![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval1 | Structured version Visualization version GIF version |
Description: The Ackermann function at 1. (Contributed by AV, 4-May-2024.) |
Ref | Expression |
---|---|
ackval1 | ⊢ (Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1e0p1 12800 | . . 3 ⊢ 1 = (0 + 1) | |
2 | 1 | fveq2i 6923 | . 2 ⊢ (Ack‘1) = (Ack‘(0 + 1)) |
3 | 0nn0 12568 | . . 3 ⊢ 0 ∈ ℕ0 | |
4 | ackvalsuc1mpt 48412 | . . 3 ⊢ (0 ∈ ℕ0 → (Ack‘(0 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1))) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ (Ack‘(0 + 1)) = (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1)) |
6 | peano2nn0 12593 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0) | |
7 | 1nn0 12569 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
8 | ackval0 48414 | . . . . . . . 8 ⊢ (Ack‘0) = (𝑖 ∈ ℕ0 ↦ (𝑖 + 1)) | |
9 | 8 | itcovalpc 48406 | . . . . . . 7 ⊢ (((𝑛 + 1) ∈ ℕ0 ∧ 1 ∈ ℕ0) → ((IterComp‘(Ack‘0))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (1 · (𝑛 + 1))))) |
10 | 6, 7, 9 | sylancl 585 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → ((IterComp‘(Ack‘0))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (1 · (𝑛 + 1))))) |
11 | nn0cn 12563 | . . . . . . . . . 10 ⊢ ((𝑛 + 1) ∈ ℕ0 → (𝑛 + 1) ∈ ℂ) | |
12 | 6, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℂ) |
13 | 12 | mullidd 11308 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ0 → (1 · (𝑛 + 1)) = (𝑛 + 1)) |
14 | 13 | oveq2d 7464 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ0 → (𝑖 + (1 · (𝑛 + 1))) = (𝑖 + (𝑛 + 1))) |
15 | 14 | mpteq2dv 5268 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → (𝑖 ∈ ℕ0 ↦ (𝑖 + (1 · (𝑛 + 1)))) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1)))) |
16 | 10, 15 | eqtrd 2780 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → ((IterComp‘(Ack‘0))‘(𝑛 + 1)) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1)))) |
17 | 16 | fveq1d 6922 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1) = ((𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1)))‘1)) |
18 | eqidd 2741 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → (𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1))) = (𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1)))) | |
19 | oveq1 7455 | . . . . . 6 ⊢ (𝑖 = 1 → (𝑖 + (𝑛 + 1)) = (1 + (𝑛 + 1))) | |
20 | 19 | adantl 481 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ 𝑖 = 1) → (𝑖 + (𝑛 + 1)) = (1 + (𝑛 + 1))) |
21 | 7 | a1i 11 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → 1 ∈ ℕ0) |
22 | ovexd 7483 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → (1 + (𝑛 + 1)) ∈ V) | |
23 | 18, 20, 21, 22 | fvmptd 7036 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → ((𝑖 ∈ ℕ0 ↦ (𝑖 + (𝑛 + 1)))‘1) = (1 + (𝑛 + 1))) |
24 | 1cnd 11285 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → 1 ∈ ℂ) | |
25 | nn0cn 12563 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ0 → 𝑛 ∈ ℂ) | |
26 | peano2cn 11462 | . . . . . . 7 ⊢ (𝑛 ∈ ℂ → (𝑛 + 1) ∈ ℂ) | |
27 | 25, 26 | syl 17 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℂ) |
28 | 24, 27 | addcomd 11492 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → (1 + (𝑛 + 1)) = ((𝑛 + 1) + 1)) |
29 | 25, 24, 24 | addassd 11312 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → ((𝑛 + 1) + 1) = (𝑛 + (1 + 1))) |
30 | 1p1e2 12418 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
31 | 30 | oveq2i 7459 | . . . . . 6 ⊢ (𝑛 + (1 + 1)) = (𝑛 + 2) |
32 | 31 | a1i 11 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → (𝑛 + (1 + 1)) = (𝑛 + 2)) |
33 | 28, 29, 32 | 3eqtrd 2784 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → (1 + (𝑛 + 1)) = (𝑛 + 2)) |
34 | 17, 23, 33 | 3eqtrd 2784 | . . 3 ⊢ (𝑛 ∈ ℕ0 → (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1) = (𝑛 + 2)) |
35 | 34 | mpteq2ia 5269 | . 2 ⊢ (𝑛 ∈ ℕ0 ↦ (((IterComp‘(Ack‘0))‘(𝑛 + 1))‘1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) |
36 | 2, 5, 35 | 3eqtri 2772 | 1 ⊢ (Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 2c2 12348 ℕ0cn0 12553 IterCompcitco 48391 Ackcack 48392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-seq 14053 df-itco 48393 df-ack 48394 |
This theorem is referenced by: ackval2 48416 ackval1012 48424 |
Copyright terms: Public domain | W3C validator |