Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval1 | Structured version Visualization version GIF version |
Description: The Ackermann function at 1. (Contributed by AV, 4-May-2024.) |
Ref | Expression |
---|---|
ackval1 | ⊢ (Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1e0p1 12335 | . . 3 ⊢ 1 = (0 + 1) | |
2 | 1 | fveq2i 6720 | . 2 ⊢ (Ack‘1) = (Ack‘(0 + 1)) |
3 | 0nn0 12105 | . . 3 ⊢ 0 ∈ ℕ0 | |
4 | ackvalsuc1mpt 45697 | . . 3 ⊢ (0 ∈ ℕ0 → (Ack‘(0 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1))) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ (Ack‘(0 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1)) |
6 | peano2nn0 12130 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0) | |
7 | 1nn0 12106 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
8 | ackval0 45699 | . . . . . . . 8 ⊢ (Ack‘0) = (𝑖 ∈ ℕ0 ↦ (𝑖 + 1)) | |
9 | 8 | itcovalpc 45691 | . . . . . . 7 ⊢ (((𝑛 + 1) ∈ ℕ0 ∧ 1 ∈ ℕ0) → ((IterComp‘(Ack‘0))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (1 · (𝑛 + 1))))) |
10 | 6, 7, 9 | sylancl 589 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → ((IterComp‘(Ack‘0))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (1 · (𝑛 + 1))))) |
11 | nn0cn 12100 | . . . . . . . . . 10 ⊢ ((𝑛 + 1) ∈ ℕ0 → (𝑛 + 1) ∈ ℂ) | |
12 | 6, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℂ) |
13 | 12 | mulid2d 10851 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ0 → (1 · (𝑛 + 1)) = (𝑛 + 1)) |
14 | 13 | oveq2d 7229 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ0 → (𝑖 + (1 · (𝑛 + 1))) = (𝑖 + (𝑛 + 1))) |
15 | 14 | mpteq2dv 5151 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → (𝑖 ∈ ℕ0 ↦ (𝑖 + (1 · (𝑛 + 1)))) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1)))) |
16 | 10, 15 | eqtrd 2777 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → ((IterComp‘(Ack‘0))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1)))) |
17 | 16 | fveq1d 6719 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1) = ((𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1)))‘1)) |
18 | eqidd 2738 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → (𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1))) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1)))) | |
19 | oveq1 7220 | . . . . . 6 ⊢ (𝑖 = 1 → (𝑖 + (𝑛 + 1)) = (1 + (𝑛 + 1))) | |
20 | 19 | adantl 485 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ 𝑖 = 1) → (𝑖 + (𝑛 + 1)) = (1 + (𝑛 + 1))) |
21 | 7 | a1i 11 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → 1 ∈ ℕ0) |
22 | ovexd 7248 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → (1 + (𝑛 + 1)) ∈ V) | |
23 | 18, 20, 21, 22 | fvmptd 6825 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1)))‘1) = (1 + (𝑛 + 1))) |
24 | 1cnd 10828 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → 1 ∈ ℂ) | |
25 | nn0cn 12100 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ0 → 𝑛 ∈ ℂ) | |
26 | peano2cn 11004 | . . . . . . 7 ⊢ (𝑛 ∈ ℂ → (𝑛 + 1) ∈ ℂ) | |
27 | 25, 26 | syl 17 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℂ) |
28 | 24, 27 | addcomd 11034 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → (1 + (𝑛 + 1)) = ((𝑛 + 1) + 1)) |
29 | 25, 24, 24 | addassd 10855 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → ((𝑛 + 1) + 1) = (𝑛 + (1 + 1))) |
30 | 1p1e2 11955 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
31 | 30 | oveq2i 7224 | . . . . . 6 ⊢ (𝑛 + (1 + 1)) = (𝑛 + 2) |
32 | 31 | a1i 11 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → (𝑛 + (1 + 1)) = (𝑛 + 2)) |
33 | 28, 29, 32 | 3eqtrd 2781 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → (1 + (𝑛 + 1)) = (𝑛 + 2)) |
34 | 17, 23, 33 | 3eqtrd 2781 | . . 3 ⊢ (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1) = (𝑛 + 2)) |
35 | 34 | mpteq2ia 5146 | . 2 ⊢ (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) |
36 | 2, 5, 35 | 3eqtri 2769 | 1 ⊢ (Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2110 Vcvv 3408 ↦ cmpt 5135 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 0cc0 10729 1c1 10730 + caddc 10732 · cmul 10734 2c2 11885 ℕ0cn0 12090 IterCompcitco 45676 Ackcack 45677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-n0 12091 df-z 12177 df-uz 12439 df-seq 13575 df-itco 45678 df-ack 45679 |
This theorem is referenced by: ackval2 45701 ackval1012 45709 |
Copyright terms: Public domain | W3C validator |