MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trireciplem Structured version   Visualization version   GIF version

Theorem trireciplem 15769
Description: Lemma for trirecip 15770. Show that the sum converges. (Contributed by Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Hypothesis
Ref Expression
trireciplem.1 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
Assertion
Ref Expression
trireciplem seq1( + , 𝐹) ⇝ 1

Proof of Theorem trireciplem
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12775 . . . 4 ℕ = (ℤ‘1)
2 1zzd 12503 . . . 4 (⊤ → 1 ∈ ℤ)
3 1cnd 11107 . . . . 5 (⊤ → 1 ∈ ℂ)
4 nnex 12131 . . . . . . 7 ℕ ∈ V
54mptex 7157 . . . . . 6 (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1))) ∈ V
65a1i 11 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1))) ∈ V)
7 oveq1 7353 . . . . . . . 8 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
87oveq2d 7362 . . . . . . 7 (𝑛 = 𝑘 → (1 / (𝑛 + 1)) = (1 / (𝑘 + 1)))
9 eqid 2731 . . . . . . 7 (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1))) = (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))
10 ovex 7379 . . . . . . 7 (1 / (𝑘 + 1)) ∈ V
118, 9, 10fvmpt 6929 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘) = (1 / (𝑘 + 1)))
1211adantl 481 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘) = (1 / (𝑘 + 1)))
131, 2, 3, 2, 6, 12divcnvshft 15762 . . . 4 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1))) ⇝ 0)
14 seqex 13910 . . . . 5 seq1( + , 𝐹) ∈ V
1514a1i 11 . . . 4 (⊤ → seq1( + , 𝐹) ∈ V)
16 peano2nn 12137 . . . . . . . 8 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
1716adantl 481 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
1817nnrecred 12176 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ∈ ℝ)
1918recnd 11140 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ∈ ℂ)
2012, 19eqeltrd 2831 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘) ∈ ℂ)
2112oveq2d 7362 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 − ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘)) = (1 − (1 / (𝑘 + 1))))
22 elfznn 13453 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑘) → 𝑗 ∈ ℕ)
2322adantl 481 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 𝑗 ∈ ℕ)
2423nncnd 12141 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 𝑗 ∈ ℂ)
25 peano2cn 11285 . . . . . . . . . 10 (𝑗 ∈ ℂ → (𝑗 + 1) ∈ ℂ)
2624, 25syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 + 1) ∈ ℂ)
27 peano2nn 12137 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
2823, 27syl 17 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 + 1) ∈ ℕ)
2923, 28nnmulcld 12178 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 · (𝑗 + 1)) ∈ ℕ)
3029nncnd 12141 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 · (𝑗 + 1)) ∈ ℂ)
3129nnne0d 12175 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 · (𝑗 + 1)) ≠ 0)
3226, 24, 30, 31divsubdird 11936 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) − 𝑗) / (𝑗 · (𝑗 + 1))) = (((𝑗 + 1) / (𝑗 · (𝑗 + 1))) − (𝑗 / (𝑗 · (𝑗 + 1)))))
33 ax-1cn 11064 . . . . . . . . . 10 1 ∈ ℂ
34 pncan2 11367 . . . . . . . . . 10 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 + 1) − 𝑗) = 1)
3524, 33, 34sylancl 586 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 + 1) − 𝑗) = 1)
3635oveq1d 7361 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) − 𝑗) / (𝑗 · (𝑗 + 1))) = (1 / (𝑗 · (𝑗 + 1))))
3726mulridd 11129 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 + 1) · 1) = (𝑗 + 1))
3826, 24mulcomd 11133 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 + 1) · 𝑗) = (𝑗 · (𝑗 + 1)))
3937, 38oveq12d 7364 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) · 1) / ((𝑗 + 1) · 𝑗)) = ((𝑗 + 1) / (𝑗 · (𝑗 + 1))))
40 1cnd 11107 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 1 ∈ ℂ)
4123nnne0d 12175 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 𝑗 ≠ 0)
4228nnne0d 12175 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 + 1) ≠ 0)
4340, 24, 26, 41, 42divcan5d 11923 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) · 1) / ((𝑗 + 1) · 𝑗)) = (1 / 𝑗))
4439, 43eqtr3d 2768 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 + 1) / (𝑗 · (𝑗 + 1))) = (1 / 𝑗))
4524mulridd 11129 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 · 1) = 𝑗)
4645oveq1d 7361 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 · 1) / (𝑗 · (𝑗 + 1))) = (𝑗 / (𝑗 · (𝑗 + 1))))
4740, 26, 24, 42, 41divcan5d 11923 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 · 1) / (𝑗 · (𝑗 + 1))) = (1 / (𝑗 + 1)))
4846, 47eqtr3d 2768 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 / (𝑗 · (𝑗 + 1))) = (1 / (𝑗 + 1)))
4944, 48oveq12d 7364 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) / (𝑗 · (𝑗 + 1))) − (𝑗 / (𝑗 · (𝑗 + 1)))) = ((1 / 𝑗) − (1 / (𝑗 + 1))))
5032, 36, 493eqtr3d 2774 . . . . . . 7 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (1 / (𝑗 · (𝑗 + 1))) = ((1 / 𝑗) − (1 / (𝑗 + 1))))
5150sumeq2dv 15609 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(1 / (𝑗 · (𝑗 + 1))) = Σ𝑗 ∈ (1...𝑘)((1 / 𝑗) − (1 / (𝑗 + 1))))
52 oveq2 7354 . . . . . . 7 (𝑛 = 𝑗 → (1 / 𝑛) = (1 / 𝑗))
53 oveq2 7354 . . . . . . 7 (𝑛 = (𝑗 + 1) → (1 / 𝑛) = (1 / (𝑗 + 1)))
54 oveq2 7354 . . . . . . . 8 (𝑛 = 1 → (1 / 𝑛) = (1 / 1))
55 1div1e1 11812 . . . . . . . 8 (1 / 1) = 1
5654, 55eqtrdi 2782 . . . . . . 7 (𝑛 = 1 → (1 / 𝑛) = 1)
57 oveq2 7354 . . . . . . 7 (𝑛 = (𝑘 + 1) → (1 / 𝑛) = (1 / (𝑘 + 1)))
58 nnz 12489 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
5958adantl 481 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
6017, 1eleqtrdi 2841 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ (ℤ‘1))
61 elfznn 13453 . . . . . . . . . 10 (𝑛 ∈ (1...(𝑘 + 1)) → 𝑛 ∈ ℕ)
6261adantl 481 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...(𝑘 + 1))) → 𝑛 ∈ ℕ)
6362nnrecred 12176 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...(𝑘 + 1))) → (1 / 𝑛) ∈ ℝ)
6463recnd 11140 . . . . . . 7 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...(𝑘 + 1))) → (1 / 𝑛) ∈ ℂ)
6552, 53, 56, 57, 59, 60, 64telfsum 15711 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)((1 / 𝑗) − (1 / (𝑗 + 1))) = (1 − (1 / (𝑘 + 1))))
6651, 65eqtrd 2766 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(1 / (𝑗 · (𝑗 + 1))) = (1 − (1 / (𝑘 + 1))))
67 id 22 . . . . . . . . . 10 (𝑛 = 𝑗𝑛 = 𝑗)
68 oveq1 7353 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝑛 + 1) = (𝑗 + 1))
6967, 68oveq12d 7364 . . . . . . . . 9 (𝑛 = 𝑗 → (𝑛 · (𝑛 + 1)) = (𝑗 · (𝑗 + 1)))
7069oveq2d 7362 . . . . . . . 8 (𝑛 = 𝑗 → (1 / (𝑛 · (𝑛 + 1))) = (1 / (𝑗 · (𝑗 + 1))))
71 trireciplem.1 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
72 ovex 7379 . . . . . . . 8 (1 / (𝑗 · (𝑗 + 1))) ∈ V
7370, 71, 72fvmpt 6929 . . . . . . 7 (𝑗 ∈ ℕ → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
7423, 73syl 17 . . . . . 6 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
75 simpr 484 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
7675, 1eleqtrdi 2841 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
7729nnrecred 12176 . . . . . . 7 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ)
7877recnd 11140 . . . . . 6 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
7974, 76, 78fsumser 15637 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(1 / (𝑗 · (𝑗 + 1))) = (seq1( + , 𝐹)‘𝑘))
8021, 66, 793eqtr2rd 2773 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) = (1 − ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘)))
811, 2, 13, 3, 15, 20, 80climsubc2 15546 . . 3 (⊤ → seq1( + , 𝐹) ⇝ (1 − 0))
8281mptru 1548 . 2 seq1( + , 𝐹) ⇝ (1 − 0)
83 1m0e1 12241 . 2 (1 − 0) = 1
8482, 83breqtri 5114 1 seq1( + , 𝐹) ⇝ 1
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wtru 1542  wcel 2111  Vcvv 3436   class class class wbr 5089  cmpt 5170  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  cmin 11344   / cdiv 11774  cn 12125  cz 12468  cuz 12732  ...cfz 13407  seqcseq 13908  cli 15391  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594
This theorem is referenced by:  trirecip  15770  stirlinglem12  46193
  Copyright terms: Public domain W3C validator