| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2re | Structured version Visualization version GIF version | ||
| Description: A theorem for reals analogous the second Peano postulate peano2nn 12261. (Contributed by NM, 5-Jul-2005.) |
| Ref | Expression |
|---|---|
| peano2re | ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11244 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | readdcl 11221 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 + 1) ∈ ℝ) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) |
| Copyright terms: Public domain | W3C validator |