MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem8 Structured version   Visualization version   GIF version

Theorem basellem8 27014
Description: Lemma for basel 27016. The function 𝐹 of partial sums of the inverse squares is bounded below by 𝐽 and above by 𝐾, obtained by summing the inequality cot↑2𝑥 ≤ 1 / 𝑥↑2 ≤ csc↑2𝑥 = cot↑2𝑥 + 1 over the 𝑀 roots of the polynomial 𝑃, and applying the identity basellem5 27011. (Contributed by Mario Carneiro, 29-Jul-2014.)
Hypotheses
Ref Expression
basel.g 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
basel.f 𝐹 = seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2)))
basel.h 𝐻 = ((ℕ × {((π↑2) / 6)}) ∘f · ((ℕ × {1}) ∘f𝐺))
basel.j 𝐽 = (𝐻f · ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺)))
basel.k 𝐾 = (𝐻f · ((ℕ × {1}) ∘f + 𝐺))
basellem8.n 𝑁 = ((2 · 𝑀) + 1)
Assertion
Ref Expression
basellem8 (𝑀 ∈ ℕ → ((𝐽𝑀) ≤ (𝐹𝑀) ∧ (𝐹𝑀) ≤ (𝐾𝑀)))
Distinct variable groups:   𝑛,𝐹   𝑛,𝑀   𝑛,𝐽   𝑛,𝑁
Allowed substitution hints:   𝐺(𝑛)   𝐻(𝑛)   𝐾(𝑛)

Proof of Theorem basellem8
Dummy variables 𝑘 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13898 . . . 4 (𝑀 ∈ ℕ → (1...𝑀) ∈ Fin)
2 pire 26382 . . . . . . . 8 π ∈ ℝ
3 basellem8.n . . . . . . . . 9 𝑁 = ((2 · 𝑀) + 1)
4 2nn 12219 . . . . . . . . . . 11 2 ∈ ℕ
5 nnmulcl 12170 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
64, 5mpan 690 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ)
76peano2nnd 12163 . . . . . . . . 9 (𝑀 ∈ ℕ → ((2 · 𝑀) + 1) ∈ ℕ)
83, 7eqeltrid 2832 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ)
9 nndivre 12187 . . . . . . . 8 ((π ∈ ℝ ∧ 𝑁 ∈ ℕ) → (π / 𝑁) ∈ ℝ)
102, 8, 9sylancr 587 . . . . . . 7 (𝑀 ∈ ℕ → (π / 𝑁) ∈ ℝ)
1110resqcld 14050 . . . . . 6 (𝑀 ∈ ℕ → ((π / 𝑁)↑2) ∈ ℝ)
1211adantr 480 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((π / 𝑁)↑2) ∈ ℝ)
133basellem1 27007 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)))
14 tanrpcl 26429 . . . . . . . 8 (((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+)
1513, 14syl 17 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+)
1615rpred 12955 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℝ)
1715rpne0d 12960 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (tan‘((𝑘 · π) / 𝑁)) ≠ 0)
18 2z 12525 . . . . . . . 8 2 ∈ ℤ
19 znegcl 12528 . . . . . . . 8 (2 ∈ ℤ → -2 ∈ ℤ)
2018, 19ax-mp 5 . . . . . . 7 -2 ∈ ℤ
2120a1i 11 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → -2 ∈ ℤ)
2216, 17, 21reexpclzd 14174 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑-2) ∈ ℝ)
2312, 22remulcld 11164 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) · ((tan‘((𝑘 · π) / 𝑁))↑-2)) ∈ ℝ)
24 elfznn 13474 . . . . . . 7 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ)
2524adantl 481 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 𝑘 ∈ ℕ)
2625nnred 12161 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 𝑘 ∈ ℝ)
2725nnne0d 12196 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 𝑘 ≠ 0)
2826, 27, 21reexpclzd 14174 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑘↑-2) ∈ ℝ)
2916recnd 11162 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℂ)
30 2nn0 12419 . . . . . . . 8 2 ∈ ℕ0
31 expneg 13994 . . . . . . . 8 (((tan‘((𝑘 · π) / 𝑁)) ∈ ℂ ∧ 2 ∈ ℕ0) → ((tan‘((𝑘 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
3229, 30, 31sylancl 586 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
3332oveq2d 7369 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) · ((tan‘((𝑘 · π) / 𝑁))↑-2)) = (((π / 𝑁)↑2) · (1 / ((tan‘((𝑘 · π) / 𝑁))↑2))))
3410recnd 11162 . . . . . . . . 9 (𝑀 ∈ ℕ → (π / 𝑁) ∈ ℂ)
3534sqcld 14069 . . . . . . . 8 (𝑀 ∈ ℕ → ((π / 𝑁)↑2) ∈ ℂ)
3635adantr 480 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((π / 𝑁)↑2) ∈ ℂ)
37 rpexpcl 14005 . . . . . . . . . 10 (((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ+)
3815, 18, 37sylancl 586 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ+)
3938rpred 12955 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ)
4039recnd 11162 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈ ℂ)
4138rpne0d 12960 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑2) ≠ 0)
4236, 40, 41divrecd 11921 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) / ((tan‘((𝑘 · π) / 𝑁))↑2)) = (((π / 𝑁)↑2) · (1 / ((tan‘((𝑘 · π) / 𝑁))↑2))))
4333, 42eqtr4d 2767 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) · ((tan‘((𝑘 · π) / 𝑁))↑-2)) = (((π / 𝑁)↑2) / ((tan‘((𝑘 · π) / 𝑁))↑2)))
4425nnrpd 12953 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 𝑘 ∈ ℝ+)
45 rpexpcl 14005 . . . . . . 7 ((𝑘 ∈ ℝ+ ∧ -2 ∈ ℤ) → (𝑘↑-2) ∈ ℝ+)
4644, 20, 45sylancl 586 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑘↑-2) ∈ ℝ+)
4725nncnd 12162 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 𝑘 ∈ ℂ)
4847, 27, 21expnegd 14078 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑘↑--2) = (1 / (𝑘↑-2)))
49 2cn 12221 . . . . . . . . . . . 12 2 ∈ ℂ
5049negnegi 11452 . . . . . . . . . . 11 --2 = 2
5150oveq2i 7364 . . . . . . . . . 10 (𝑘↑--2) = (𝑘↑2)
5248, 51eqtr3di 2779 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (1 / (𝑘↑-2)) = (𝑘↑2))
5352oveq1d 7368 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((1 / (𝑘↑-2)) · ((π / 𝑁)↑2)) = ((𝑘↑2) · ((π / 𝑁)↑2)))
54 nncn 12154 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
55 nnne0 12180 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
5620a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → -2 ∈ ℤ)
5754, 55, 56expclzd 14076 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝑘↑-2) ∈ ℂ)
5825, 57syl 17 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑘↑-2) ∈ ℂ)
5947, 27, 21expne0d 14077 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑘↑-2) ≠ 0)
6036, 58, 59divrec2d 11922 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) / (𝑘↑-2)) = ((1 / (𝑘↑-2)) · ((π / 𝑁)↑2)))
612recni 11148 . . . . . . . . . . . 12 π ∈ ℂ
6261a1i 11 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → π ∈ ℂ)
638nncnd 12162 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑁 ∈ ℂ)
648nnne0d 12196 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑁 ≠ 0)
6563, 64jca 511 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
6665adantr 480 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
67 divass 11815 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ π ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → ((𝑘 · π) / 𝑁) = (𝑘 · (π / 𝑁)))
6847, 62, 66, 67syl3anc 1373 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) = (𝑘 · (π / 𝑁)))
6968oveq1d 7368 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((𝑘 · π) / 𝑁)↑2) = ((𝑘 · (π / 𝑁))↑2))
7034adantr 480 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (π / 𝑁) ∈ ℂ)
7147, 70sqmuld 14083 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · (π / 𝑁))↑2) = ((𝑘↑2) · ((π / 𝑁)↑2)))
7269, 71eqtrd 2764 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((𝑘 · π) / 𝑁)↑2) = ((𝑘↑2) · ((π / 𝑁)↑2)))
7353, 60, 723eqtr4d 2774 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) / (𝑘↑-2)) = (((𝑘 · π) / 𝑁)↑2))
74 elioore 13296 . . . . . . . . . 10 (((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)) → ((𝑘 · π) / 𝑁) ∈ ℝ)
7513, 74syl 17 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) ∈ ℝ)
7675resqcld 14050 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((𝑘 · π) / 𝑁)↑2) ∈ ℝ)
77 tangtx 26430 . . . . . . . . . 10 (((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)) → ((𝑘 · π) / 𝑁) < (tan‘((𝑘 · π) / 𝑁)))
7813, 77syl 17 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) < (tan‘((𝑘 · π) / 𝑁)))
79 eliooord 13326 . . . . . . . . . . . . . 14 (((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)) → (0 < ((𝑘 · π) / 𝑁) ∧ ((𝑘 · π) / 𝑁) < (π / 2)))
8013, 79syl 17 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (0 < ((𝑘 · π) / 𝑁) ∧ ((𝑘 · π) / 𝑁) < (π / 2)))
8180simpld 494 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 0 < ((𝑘 · π) / 𝑁))
8275, 81elrpd 12952 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) ∈ ℝ+)
8382rpge0d 12959 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 0 ≤ ((𝑘 · π) / 𝑁))
8415rpge0d 12959 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 0 ≤ (tan‘((𝑘 · π) / 𝑁)))
8575, 16, 83, 84lt2sqd 14181 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((𝑘 · π) / 𝑁) < (tan‘((𝑘 · π) / 𝑁)) ↔ (((𝑘 · π) / 𝑁)↑2) < ((tan‘((𝑘 · π) / 𝑁))↑2)))
8678, 85mpbid 232 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((𝑘 · π) / 𝑁)↑2) < ((tan‘((𝑘 · π) / 𝑁))↑2))
8776, 39, 86ltled 11282 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((𝑘 · π) / 𝑁)↑2) ≤ ((tan‘((𝑘 · π) / 𝑁))↑2))
8873, 87eqbrtrd 5117 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) / (𝑘↑-2)) ≤ ((tan‘((𝑘 · π) / 𝑁))↑2))
8912, 46, 38, 88lediv23d 13023 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) / ((tan‘((𝑘 · π) / 𝑁))↑2)) ≤ (𝑘↑-2))
9043, 89eqbrtrd 5117 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) · ((tan‘((𝑘 · π) / 𝑁))↑-2)) ≤ (𝑘↑-2))
911, 23, 28, 90fsumle 15724 . . 3 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)(((π / 𝑁)↑2) · ((tan‘((𝑘 · π) / 𝑁))↑-2)) ≤ Σ𝑘 ∈ (1...𝑀)(𝑘↑-2))
92 oveq2 7361 . . . . . . . . . . 11 (𝑛 = 𝑀 → (2 · 𝑛) = (2 · 𝑀))
9392oveq1d 7368 . . . . . . . . . 10 (𝑛 = 𝑀 → ((2 · 𝑛) + 1) = ((2 · 𝑀) + 1))
9493, 3eqtr4di 2782 . . . . . . . . 9 (𝑛 = 𝑀 → ((2 · 𝑛) + 1) = 𝑁)
9594oveq2d 7369 . . . . . . . 8 (𝑛 = 𝑀 → (1 / ((2 · 𝑛) + 1)) = (1 / 𝑁))
9695oveq2d 7369 . . . . . . 7 (𝑛 = 𝑀 → (1 − (1 / ((2 · 𝑛) + 1))) = (1 − (1 / 𝑁)))
9796oveq2d 7369 . . . . . 6 (𝑛 = 𝑀 → (((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) = (((π↑2) / 6) · (1 − (1 / 𝑁))))
9895oveq2d 7369 . . . . . . 7 (𝑛 = 𝑀 → (-2 · (1 / ((2 · 𝑛) + 1))) = (-2 · (1 / 𝑁)))
9998oveq2d 7369 . . . . . 6 (𝑛 = 𝑀 → (1 + (-2 · (1 / ((2 · 𝑛) + 1)))) = (1 + (-2 · (1 / 𝑁))))
10097, 99oveq12d 7371 . . . . 5 (𝑛 = 𝑀 → ((((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) · (1 + (-2 · (1 / ((2 · 𝑛) + 1))))) = ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (-2 · (1 / 𝑁)))))
101 basel.j . . . . . 6 𝐽 = (𝐻f · ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺)))
102 nnex 12152 . . . . . . . . 9 ℕ ∈ V
103102a1i 11 . . . . . . . 8 (⊤ → ℕ ∈ V)
104 ovexd 7388 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → (((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) ∈ V)
105 ovexd 7388 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 + (-2 · (1 / ((2 · 𝑛) + 1)))) ∈ V)
106 basel.h . . . . . . . . 9 𝐻 = ((ℕ × {((π↑2) / 6)}) ∘f · ((ℕ × {1}) ∘f𝐺))
1072resqcli 14111 . . . . . . . . . . . 12 (π↑2) ∈ ℝ
108 6re 12236 . . . . . . . . . . . 12 6 ∈ ℝ
109 6nn 12235 . . . . . . . . . . . . 13 6 ∈ ℕ
110109nnne0i 12186 . . . . . . . . . . . 12 6 ≠ 0
111107, 108, 110redivcli 11909 . . . . . . . . . . 11 ((π↑2) / 6) ∈ ℝ
112111a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → ((π↑2) / 6) ∈ ℝ)
113 ovexd 7388 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 − (1 / ((2 · 𝑛) + 1))) ∈ V)
114 fconstmpt 5685 . . . . . . . . . . 11 (ℕ × {((π↑2) / 6)}) = (𝑛 ∈ ℕ ↦ ((π↑2) / 6))
115114a1i 11 . . . . . . . . . 10 (⊤ → (ℕ × {((π↑2) / 6)}) = (𝑛 ∈ ℕ ↦ ((π↑2) / 6)))
116 1zzd 12524 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → 1 ∈ ℤ)
117 ovexd 7388 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / ((2 · 𝑛) + 1)) ∈ V)
118 fconstmpt 5685 . . . . . . . . . . . 12 (ℕ × {1}) = (𝑛 ∈ ℕ ↦ 1)
119118a1i 11 . . . . . . . . . . 11 (⊤ → (ℕ × {1}) = (𝑛 ∈ ℕ ↦ 1))
120 basel.g . . . . . . . . . . . 12 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
121120a1i 11 . . . . . . . . . . 11 (⊤ → 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))))
122103, 116, 117, 119, 121offval2 7637 . . . . . . . . . 10 (⊤ → ((ℕ × {1}) ∘f𝐺) = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1)))))
123103, 112, 113, 115, 122offval2 7637 . . . . . . . . 9 (⊤ → ((ℕ × {((π↑2) / 6)}) ∘f · ((ℕ × {1}) ∘f𝐺)) = (𝑛 ∈ ℕ ↦ (((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1))))))
124106, 123eqtrid 2776 . . . . . . . 8 (⊤ → 𝐻 = (𝑛 ∈ ℕ ↦ (((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1))))))
125 ovexd 7388 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ ℕ) → (-2 · (1 / ((2 · 𝑛) + 1))) ∈ V)
12649negcli 11450 . . . . . . . . . . 11 -2 ∈ ℂ
127126a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → -2 ∈ ℂ)
128 fconstmpt 5685 . . . . . . . . . . 11 (ℕ × {-2}) = (𝑛 ∈ ℕ ↦ -2)
129128a1i 11 . . . . . . . . . 10 (⊤ → (ℕ × {-2}) = (𝑛 ∈ ℕ ↦ -2))
130103, 127, 117, 129, 121offval2 7637 . . . . . . . . 9 (⊤ → ((ℕ × {-2}) ∘f · 𝐺) = (𝑛 ∈ ℕ ↦ (-2 · (1 / ((2 · 𝑛) + 1)))))
131103, 116, 125, 119, 130offval2 7637 . . . . . . . 8 (⊤ → ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺)) = (𝑛 ∈ ℕ ↦ (1 + (-2 · (1 / ((2 · 𝑛) + 1))))))
132103, 104, 105, 124, 131offval2 7637 . . . . . . 7 (⊤ → (𝐻f · ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺))) = (𝑛 ∈ ℕ ↦ ((((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) · (1 + (-2 · (1 / ((2 · 𝑛) + 1)))))))
133132mptru 1547 . . . . . 6 (𝐻f · ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺))) = (𝑛 ∈ ℕ ↦ ((((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) · (1 + (-2 · (1 / ((2 · 𝑛) + 1))))))
134101, 133eqtri 2752 . . . . 5 𝐽 = (𝑛 ∈ ℕ ↦ ((((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) · (1 + (-2 · (1 / ((2 · 𝑛) + 1))))))
135 ovex 7386 . . . . 5 ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (-2 · (1 / 𝑁)))) ∈ V
136100, 134, 135fvmpt 6934 . . . 4 (𝑀 ∈ ℕ → (𝐽𝑀) = ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (-2 · (1 / 𝑁)))))
137111recni 11148 . . . . . . . 8 ((π↑2) / 6) ∈ ℂ
138137a1i 11 . . . . . . 7 (𝑀 ∈ ℕ → ((π↑2) / 6) ∈ ℂ)
1396nncnd 12162 . . . . . . . 8 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℂ)
140139, 63, 64divcld 11918 . . . . . . 7 (𝑀 ∈ ℕ → ((2 · 𝑀) / 𝑁) ∈ ℂ)
141 ax-1cn 11086 . . . . . . . . 9 1 ∈ ℂ
142 subcl 11380 . . . . . . . . 9 (((2 · 𝑀) ∈ ℂ ∧ 1 ∈ ℂ) → ((2 · 𝑀) − 1) ∈ ℂ)
143139, 141, 142sylancl 586 . . . . . . . 8 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ ℂ)
144143, 63, 64divcld 11918 . . . . . . 7 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) / 𝑁) ∈ ℂ)
145138, 140, 144mulassd 11157 . . . . . 6 (𝑀 ∈ ℕ → ((((π↑2) / 6) · ((2 · 𝑀) / 𝑁)) · (((2 · 𝑀) − 1) / 𝑁)) = (((π↑2) / 6) · (((2 · 𝑀) / 𝑁) · (((2 · 𝑀) − 1) / 𝑁))))
146 1cnd 11129 . . . . . . . . . 10 (𝑀 ∈ ℕ → 1 ∈ ℂ)
14763, 146, 63, 64divsubdird 11957 . . . . . . . . 9 (𝑀 ∈ ℕ → ((𝑁 − 1) / 𝑁) = ((𝑁 / 𝑁) − (1 / 𝑁)))
1483oveq1i 7363 . . . . . . . . . . 11 (𝑁 − 1) = (((2 · 𝑀) + 1) − 1)
149 pncan 11387 . . . . . . . . . . . 12 (((2 · 𝑀) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑀) + 1) − 1) = (2 · 𝑀))
150139, 141, 149sylancl 586 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (((2 · 𝑀) + 1) − 1) = (2 · 𝑀))
151148, 150eqtrid 2776 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁 − 1) = (2 · 𝑀))
152151oveq1d 7368 . . . . . . . . 9 (𝑀 ∈ ℕ → ((𝑁 − 1) / 𝑁) = ((2 · 𝑀) / 𝑁))
15363, 64dividd 11916 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁 / 𝑁) = 1)
154153oveq1d 7368 . . . . . . . . 9 (𝑀 ∈ ℕ → ((𝑁 / 𝑁) − (1 / 𝑁)) = (1 − (1 / 𝑁)))
155147, 152, 1543eqtr3rd 2773 . . . . . . . 8 (𝑀 ∈ ℕ → (1 − (1 / 𝑁)) = ((2 · 𝑀) / 𝑁))
156155oveq2d 7369 . . . . . . 7 (𝑀 ∈ ℕ → (((π↑2) / 6) · (1 − (1 / 𝑁))) = (((π↑2) / 6) · ((2 · 𝑀) / 𝑁)))
157126a1i 11 . . . . . . . . 9 (𝑀 ∈ ℕ → -2 ∈ ℂ)
15863, 157, 63, 64divdird 11956 . . . . . . . 8 (𝑀 ∈ ℕ → ((𝑁 + -2) / 𝑁) = ((𝑁 / 𝑁) + (-2 / 𝑁)))
159 negsub 11430 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑁 + -2) = (𝑁 − 2))
16063, 49, 159sylancl 586 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁 + -2) = (𝑁 − 2))
161 df-2 12209 . . . . . . . . . . . 12 2 = (1 + 1)
1623, 161oveq12i 7365 . . . . . . . . . . 11 (𝑁 − 2) = (((2 · 𝑀) + 1) − (1 + 1))
163139, 146, 146pnpcan2d 11531 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (((2 · 𝑀) + 1) − (1 + 1)) = ((2 · 𝑀) − 1))
164162, 163eqtrid 2776 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁 − 2) = ((2 · 𝑀) − 1))
165160, 164eqtrd 2764 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑁 + -2) = ((2 · 𝑀) − 1))
166165oveq1d 7368 . . . . . . . 8 (𝑀 ∈ ℕ → ((𝑁 + -2) / 𝑁) = (((2 · 𝑀) − 1) / 𝑁))
167157, 63, 64divrecd 11921 . . . . . . . . 9 (𝑀 ∈ ℕ → (-2 / 𝑁) = (-2 · (1 / 𝑁)))
168153, 167oveq12d 7371 . . . . . . . 8 (𝑀 ∈ ℕ → ((𝑁 / 𝑁) + (-2 / 𝑁)) = (1 + (-2 · (1 / 𝑁))))
169158, 166, 1683eqtr3rd 2773 . . . . . . 7 (𝑀 ∈ ℕ → (1 + (-2 · (1 / 𝑁))) = (((2 · 𝑀) − 1) / 𝑁))
170156, 169oveq12d 7371 . . . . . 6 (𝑀 ∈ ℕ → ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (-2 · (1 / 𝑁)))) = ((((π↑2) / 6) · ((2 · 𝑀) / 𝑁)) · (((2 · 𝑀) − 1) / 𝑁)))
1718nnsqcld 14169 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑁↑2) ∈ ℕ)
172171nncnd 12162 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁↑2) ∈ ℂ)
173 6cn 12237 . . . . . . . . . 10 6 ∈ ℂ
174 mulcom 11114 . . . . . . . . . 10 (((𝑁↑2) ∈ ℂ ∧ 6 ∈ ℂ) → ((𝑁↑2) · 6) = (6 · (𝑁↑2)))
175172, 173, 174sylancl 586 . . . . . . . . 9 (𝑀 ∈ ℕ → ((𝑁↑2) · 6) = (6 · (𝑁↑2)))
176175oveq2d 7369 . . . . . . . 8 (𝑀 ∈ ℕ → (((π↑2) · ((2 · 𝑀) · ((2 · 𝑀) − 1))) / ((𝑁↑2) · 6)) = (((π↑2) · ((2 · 𝑀) · ((2 · 𝑀) − 1))) / (6 · (𝑁↑2))))
177107recni 11148 . . . . . . . . . 10 (π↑2) ∈ ℂ
178177a1i 11 . . . . . . . . 9 (𝑀 ∈ ℕ → (π↑2) ∈ ℂ)
179139, 143mulcld 11154 . . . . . . . . 9 (𝑀 ∈ ℕ → ((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℂ)
180171nnne0d 12196 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁↑2) ≠ 0)
181172, 180jca 511 . . . . . . . . 9 (𝑀 ∈ ℕ → ((𝑁↑2) ∈ ℂ ∧ (𝑁↑2) ≠ 0))
182173, 110pm3.2i 470 . . . . . . . . . 10 (6 ∈ ℂ ∧ 6 ≠ 0)
183182a1i 11 . . . . . . . . 9 (𝑀 ∈ ℕ → (6 ∈ ℂ ∧ 6 ≠ 0))
184 divmuldiv 11842 . . . . . . . . 9 ((((π↑2) ∈ ℂ ∧ ((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℂ) ∧ (((𝑁↑2) ∈ ℂ ∧ (𝑁↑2) ≠ 0) ∧ (6 ∈ ℂ ∧ 6 ≠ 0))) → (((π↑2) / (𝑁↑2)) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)) = (((π↑2) · ((2 · 𝑀) · ((2 · 𝑀) − 1))) / ((𝑁↑2) · 6)))
185178, 179, 181, 183, 184syl22anc 838 . . . . . . . 8 (𝑀 ∈ ℕ → (((π↑2) / (𝑁↑2)) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)) = (((π↑2) · ((2 · 𝑀) · ((2 · 𝑀) − 1))) / ((𝑁↑2) · 6)))
186 divmuldiv 11842 . . . . . . . . 9 ((((π↑2) ∈ ℂ ∧ ((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℂ) ∧ ((6 ∈ ℂ ∧ 6 ≠ 0) ∧ ((𝑁↑2) ∈ ℂ ∧ (𝑁↑2) ≠ 0))) → (((π↑2) / 6) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / (𝑁↑2))) = (((π↑2) · ((2 · 𝑀) · ((2 · 𝑀) − 1))) / (6 · (𝑁↑2))))
187178, 179, 183, 181, 186syl22anc 838 . . . . . . . 8 (𝑀 ∈ ℕ → (((π↑2) / 6) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / (𝑁↑2))) = (((π↑2) · ((2 · 𝑀) · ((2 · 𝑀) − 1))) / (6 · (𝑁↑2))))
188176, 185, 1873eqtr4d 2774 . . . . . . 7 (𝑀 ∈ ℕ → (((π↑2) / (𝑁↑2)) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)) = (((π↑2) / 6) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / (𝑁↑2))))
18961a1i 11 . . . . . . . . 9 (𝑀 ∈ ℕ → π ∈ ℂ)
190189, 63, 64sqdivd 14084 . . . . . . . 8 (𝑀 ∈ ℕ → ((π / 𝑁)↑2) = ((π↑2) / (𝑁↑2)))
191190oveq1d 7368 . . . . . . 7 (𝑀 ∈ ℕ → (((π / 𝑁)↑2) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)) = (((π↑2) / (𝑁↑2)) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)))
192139, 63, 143, 63, 64, 64divmuldivd 11959 . . . . . . . . 9 (𝑀 ∈ ℕ → (((2 · 𝑀) / 𝑁) · (((2 · 𝑀) − 1) / 𝑁)) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / (𝑁 · 𝑁)))
19363sqvald 14068 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁↑2) = (𝑁 · 𝑁))
194193oveq2d 7369 . . . . . . . . 9 (𝑀 ∈ ℕ → (((2 · 𝑀) · ((2 · 𝑀) − 1)) / (𝑁↑2)) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / (𝑁 · 𝑁)))
195192, 194eqtr4d 2767 . . . . . . . 8 (𝑀 ∈ ℕ → (((2 · 𝑀) / 𝑁) · (((2 · 𝑀) − 1) / 𝑁)) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / (𝑁↑2)))
196195oveq2d 7369 . . . . . . 7 (𝑀 ∈ ℕ → (((π↑2) / 6) · (((2 · 𝑀) / 𝑁) · (((2 · 𝑀) − 1) / 𝑁))) = (((π↑2) / 6) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / (𝑁↑2))))
197188, 191, 1963eqtr4d 2774 . . . . . 6 (𝑀 ∈ ℕ → (((π / 𝑁)↑2) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)) = (((π↑2) / 6) · (((2 · 𝑀) / 𝑁) · (((2 · 𝑀) − 1) / 𝑁))))
198145, 170, 1973eqtr4d 2774 . . . . 5 (𝑀 ∈ ℕ → ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (-2 · (1 / 𝑁)))) = (((π / 𝑁)↑2) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)))
199 eqid 2729 . . . . . . 7 (𝑥 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑥𝑗))) = (𝑥 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑥𝑗)))
200 eqid 2729 . . . . . . 7 (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2)) = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2))
2013, 199, 200basellem5 27011 . . . . . 6 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
202201oveq2d 7369 . . . . 5 (𝑀 ∈ ℕ → (((π / 𝑁)↑2) · Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2)) = (((π / 𝑁)↑2) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)))
203198, 202eqtr4d 2767 . . . 4 (𝑀 ∈ ℕ → ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (-2 · (1 / 𝑁)))) = (((π / 𝑁)↑2) · Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2)))
20422recnd 11162 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑-2) ∈ ℂ)
2051, 35, 204fsummulc2 15709 . . . 4 (𝑀 ∈ ℕ → (((π / 𝑁)↑2) · Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2)) = Σ𝑘 ∈ (1...𝑀)(((π / 𝑁)↑2) · ((tan‘((𝑘 · π) / 𝑁))↑-2)))
206136, 203, 2053eqtrd 2768 . . 3 (𝑀 ∈ ℕ → (𝐽𝑀) = Σ𝑘 ∈ (1...𝑀)(((π / 𝑁)↑2) · ((tan‘((𝑘 · π) / 𝑁))↑-2)))
207 basel.f . . . . 5 𝐹 = seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2)))
208207fveq1i 6827 . . . 4 (𝐹𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2)))‘𝑀)
209 oveq1 7360 . . . . . . 7 (𝑛 = 𝑘 → (𝑛↑-2) = (𝑘↑-2))
210 eqid 2729 . . . . . . 7 (𝑛 ∈ ℕ ↦ (𝑛↑-2)) = (𝑛 ∈ ℕ ↦ (𝑛↑-2))
211 ovex 7386 . . . . . . 7 (𝑘↑-2) ∈ V
212209, 210, 211fvmpt 6934 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑛↑-2))‘𝑘) = (𝑘↑-2))
21325, 212syl 17 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ (𝑛↑-2))‘𝑘) = (𝑘↑-2))
214 id 22 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ)
215 nnuz 12796 . . . . . 6 ℕ = (ℤ‘1)
216214, 215eleqtrdi 2838 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ‘1))
217213, 216, 58fsumser 15655 . . . 4 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)(𝑘↑-2) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2)))‘𝑀))
218208, 217eqtr4id 2783 . . 3 (𝑀 ∈ ℕ → (𝐹𝑀) = Σ𝑘 ∈ (1...𝑀)(𝑘↑-2))
21991, 206, 2183brtr4d 5127 . 2 (𝑀 ∈ ℕ → (𝐽𝑀) ≤ (𝐹𝑀))
22075resincld 16070 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (sin‘((𝑘 · π) / 𝑁)) ∈ ℝ)
221 sincosq1sgn 26423 . . . . . . . . 9 (((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)) → (0 < (sin‘((𝑘 · π) / 𝑁)) ∧ 0 < (cos‘((𝑘 · π) / 𝑁))))
22213, 221syl 17 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (0 < (sin‘((𝑘 · π) / 𝑁)) ∧ 0 < (cos‘((𝑘 · π) / 𝑁))))
223222simpld 494 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 0 < (sin‘((𝑘 · π) / 𝑁)))
224223gt0ne0d 11702 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (sin‘((𝑘 · π) / 𝑁)) ≠ 0)
225220, 224, 21reexpclzd 14174 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑-2) ∈ ℝ)
22612, 225remulcld 11164 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) · ((sin‘((𝑘 · π) / 𝑁))↑-2)) ∈ ℝ)
227 sinltx 16116 . . . . . . . . . 10 (((𝑘 · π) / 𝑁) ∈ ℝ+ → (sin‘((𝑘 · π) / 𝑁)) < ((𝑘 · π) / 𝑁))
22882, 227syl 17 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (sin‘((𝑘 · π) / 𝑁)) < ((𝑘 · π) / 𝑁))
229220, 75, 228ltled 11282 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (sin‘((𝑘 · π) / 𝑁)) ≤ ((𝑘 · π) / 𝑁))
230 0re 11136 . . . . . . . . . . 11 0 ∈ ℝ
231 ltle 11222 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ (sin‘((𝑘 · π) / 𝑁)) ∈ ℝ) → (0 < (sin‘((𝑘 · π) / 𝑁)) → 0 ≤ (sin‘((𝑘 · π) / 𝑁))))
232230, 220, 231sylancr 587 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (0 < (sin‘((𝑘 · π) / 𝑁)) → 0 ≤ (sin‘((𝑘 · π) / 𝑁))))
233223, 232mpd 15 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 0 ≤ (sin‘((𝑘 · π) / 𝑁)))
234220, 75, 233, 83le2sqd 14182 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁)) ≤ ((𝑘 · π) / 𝑁) ↔ ((sin‘((𝑘 · π) / 𝑁))↑2) ≤ (((𝑘 · π) / 𝑁)↑2)))
235229, 234mpbid 232 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑2) ≤ (((𝑘 · π) / 𝑁)↑2))
236235, 73breqtrrd 5123 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑2) ≤ (((π / 𝑁)↑2) / (𝑘↑-2)))
237220resqcld 14050 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ)
238237, 12, 46lemuldiv2d 13005 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((𝑘↑-2) · ((sin‘((𝑘 · π) / 𝑁))↑2)) ≤ ((π / 𝑁)↑2) ↔ ((sin‘((𝑘 · π) / 𝑁))↑2) ≤ (((π / 𝑁)↑2) / (𝑘↑-2))))
239220, 223elrpd 12952 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (sin‘((𝑘 · π) / 𝑁)) ∈ ℝ+)
240 rpexpcl 14005 . . . . . . . . 9 (((sin‘((𝑘 · π) / 𝑁)) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((sin‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ+)
241239, 18, 240sylancl 586 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ+)
24228, 12, 241lemuldivd 13004 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((𝑘↑-2) · ((sin‘((𝑘 · π) / 𝑁))↑2)) ≤ ((π / 𝑁)↑2) ↔ (𝑘↑-2) ≤ (((π / 𝑁)↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2))))
243238, 242bitr3d 281 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((sin‘((𝑘 · π) / 𝑁))↑2) ≤ (((π / 𝑁)↑2) / (𝑘↑-2)) ↔ (𝑘↑-2) ≤ (((π / 𝑁)↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2))))
244236, 243mpbid 232 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑘↑-2) ≤ (((π / 𝑁)↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2)))
245220recnd 11162 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (sin‘((𝑘 · π) / 𝑁)) ∈ ℂ)
246 expneg 13994 . . . . . . . 8 (((sin‘((𝑘 · π) / 𝑁)) ∈ ℂ ∧ 2 ∈ ℕ0) → ((sin‘((𝑘 · π) / 𝑁))↑-2) = (1 / ((sin‘((𝑘 · π) / 𝑁))↑2)))
247245, 30, 246sylancl 586 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑-2) = (1 / ((sin‘((𝑘 · π) / 𝑁))↑2)))
248247oveq2d 7369 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) · ((sin‘((𝑘 · π) / 𝑁))↑-2)) = (((π / 𝑁)↑2) · (1 / ((sin‘((𝑘 · π) / 𝑁))↑2))))
249237recnd 11162 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑2) ∈ ℂ)
250241rpne0d 12960 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑2) ≠ 0)
25136, 249, 250divrecd 11921 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2)) = (((π / 𝑁)↑2) · (1 / ((sin‘((𝑘 · π) / 𝑁))↑2))))
252248, 251eqtr4d 2767 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) · ((sin‘((𝑘 · π) / 𝑁))↑-2)) = (((π / 𝑁)↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2)))
253244, 252breqtrrd 5123 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑘↑-2) ≤ (((π / 𝑁)↑2) · ((sin‘((𝑘 · π) / 𝑁))↑-2)))
2541, 28, 226, 253fsumle 15724 . . 3 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)(𝑘↑-2) ≤ Σ𝑘 ∈ (1...𝑀)(((π / 𝑁)↑2) · ((sin‘((𝑘 · π) / 𝑁))↑-2)))
25595oveq2d 7369 . . . . . 6 (𝑛 = 𝑀 → (1 + (1 / ((2 · 𝑛) + 1))) = (1 + (1 / 𝑁)))
25697, 255oveq12d 7371 . . . . 5 (𝑛 = 𝑀 → ((((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) · (1 + (1 / ((2 · 𝑛) + 1)))) = ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (1 / 𝑁))))
257 basel.k . . . . . 6 𝐾 = (𝐻f · ((ℕ × {1}) ∘f + 𝐺))
258 ovexd 7388 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 + (1 / ((2 · 𝑛) + 1))) ∈ V)
259103, 116, 117, 119, 121offval2 7637 . . . . . . . 8 (⊤ → ((ℕ × {1}) ∘f + 𝐺) = (𝑛 ∈ ℕ ↦ (1 + (1 / ((2 · 𝑛) + 1)))))
260103, 104, 258, 124, 259offval2 7637 . . . . . . 7 (⊤ → (𝐻f · ((ℕ × {1}) ∘f + 𝐺)) = (𝑛 ∈ ℕ ↦ ((((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) · (1 + (1 / ((2 · 𝑛) + 1))))))
261260mptru 1547 . . . . . 6 (𝐻f · ((ℕ × {1}) ∘f + 𝐺)) = (𝑛 ∈ ℕ ↦ ((((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) · (1 + (1 / ((2 · 𝑛) + 1)))))
262257, 261eqtri 2752 . . . . 5 𝐾 = (𝑛 ∈ ℕ ↦ ((((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) · (1 + (1 / ((2 · 𝑛) + 1)))))
263 ovex 7386 . . . . 5 ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (1 / 𝑁))) ∈ V
264256, 262, 263fvmpt 6934 . . . 4 (𝑀 ∈ ℕ → (𝐾𝑀) = ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (1 / 𝑁))))
265 peano2cn 11306 . . . . . . . 8 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
26663, 265syl 17 . . . . . . 7 (𝑀 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
267266, 63, 64divcld 11918 . . . . . 6 (𝑀 ∈ ℕ → ((𝑁 + 1) / 𝑁) ∈ ℂ)
268138, 140, 267mulassd 11157 . . . . 5 (𝑀 ∈ ℕ → ((((π↑2) / 6) · ((2 · 𝑀) / 𝑁)) · ((𝑁 + 1) / 𝑁)) = (((π↑2) / 6) · (((2 · 𝑀) / 𝑁) · ((𝑁 + 1) / 𝑁))))
26963, 146, 63, 64divdird 11956 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑁 + 1) / 𝑁) = ((𝑁 / 𝑁) + (1 / 𝑁)))
270153oveq1d 7368 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑁 / 𝑁) + (1 / 𝑁)) = (1 + (1 / 𝑁)))
271269, 270eqtr2d 2765 . . . . . 6 (𝑀 ∈ ℕ → (1 + (1 / 𝑁)) = ((𝑁 + 1) / 𝑁))
272156, 271oveq12d 7371 . . . . 5 (𝑀 ∈ ℕ → ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (1 / 𝑁))) = ((((π↑2) / 6) · ((2 · 𝑀) / 𝑁)) · ((𝑁 + 1) / 𝑁)))
273175oveq2d 7369 . . . . . . 7 (𝑀 ∈ ℕ → (((π↑2) · ((2 · 𝑀) · (𝑁 + 1))) / ((𝑁↑2) · 6)) = (((π↑2) · ((2 · 𝑀) · (𝑁 + 1))) / (6 · (𝑁↑2))))
274139, 266mulcld 11154 . . . . . . . 8 (𝑀 ∈ ℕ → ((2 · 𝑀) · (𝑁 + 1)) ∈ ℂ)
275 divmuldiv 11842 . . . . . . . 8 ((((π↑2) ∈ ℂ ∧ ((2 · 𝑀) · (𝑁 + 1)) ∈ ℂ) ∧ (((𝑁↑2) ∈ ℂ ∧ (𝑁↑2) ≠ 0) ∧ (6 ∈ ℂ ∧ 6 ≠ 0))) → (((π↑2) / (𝑁↑2)) · (((2 · 𝑀) · (𝑁 + 1)) / 6)) = (((π↑2) · ((2 · 𝑀) · (𝑁 + 1))) / ((𝑁↑2) · 6)))
276178, 274, 181, 183, 275syl22anc 838 . . . . . . 7 (𝑀 ∈ ℕ → (((π↑2) / (𝑁↑2)) · (((2 · 𝑀) · (𝑁 + 1)) / 6)) = (((π↑2) · ((2 · 𝑀) · (𝑁 + 1))) / ((𝑁↑2) · 6)))
277 divmuldiv 11842 . . . . . . . 8 ((((π↑2) ∈ ℂ ∧ ((2 · 𝑀) · (𝑁 + 1)) ∈ ℂ) ∧ ((6 ∈ ℂ ∧ 6 ≠ 0) ∧ ((𝑁↑2) ∈ ℂ ∧ (𝑁↑2) ≠ 0))) → (((π↑2) / 6) · (((2 · 𝑀) · (𝑁 + 1)) / (𝑁↑2))) = (((π↑2) · ((2 · 𝑀) · (𝑁 + 1))) / (6 · (𝑁↑2))))
278178, 274, 183, 181, 277syl22anc 838 . . . . . . 7 (𝑀 ∈ ℕ → (((π↑2) / 6) · (((2 · 𝑀) · (𝑁 + 1)) / (𝑁↑2))) = (((π↑2) · ((2 · 𝑀) · (𝑁 + 1))) / (6 · (𝑁↑2))))
279273, 276, 2783eqtr4d 2774 . . . . . 6 (𝑀 ∈ ℕ → (((π↑2) / (𝑁↑2)) · (((2 · 𝑀) · (𝑁 + 1)) / 6)) = (((π↑2) / 6) · (((2 · 𝑀) · (𝑁 + 1)) / (𝑁↑2))))
28075recoscld 16071 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (cos‘((𝑘 · π) / 𝑁)) ∈ ℝ)
281280recnd 11162 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (cos‘((𝑘 · π) / 𝑁)) ∈ ℂ)
282281sqcld 14069 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((cos‘((𝑘 · π) / 𝑁))↑2) ∈ ℂ)
283249, 282, 249, 250divdird 11956 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((((sin‘((𝑘 · π) / 𝑁))↑2) + ((cos‘((𝑘 · π) / 𝑁))↑2)) / ((sin‘((𝑘 · π) / 𝑁))↑2)) = ((((sin‘((𝑘 · π) / 𝑁))↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2)) + (((cos‘((𝑘 · π) / 𝑁))↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2))))
28475recnd 11162 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) ∈ ℂ)
285 sincossq 16103 . . . . . . . . . . . . . 14 (((𝑘 · π) / 𝑁) ∈ ℂ → (((sin‘((𝑘 · π) / 𝑁))↑2) + ((cos‘((𝑘 · π) / 𝑁))↑2)) = 1)
286284, 285syl 17 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((sin‘((𝑘 · π) / 𝑁))↑2) + ((cos‘((𝑘 · π) / 𝑁))↑2)) = 1)
287286oveq1d 7368 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((((sin‘((𝑘 · π) / 𝑁))↑2) + ((cos‘((𝑘 · π) / 𝑁))↑2)) / ((sin‘((𝑘 · π) / 𝑁))↑2)) = (1 / ((sin‘((𝑘 · π) / 𝑁))↑2)))
288249, 250dividd 11916 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((sin‘((𝑘 · π) / 𝑁))↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2)) = 1)
289222simprd 495 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 0 < (cos‘((𝑘 · π) / 𝑁)))
290289gt0ne0d 11702 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (cos‘((𝑘 · π) / 𝑁)) ≠ 0)
291 tanval 16055 . . . . . . . . . . . . . . . . . 18 ((((𝑘 · π) / 𝑁) ∈ ℂ ∧ (cos‘((𝑘 · π) / 𝑁)) ≠ 0) → (tan‘((𝑘 · π) / 𝑁)) = ((sin‘((𝑘 · π) / 𝑁)) / (cos‘((𝑘 · π) / 𝑁))))
292284, 290, 291syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (tan‘((𝑘 · π) / 𝑁)) = ((sin‘((𝑘 · π) / 𝑁)) / (cos‘((𝑘 · π) / 𝑁))))
293292oveq1d 7368 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑2) = (((sin‘((𝑘 · π) / 𝑁)) / (cos‘((𝑘 · π) / 𝑁)))↑2))
294245, 281, 290sqdivd 14084 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((sin‘((𝑘 · π) / 𝑁)) / (cos‘((𝑘 · π) / 𝑁)))↑2) = (((sin‘((𝑘 · π) / 𝑁))↑2) / ((cos‘((𝑘 · π) / 𝑁))↑2)))
295293, 294eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑2) = (((sin‘((𝑘 · π) / 𝑁))↑2) / ((cos‘((𝑘 · π) / 𝑁))↑2)))
296295oveq2d 7369 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)) = (1 / (((sin‘((𝑘 · π) / 𝑁))↑2) / ((cos‘((𝑘 · π) / 𝑁))↑2))))
297 sqne0 14048 . . . . . . . . . . . . . . . . 17 ((cos‘((𝑘 · π) / 𝑁)) ∈ ℂ → (((cos‘((𝑘 · π) / 𝑁))↑2) ≠ 0 ↔ (cos‘((𝑘 · π) / 𝑁)) ≠ 0))
298281, 297syl 17 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((cos‘((𝑘 · π) / 𝑁))↑2) ≠ 0 ↔ (cos‘((𝑘 · π) / 𝑁)) ≠ 0))
299290, 298mpbird 257 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((cos‘((𝑘 · π) / 𝑁))↑2) ≠ 0)
300249, 282, 250, 299recdivd 11935 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (1 / (((sin‘((𝑘 · π) / 𝑁))↑2) / ((cos‘((𝑘 · π) / 𝑁))↑2))) = (((cos‘((𝑘 · π) / 𝑁))↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2)))
30132, 296, 3003eqtrrd 2769 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((cos‘((𝑘 · π) / 𝑁))↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2)) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
302288, 301oveq12d 7371 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((((sin‘((𝑘 · π) / 𝑁))↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2)) + (((cos‘((𝑘 · π) / 𝑁))↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2))) = (1 + ((tan‘((𝑘 · π) / 𝑁))↑-2)))
303283, 287, 3023eqtr3d 2772 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (1 / ((sin‘((𝑘 · π) / 𝑁))↑2)) = (1 + ((tan‘((𝑘 · π) / 𝑁))↑-2)))
304 addcom 11320 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ ((tan‘((𝑘 · π) / 𝑁))↑-2) ∈ ℂ) → (1 + ((tan‘((𝑘 · π) / 𝑁))↑-2)) = (((tan‘((𝑘 · π) / 𝑁))↑-2) + 1))
305141, 204, 304sylancr 587 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (1 + ((tan‘((𝑘 · π) / 𝑁))↑-2)) = (((tan‘((𝑘 · π) / 𝑁))↑-2) + 1))
306247, 303, 3053eqtrd 2768 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑-2) = (((tan‘((𝑘 · π) / 𝑁))↑-2) + 1))
307306sumeq2dv 15627 . . . . . . . . 9 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)((sin‘((𝑘 · π) / 𝑁))↑-2) = Σ𝑘 ∈ (1...𝑀)(((tan‘((𝑘 · π) / 𝑁))↑-2) + 1))
308 1cnd 11129 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 1 ∈ ℂ)
3091, 204, 308fsumadd 15665 . . . . . . . . 9 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)(((tan‘((𝑘 · π) / 𝑁))↑-2) + 1) = (Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2) + Σ𝑘 ∈ (1...𝑀)1))
310 fsumconst 15715 . . . . . . . . . . . 12 (((1...𝑀) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 ∈ (1...𝑀)1 = ((♯‘(1...𝑀)) · 1))
3111, 141, 310sylancl 586 . . . . . . . . . . 11 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)1 = ((♯‘(1...𝑀)) · 1))
312 nnnn0 12409 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
313 hashfz1 14271 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
314312, 313syl 17 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (♯‘(1...𝑀)) = 𝑀)
315314oveq1d 7368 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((♯‘(1...𝑀)) · 1) = (𝑀 · 1))
316 nncn 12154 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
317316mulridd 11151 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑀 · 1) = 𝑀)
318311, 315, 3173eqtrd 2768 . . . . . . . . . 10 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)1 = 𝑀)
319201, 318oveq12d 7371 . . . . . . . . 9 (𝑀 ∈ ℕ → (Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2) + Σ𝑘 ∈ (1...𝑀)1) = ((((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6) + 𝑀))
320307, 309, 3193eqtrd 2768 . . . . . . . 8 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)((sin‘((𝑘 · π) / 𝑁))↑-2) = ((((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6) + 𝑀))
321 3cn 12227 . . . . . . . . . . . . 13 3 ∈ ℂ
322321a1i 11 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 3 ∈ ℂ)
323139, 143, 322adddid 11158 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((2 · 𝑀) · (((2 · 𝑀) − 1) + 3)) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) + ((2 · 𝑀) · 3)))
324 df-3 12210 . . . . . . . . . . . . . . . . 17 3 = (2 + 1)
325324oveq1i 7363 . . . . . . . . . . . . . . . 16 (3 − 1) = ((2 + 1) − 1)
32649, 141pncan3oi 11397 . . . . . . . . . . . . . . . 16 ((2 + 1) − 1) = 2
327325, 326, 1613eqtri 2756 . . . . . . . . . . . . . . 15 (3 − 1) = (1 + 1)
328327oveq2i 7364 . . . . . . . . . . . . . 14 ((2 · 𝑀) + (3 − 1)) = ((2 · 𝑀) + (1 + 1))
329139, 146, 322subadd23d 11515 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) + 3) = ((2 · 𝑀) + (3 − 1)))
330139, 146, 146addassd 11156 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (((2 · 𝑀) + 1) + 1) = ((2 · 𝑀) + (1 + 1)))
331328, 329, 3303eqtr4a 2790 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) + 3) = (((2 · 𝑀) + 1) + 1))
3323oveq1i 7363 . . . . . . . . . . . . 13 (𝑁 + 1) = (((2 · 𝑀) + 1) + 1)
333331, 332eqtr4di 2782 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) + 3) = (𝑁 + 1))
334333oveq2d 7369 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((2 · 𝑀) · (((2 · 𝑀) − 1) + 3)) = ((2 · 𝑀) · (𝑁 + 1)))
335 2cnd 12224 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → 2 ∈ ℂ)
336335, 316, 322mul32d 11344 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → ((2 · 𝑀) · 3) = ((2 · 3) · 𝑀))
337 3t2e6 12307 . . . . . . . . . . . . . . 15 (3 · 2) = 6
338321, 49mulcomi 11142 . . . . . . . . . . . . . . 15 (3 · 2) = (2 · 3)
339337, 338eqtr3i 2754 . . . . . . . . . . . . . 14 6 = (2 · 3)
340339oveq1i 7363 . . . . . . . . . . . . 13 (6 · 𝑀) = ((2 · 3) · 𝑀)
341336, 340eqtr4di 2782 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → ((2 · 𝑀) · 3) = (6 · 𝑀))
342341oveq2d 7369 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (((2 · 𝑀) · ((2 · 𝑀) − 1)) + ((2 · 𝑀) · 3)) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) + (6 · 𝑀)))
343323, 334, 3423eqtr3d 2772 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((2 · 𝑀) · (𝑁 + 1)) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) + (6 · 𝑀)))
344343oveq1d 7368 . . . . . . . . 9 (𝑀 ∈ ℕ → (((2 · 𝑀) · (𝑁 + 1)) / 6) = ((((2 · 𝑀) · ((2 · 𝑀) − 1)) + (6 · 𝑀)) / 6))
345 mulcl 11112 . . . . . . . . . . 11 ((6 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (6 · 𝑀) ∈ ℂ)
346173, 316, 345sylancr 587 . . . . . . . . . 10 (𝑀 ∈ ℕ → (6 · 𝑀) ∈ ℂ)
347173a1i 11 . . . . . . . . . 10 (𝑀 ∈ ℕ → 6 ∈ ℂ)
348110a1i 11 . . . . . . . . . 10 (𝑀 ∈ ℕ → 6 ≠ 0)
349179, 346, 347, 348divdird 11956 . . . . . . . . 9 (𝑀 ∈ ℕ → ((((2 · 𝑀) · ((2 · 𝑀) − 1)) + (6 · 𝑀)) / 6) = ((((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6) + ((6 · 𝑀) / 6)))
350316, 347, 348divcan3d 11923 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((6 · 𝑀) / 6) = 𝑀)
351350oveq2d 7369 . . . . . . . . 9 (𝑀 ∈ ℕ → ((((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6) + ((6 · 𝑀) / 6)) = ((((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6) + 𝑀))
352344, 349, 3513eqtrd 2768 . . . . . . . 8 (𝑀 ∈ ℕ → (((2 · 𝑀) · (𝑁 + 1)) / 6) = ((((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6) + 𝑀))
353320, 352eqtr4d 2767 . . . . . . 7 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)((sin‘((𝑘 · π) / 𝑁))↑-2) = (((2 · 𝑀) · (𝑁 + 1)) / 6))
354190, 353oveq12d 7371 . . . . . 6 (𝑀 ∈ ℕ → (((π / 𝑁)↑2) · Σ𝑘 ∈ (1...𝑀)((sin‘((𝑘 · π) / 𝑁))↑-2)) = (((π↑2) / (𝑁↑2)) · (((2 · 𝑀) · (𝑁 + 1)) / 6)))
355139, 63, 266, 63, 64, 64divmuldivd 11959 . . . . . . . 8 (𝑀 ∈ ℕ → (((2 · 𝑀) / 𝑁) · ((𝑁 + 1) / 𝑁)) = (((2 · 𝑀) · (𝑁 + 1)) / (𝑁 · 𝑁)))
356193oveq2d 7369 . . . . . . . 8 (𝑀 ∈ ℕ → (((2 · 𝑀) · (𝑁 + 1)) / (𝑁↑2)) = (((2 · 𝑀) · (𝑁 + 1)) / (𝑁 · 𝑁)))
357355, 356eqtr4d 2767 . . . . . . 7 (𝑀 ∈ ℕ → (((2 · 𝑀) / 𝑁) · ((𝑁 + 1) / 𝑁)) = (((2 · 𝑀) · (𝑁 + 1)) / (𝑁↑2)))
358357oveq2d 7369 . . . . . 6 (𝑀 ∈ ℕ → (((π↑2) / 6) · (((2 · 𝑀) / 𝑁) · ((𝑁 + 1) / 𝑁))) = (((π↑2) / 6) · (((2 · 𝑀) · (𝑁 + 1)) / (𝑁↑2))))
359279, 354, 3583eqtr4d 2774 . . . . 5 (𝑀 ∈ ℕ → (((π / 𝑁)↑2) · Σ𝑘 ∈ (1...𝑀)((sin‘((𝑘 · π) / 𝑁))↑-2)) = (((π↑2) / 6) · (((2 · 𝑀) / 𝑁) · ((𝑁 + 1) / 𝑁))))
360268, 272, 3593eqtr4d 2774 . . . 4 (𝑀 ∈ ℕ → ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (1 / 𝑁))) = (((π / 𝑁)↑2) · Σ𝑘 ∈ (1...𝑀)((sin‘((𝑘 · π) / 𝑁))↑-2)))
361225recnd 11162 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑-2) ∈ ℂ)
3621, 35, 361fsummulc2 15709 . . . 4 (𝑀 ∈ ℕ → (((π / 𝑁)↑2) · Σ𝑘 ∈ (1...𝑀)((sin‘((𝑘 · π) / 𝑁))↑-2)) = Σ𝑘 ∈ (1...𝑀)(((π / 𝑁)↑2) · ((sin‘((𝑘 · π) / 𝑁))↑-2)))
363264, 360, 3623eqtrd 2768 . . 3 (𝑀 ∈ ℕ → (𝐾𝑀) = Σ𝑘 ∈ (1...𝑀)(((π / 𝑁)↑2) · ((sin‘((𝑘 · π) / 𝑁))↑-2)))
364254, 218, 3633brtr4d 5127 . 2 (𝑀 ∈ ℕ → (𝐹𝑀) ≤ (𝐾𝑀))
365219, 364jca 511 1 (𝑀 ∈ ℕ → ((𝐽𝑀) ≤ (𝐹𝑀) ∧ (𝐹𝑀) ≤ (𝐾𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2925  Vcvv 3438  {csn 4579   class class class wbr 5095  cmpt 5176   × cxp 5621  cfv 6486  (class class class)co 7353  f cof 7615  Fincfn 8879  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168  cle 11169  cmin 11365  -cneg 11366   / cdiv 11795  cn 12146  2c2 12201  3c3 12202  6c6 12205  0cn0 12402  cz 12489  cuz 12753  +crp 12911  (,)cioo 13266  ...cfz 13428  seqcseq 13926  cexp 13986  Ccbc 14227  chash 14255  Σcsu 15611  sincsin 15988  cosccos 15989  tanctan 15990  πcpi 15991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-tan 15996  df-pi 15997  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-0p 25587  df-limc 25783  df-dv 25784  df-ply 26109  df-idp 26110  df-coe 26111  df-dgr 26112  df-quot 26215
This theorem is referenced by:  basellem9  27015
  Copyright terms: Public domain W3C validator