassd 10928 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → ((𝑛 + 1) + 1) = (𝑛 + (1 + 1))) |
30 | 1p1e2 12028 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
31 | 30 | oveq2i 7266 | . . . . . 6 ⊢ (𝑛 + (1 + 1)) = (𝑛 + 2) |
32 | 31 | a1i 11 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → (𝑛 + (1 + 1)) = (𝑛 + 2)) |
33 | 28, 29, 32 | 3eqtrd 2782 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → (1 + (𝑛 + 1)) = (𝑛 + 2)) |
34 | 17, 23, 33 | 3eqtrd 2782 | . . 3 ⊢ (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1) = (𝑛 + 2)) |
35 | 34 | mpteq2ia 5173 | . 2 ⊢ (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) |
36 | 2, 5, 35 | 3eqtri 2770 | 1 ⊢ (Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 2c2 11958 ℕ0cn0 12163 IterCompcitco 45891 Ackcack 45892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-itco 45893 df-ack 45894 |
This theorem is referenced by: ackval2 45916 ackval1012 45924 |
Copyright terms: Public domain | W3C validator |