MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem8 Structured version   Visualization version   GIF version

Theorem basellem8 25673
Description: Lemma for basel 25675. The function 𝐹 of partial sums of the inverse squares is bounded below by 𝐽 and above by 𝐾, obtained by summing the inequality cot↑2𝑥 ≤ 1 / 𝑥↑2 ≤ csc↑2𝑥 = cot↑2𝑥 + 1 over the 𝑀 roots of the polynomial 𝑃, and applying the identity basellem5 25670. (Contributed by Mario Carneiro, 29-Jul-2014.)
Hypotheses
Ref Expression
basel.g 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
basel.f 𝐹 = seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2)))
basel.h 𝐻 = ((ℕ × {((π↑2) / 6)}) ∘f · ((ℕ × {1}) ∘f𝐺))
basel.j 𝐽 = (𝐻f · ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺)))
basel.k 𝐾 = (𝐻f · ((ℕ × {1}) ∘f + 𝐺))
basellem8.n 𝑁 = ((2 · 𝑀) + 1)
Assertion
Ref Expression
basellem8 (𝑀 ∈ ℕ → ((𝐽𝑀) ≤ (𝐹𝑀) ∧ (𝐹𝑀) ≤ (𝐾𝑀)))
Distinct variable groups:   𝑛,𝐹   𝑛,𝑀   𝑛,𝐽   𝑛,𝑁
Allowed substitution hints:   𝐺(𝑛)   𝐻(𝑛)   𝐾(𝑛)

Proof of Theorem basellem8
Dummy variables 𝑘 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13336 . . . 4 (𝑀 ∈ ℕ → (1...𝑀) ∈ Fin)
2 pire 25051 . . . . . . . 8 π ∈ ℝ
3 basellem8.n . . . . . . . . 9 𝑁 = ((2 · 𝑀) + 1)
4 2nn 11698 . . . . . . . . . . 11 2 ∈ ℕ
5 nnmulcl 11649 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
64, 5mpan 689 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ)
76peano2nnd 11642 . . . . . . . . 9 (𝑀 ∈ ℕ → ((2 · 𝑀) + 1) ∈ ℕ)
83, 7eqeltrid 2894 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ)
9 nndivre 11666 . . . . . . . 8 ((π ∈ ℝ ∧ 𝑁 ∈ ℕ) → (π / 𝑁) ∈ ℝ)
102, 8, 9sylancr 590 . . . . . . 7 (𝑀 ∈ ℕ → (π / 𝑁) ∈ ℝ)
1110resqcld 13607 . . . . . 6 (𝑀 ∈ ℕ → ((π / 𝑁)↑2) ∈ ℝ)
1211adantr 484 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((π / 𝑁)↑2) ∈ ℝ)
133basellem1 25666 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)))
14 tanrpcl 25097 . . . . . . . 8 (((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+)
1513, 14syl 17 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+)
1615rpred 12419 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℝ)
1715rpne0d 12424 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (tan‘((𝑘 · π) / 𝑁)) ≠ 0)
18 2z 12002 . . . . . . . 8 2 ∈ ℤ
19 znegcl 12005 . . . . . . . 8 (2 ∈ ℤ → -2 ∈ ℤ)
2018, 19ax-mp 5 . . . . . . 7 -2 ∈ ℤ
2120a1i 11 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → -2 ∈ ℤ)
2216, 17, 21reexpclzd 13606 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑-2) ∈ ℝ)
2312, 22remulcld 10660 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) · ((tan‘((𝑘 · π) / 𝑁))↑-2)) ∈ ℝ)
24 elfznn 12931 . . . . . . 7 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ)
2524adantl 485 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 𝑘 ∈ ℕ)
2625nnred 11640 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 𝑘 ∈ ℝ)
2725nnne0d 11675 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 𝑘 ≠ 0)
2826, 27, 21reexpclzd 13606 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑘↑-2) ∈ ℝ)
2916recnd 10658 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (tan‘((𝑘 · π) / 𝑁)) ∈ ℂ)
30 2nn0 11902 . . . . . . . 8 2 ∈ ℕ0
31 expneg 13433 . . . . . . . 8 (((tan‘((𝑘 · π) / 𝑁)) ∈ ℂ ∧ 2 ∈ ℕ0) → ((tan‘((𝑘 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
3229, 30, 31sylancl 589 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑-2) = (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)))
3332oveq2d 7151 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) · ((tan‘((𝑘 · π) / 𝑁))↑-2)) = (((π / 𝑁)↑2) · (1 / ((tan‘((𝑘 · π) / 𝑁))↑2))))
3410recnd 10658 . . . . . . . . 9 (𝑀 ∈ ℕ → (π / 𝑁) ∈ ℂ)
3534sqcld 13504 . . . . . . . 8 (𝑀 ∈ ℕ → ((π / 𝑁)↑2) ∈ ℂ)
3635adantr 484 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((π / 𝑁)↑2) ∈ ℂ)
37 rpexpcl 13444 . . . . . . . . . 10 (((tan‘((𝑘 · π) / 𝑁)) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ+)
3815, 18, 37sylancl 589 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ+)
3938rpred 12419 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ)
4039recnd 10658 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑2) ∈ ℂ)
4138rpne0d 12424 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑2) ≠ 0)
4236, 40, 41divrecd 11408 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) / ((tan‘((𝑘 · π) / 𝑁))↑2)) = (((π / 𝑁)↑2) · (1 / ((tan‘((𝑘 · π) / 𝑁))↑2))))
4333, 42eqtr4d 2836 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) · ((tan‘((𝑘 · π) / 𝑁))↑-2)) = (((π / 𝑁)↑2) / ((tan‘((𝑘 · π) / 𝑁))↑2)))
4425nnrpd 12417 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 𝑘 ∈ ℝ+)
45 rpexpcl 13444 . . . . . . 7 ((𝑘 ∈ ℝ+ ∧ -2 ∈ ℤ) → (𝑘↑-2) ∈ ℝ+)
4644, 20, 45sylancl 589 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑘↑-2) ∈ ℝ+)
47 2cn 11700 . . . . . . . . . . . 12 2 ∈ ℂ
4847negnegi 10945 . . . . . . . . . . 11 --2 = 2
4948oveq2i 7146 . . . . . . . . . 10 (𝑘↑--2) = (𝑘↑2)
5025nncnd 11641 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 𝑘 ∈ ℂ)
5150, 27, 21expnegd 13513 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑘↑--2) = (1 / (𝑘↑-2)))
5249, 51syl5reqr 2848 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (1 / (𝑘↑-2)) = (𝑘↑2))
5352oveq1d 7150 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((1 / (𝑘↑-2)) · ((π / 𝑁)↑2)) = ((𝑘↑2) · ((π / 𝑁)↑2)))
54 nncn 11633 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
55 nnne0 11659 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
5620a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → -2 ∈ ℤ)
5754, 55, 56expclzd 13511 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝑘↑-2) ∈ ℂ)
5825, 57syl 17 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑘↑-2) ∈ ℂ)
5950, 27, 21expne0d 13512 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑘↑-2) ≠ 0)
6036, 58, 59divrec2d 11409 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) / (𝑘↑-2)) = ((1 / (𝑘↑-2)) · ((π / 𝑁)↑2)))
612recni 10644 . . . . . . . . . . . 12 π ∈ ℂ
6261a1i 11 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → π ∈ ℂ)
638nncnd 11641 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑁 ∈ ℂ)
648nnne0d 11675 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑁 ≠ 0)
6563, 64jca 515 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
6665adantr 484 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
67 divass 11305 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ π ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → ((𝑘 · π) / 𝑁) = (𝑘 · (π / 𝑁)))
6850, 62, 66, 67syl3anc 1368 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) = (𝑘 · (π / 𝑁)))
6968oveq1d 7150 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((𝑘 · π) / 𝑁)↑2) = ((𝑘 · (π / 𝑁))↑2))
7034adantr 484 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (π / 𝑁) ∈ ℂ)
7150, 70sqmuld 13518 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · (π / 𝑁))↑2) = ((𝑘↑2) · ((π / 𝑁)↑2)))
7269, 71eqtrd 2833 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((𝑘 · π) / 𝑁)↑2) = ((𝑘↑2) · ((π / 𝑁)↑2)))
7353, 60, 723eqtr4d 2843 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) / (𝑘↑-2)) = (((𝑘 · π) / 𝑁)↑2))
74 elioore 12756 . . . . . . . . . 10 (((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)) → ((𝑘 · π) / 𝑁) ∈ ℝ)
7513, 74syl 17 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) ∈ ℝ)
7675resqcld 13607 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((𝑘 · π) / 𝑁)↑2) ∈ ℝ)
77 tangtx 25098 . . . . . . . . . 10 (((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)) → ((𝑘 · π) / 𝑁) < (tan‘((𝑘 · π) / 𝑁)))
7813, 77syl 17 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) < (tan‘((𝑘 · π) / 𝑁)))
79 eliooord 12784 . . . . . . . . . . . . . 14 (((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)) → (0 < ((𝑘 · π) / 𝑁) ∧ ((𝑘 · π) / 𝑁) < (π / 2)))
8013, 79syl 17 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (0 < ((𝑘 · π) / 𝑁) ∧ ((𝑘 · π) / 𝑁) < (π / 2)))
8180simpld 498 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 0 < ((𝑘 · π) / 𝑁))
8275, 81elrpd 12416 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) ∈ ℝ+)
8382rpge0d 12423 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 0 ≤ ((𝑘 · π) / 𝑁))
8415rpge0d 12423 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 0 ≤ (tan‘((𝑘 · π) / 𝑁)))
8575, 16, 83, 84lt2sqd 13615 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((𝑘 · π) / 𝑁) < (tan‘((𝑘 · π) / 𝑁)) ↔ (((𝑘 · π) / 𝑁)↑2) < ((tan‘((𝑘 · π) / 𝑁))↑2)))
8678, 85mpbid 235 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((𝑘 · π) / 𝑁)↑2) < ((tan‘((𝑘 · π) / 𝑁))↑2))
8776, 39, 86ltled 10777 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((𝑘 · π) / 𝑁)↑2) ≤ ((tan‘((𝑘 · π) / 𝑁))↑2))
8873, 87eqbrtrd 5052 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) / (𝑘↑-2)) ≤ ((tan‘((𝑘 · π) / 𝑁))↑2))
8912, 46, 38, 88lediv23d 12487 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) / ((tan‘((𝑘 · π) / 𝑁))↑2)) ≤ (𝑘↑-2))
9043, 89eqbrtrd 5052 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) · ((tan‘((𝑘 · π) / 𝑁))↑-2)) ≤ (𝑘↑-2))
911, 23, 28, 90fsumle 15146 . . 3 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)(((π / 𝑁)↑2) · ((tan‘((𝑘 · π) / 𝑁))↑-2)) ≤ Σ𝑘 ∈ (1...𝑀)(𝑘↑-2))
92 oveq2 7143 . . . . . . . . . . 11 (𝑛 = 𝑀 → (2 · 𝑛) = (2 · 𝑀))
9392oveq1d 7150 . . . . . . . . . 10 (𝑛 = 𝑀 → ((2 · 𝑛) + 1) = ((2 · 𝑀) + 1))
9493, 3eqtr4di 2851 . . . . . . . . 9 (𝑛 = 𝑀 → ((2 · 𝑛) + 1) = 𝑁)
9594oveq2d 7151 . . . . . . . 8 (𝑛 = 𝑀 → (1 / ((2 · 𝑛) + 1)) = (1 / 𝑁))
9695oveq2d 7151 . . . . . . 7 (𝑛 = 𝑀 → (1 − (1 / ((2 · 𝑛) + 1))) = (1 − (1 / 𝑁)))
9796oveq2d 7151 . . . . . 6 (𝑛 = 𝑀 → (((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) = (((π↑2) / 6) · (1 − (1 / 𝑁))))
9895oveq2d 7151 . . . . . . 7 (𝑛 = 𝑀 → (-2 · (1 / ((2 · 𝑛) + 1))) = (-2 · (1 / 𝑁)))
9998oveq2d 7151 . . . . . 6 (𝑛 = 𝑀 → (1 + (-2 · (1 / ((2 · 𝑛) + 1)))) = (1 + (-2 · (1 / 𝑁))))
10097, 99oveq12d 7153 . . . . 5 (𝑛 = 𝑀 → ((((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) · (1 + (-2 · (1 / ((2 · 𝑛) + 1))))) = ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (-2 · (1 / 𝑁)))))
101 basel.j . . . . . 6 𝐽 = (𝐻f · ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺)))
102 nnex 11631 . . . . . . . . 9 ℕ ∈ V
103102a1i 11 . . . . . . . 8 (⊤ → ℕ ∈ V)
104 ovexd 7170 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → (((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) ∈ V)
105 ovexd 7170 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 + (-2 · (1 / ((2 · 𝑛) + 1)))) ∈ V)
106 basel.h . . . . . . . . 9 𝐻 = ((ℕ × {((π↑2) / 6)}) ∘f · ((ℕ × {1}) ∘f𝐺))
1072resqcli 13545 . . . . . . . . . . . 12 (π↑2) ∈ ℝ
108 6re 11715 . . . . . . . . . . . 12 6 ∈ ℝ
109 6nn 11714 . . . . . . . . . . . . 13 6 ∈ ℕ
110109nnne0i 11665 . . . . . . . . . . . 12 6 ≠ 0
111107, 108, 110redivcli 11396 . . . . . . . . . . 11 ((π↑2) / 6) ∈ ℝ
112111a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → ((π↑2) / 6) ∈ ℝ)
113 ovexd 7170 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 − (1 / ((2 · 𝑛) + 1))) ∈ V)
114 fconstmpt 5578 . . . . . . . . . . 11 (ℕ × {((π↑2) / 6)}) = (𝑛 ∈ ℕ ↦ ((π↑2) / 6))
115114a1i 11 . . . . . . . . . 10 (⊤ → (ℕ × {((π↑2) / 6)}) = (𝑛 ∈ ℕ ↦ ((π↑2) / 6)))
116 1zzd 12001 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → 1 ∈ ℤ)
117 ovexd 7170 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / ((2 · 𝑛) + 1)) ∈ V)
118 fconstmpt 5578 . . . . . . . . . . . 12 (ℕ × {1}) = (𝑛 ∈ ℕ ↦ 1)
119118a1i 11 . . . . . . . . . . 11 (⊤ → (ℕ × {1}) = (𝑛 ∈ ℕ ↦ 1))
120 basel.g . . . . . . . . . . . 12 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
121120a1i 11 . . . . . . . . . . 11 (⊤ → 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))))
122103, 116, 117, 119, 121offval2 7406 . . . . . . . . . 10 (⊤ → ((ℕ × {1}) ∘f𝐺) = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1)))))
123103, 112, 113, 115, 122offval2 7406 . . . . . . . . 9 (⊤ → ((ℕ × {((π↑2) / 6)}) ∘f · ((ℕ × {1}) ∘f𝐺)) = (𝑛 ∈ ℕ ↦ (((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1))))))
124106, 123syl5eq 2845 . . . . . . . 8 (⊤ → 𝐻 = (𝑛 ∈ ℕ ↦ (((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1))))))
125 ovexd 7170 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ ℕ) → (-2 · (1 / ((2 · 𝑛) + 1))) ∈ V)
12647negcli 10943 . . . . . . . . . . 11 -2 ∈ ℂ
127126a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → -2 ∈ ℂ)
128 fconstmpt 5578 . . . . . . . . . . 11 (ℕ × {-2}) = (𝑛 ∈ ℕ ↦ -2)
129128a1i 11 . . . . . . . . . 10 (⊤ → (ℕ × {-2}) = (𝑛 ∈ ℕ ↦ -2))
130103, 127, 117, 129, 121offval2 7406 . . . . . . . . 9 (⊤ → ((ℕ × {-2}) ∘f · 𝐺) = (𝑛 ∈ ℕ ↦ (-2 · (1 / ((2 · 𝑛) + 1)))))
131103, 116, 125, 119, 130offval2 7406 . . . . . . . 8 (⊤ → ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺)) = (𝑛 ∈ ℕ ↦ (1 + (-2 · (1 / ((2 · 𝑛) + 1))))))
132103, 104, 105, 124, 131offval2 7406 . . . . . . 7 (⊤ → (𝐻f · ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺))) = (𝑛 ∈ ℕ ↦ ((((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) · (1 + (-2 · (1 / ((2 · 𝑛) + 1)))))))
133132mptru 1545 . . . . . 6 (𝐻f · ((ℕ × {1}) ∘f + ((ℕ × {-2}) ∘f · 𝐺))) = (𝑛 ∈ ℕ ↦ ((((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) · (1 + (-2 · (1 / ((2 · 𝑛) + 1))))))
134101, 133eqtri 2821 . . . . 5 𝐽 = (𝑛 ∈ ℕ ↦ ((((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) · (1 + (-2 · (1 / ((2 · 𝑛) + 1))))))
135 ovex 7168 . . . . 5 ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (-2 · (1 / 𝑁)))) ∈ V
136100, 134, 135fvmpt 6745 . . . 4 (𝑀 ∈ ℕ → (𝐽𝑀) = ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (-2 · (1 / 𝑁)))))
137111recni 10644 . . . . . . . 8 ((π↑2) / 6) ∈ ℂ
138137a1i 11 . . . . . . 7 (𝑀 ∈ ℕ → ((π↑2) / 6) ∈ ℂ)
1396nncnd 11641 . . . . . . . 8 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℂ)
140139, 63, 64divcld 11405 . . . . . . 7 (𝑀 ∈ ℕ → ((2 · 𝑀) / 𝑁) ∈ ℂ)
141 ax-1cn 10584 . . . . . . . . 9 1 ∈ ℂ
142 subcl 10874 . . . . . . . . 9 (((2 · 𝑀) ∈ ℂ ∧ 1 ∈ ℂ) → ((2 · 𝑀) − 1) ∈ ℂ)
143139, 141, 142sylancl 589 . . . . . . . 8 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ ℂ)
144143, 63, 64divcld 11405 . . . . . . 7 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) / 𝑁) ∈ ℂ)
145138, 140, 144mulassd 10653 . . . . . 6 (𝑀 ∈ ℕ → ((((π↑2) / 6) · ((2 · 𝑀) / 𝑁)) · (((2 · 𝑀) − 1) / 𝑁)) = (((π↑2) / 6) · (((2 · 𝑀) / 𝑁) · (((2 · 𝑀) − 1) / 𝑁))))
146 1cnd 10625 . . . . . . . . . 10 (𝑀 ∈ ℕ → 1 ∈ ℂ)
14763, 146, 63, 64divsubdird 11444 . . . . . . . . 9 (𝑀 ∈ ℕ → ((𝑁 − 1) / 𝑁) = ((𝑁 / 𝑁) − (1 / 𝑁)))
1483oveq1i 7145 . . . . . . . . . . 11 (𝑁 − 1) = (((2 · 𝑀) + 1) − 1)
149 pncan 10881 . . . . . . . . . . . 12 (((2 · 𝑀) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑀) + 1) − 1) = (2 · 𝑀))
150139, 141, 149sylancl 589 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (((2 · 𝑀) + 1) − 1) = (2 · 𝑀))
151148, 150syl5eq 2845 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁 − 1) = (2 · 𝑀))
152151oveq1d 7150 . . . . . . . . 9 (𝑀 ∈ ℕ → ((𝑁 − 1) / 𝑁) = ((2 · 𝑀) / 𝑁))
15363, 64dividd 11403 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁 / 𝑁) = 1)
154153oveq1d 7150 . . . . . . . . 9 (𝑀 ∈ ℕ → ((𝑁 / 𝑁) − (1 / 𝑁)) = (1 − (1 / 𝑁)))
155147, 152, 1543eqtr3rd 2842 . . . . . . . 8 (𝑀 ∈ ℕ → (1 − (1 / 𝑁)) = ((2 · 𝑀) / 𝑁))
156155oveq2d 7151 . . . . . . 7 (𝑀 ∈ ℕ → (((π↑2) / 6) · (1 − (1 / 𝑁))) = (((π↑2) / 6) · ((2 · 𝑀) / 𝑁)))
157126a1i 11 . . . . . . . . 9 (𝑀 ∈ ℕ → -2 ∈ ℂ)
15863, 157, 63, 64divdird 11443 . . . . . . . 8 (𝑀 ∈ ℕ → ((𝑁 + -2) / 𝑁) = ((𝑁 / 𝑁) + (-2 / 𝑁)))
159 negsub 10923 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑁 + -2) = (𝑁 − 2))
16063, 47, 159sylancl 589 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁 + -2) = (𝑁 − 2))
161 df-2 11688 . . . . . . . . . . . 12 2 = (1 + 1)
1623, 161oveq12i 7147 . . . . . . . . . . 11 (𝑁 − 2) = (((2 · 𝑀) + 1) − (1 + 1))
163139, 146, 146pnpcan2d 11024 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (((2 · 𝑀) + 1) − (1 + 1)) = ((2 · 𝑀) − 1))
164162, 163syl5eq 2845 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁 − 2) = ((2 · 𝑀) − 1))
165160, 164eqtrd 2833 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑁 + -2) = ((2 · 𝑀) − 1))
166165oveq1d 7150 . . . . . . . 8 (𝑀 ∈ ℕ → ((𝑁 + -2) / 𝑁) = (((2 · 𝑀) − 1) / 𝑁))
167157, 63, 64divrecd 11408 . . . . . . . . 9 (𝑀 ∈ ℕ → (-2 / 𝑁) = (-2 · (1 / 𝑁)))
168153, 167oveq12d 7153 . . . . . . . 8 (𝑀 ∈ ℕ → ((𝑁 / 𝑁) + (-2 / 𝑁)) = (1 + (-2 · (1 / 𝑁))))
169158, 166, 1683eqtr3rd 2842 . . . . . . 7 (𝑀 ∈ ℕ → (1 + (-2 · (1 / 𝑁))) = (((2 · 𝑀) − 1) / 𝑁))
170156, 169oveq12d 7153 . . . . . 6 (𝑀 ∈ ℕ → ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (-2 · (1 / 𝑁)))) = ((((π↑2) / 6) · ((2 · 𝑀) / 𝑁)) · (((2 · 𝑀) − 1) / 𝑁)))
1718nnsqcld 13601 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑁↑2) ∈ ℕ)
172171nncnd 11641 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁↑2) ∈ ℂ)
173 6cn 11716 . . . . . . . . . 10 6 ∈ ℂ
174 mulcom 10612 . . . . . . . . . 10 (((𝑁↑2) ∈ ℂ ∧ 6 ∈ ℂ) → ((𝑁↑2) · 6) = (6 · (𝑁↑2)))
175172, 173, 174sylancl 589 . . . . . . . . 9 (𝑀 ∈ ℕ → ((𝑁↑2) · 6) = (6 · (𝑁↑2)))
176175oveq2d 7151 . . . . . . . 8 (𝑀 ∈ ℕ → (((π↑2) · ((2 · 𝑀) · ((2 · 𝑀) − 1))) / ((𝑁↑2) · 6)) = (((π↑2) · ((2 · 𝑀) · ((2 · 𝑀) − 1))) / (6 · (𝑁↑2))))
177107recni 10644 . . . . . . . . . 10 (π↑2) ∈ ℂ
178177a1i 11 . . . . . . . . 9 (𝑀 ∈ ℕ → (π↑2) ∈ ℂ)
179139, 143mulcld 10650 . . . . . . . . 9 (𝑀 ∈ ℕ → ((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℂ)
180171nnne0d 11675 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁↑2) ≠ 0)
181172, 180jca 515 . . . . . . . . 9 (𝑀 ∈ ℕ → ((𝑁↑2) ∈ ℂ ∧ (𝑁↑2) ≠ 0))
182173, 110pm3.2i 474 . . . . . . . . . 10 (6 ∈ ℂ ∧ 6 ≠ 0)
183182a1i 11 . . . . . . . . 9 (𝑀 ∈ ℕ → (6 ∈ ℂ ∧ 6 ≠ 0))
184 divmuldiv 11329 . . . . . . . . 9 ((((π↑2) ∈ ℂ ∧ ((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℂ) ∧ (((𝑁↑2) ∈ ℂ ∧ (𝑁↑2) ≠ 0) ∧ (6 ∈ ℂ ∧ 6 ≠ 0))) → (((π↑2) / (𝑁↑2)) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)) = (((π↑2) · ((2 · 𝑀) · ((2 · 𝑀) − 1))) / ((𝑁↑2) · 6)))
185178, 179, 181, 183, 184syl22anc 837 . . . . . . . 8 (𝑀 ∈ ℕ → (((π↑2) / (𝑁↑2)) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)) = (((π↑2) · ((2 · 𝑀) · ((2 · 𝑀) − 1))) / ((𝑁↑2) · 6)))
186 divmuldiv 11329 . . . . . . . . 9 ((((π↑2) ∈ ℂ ∧ ((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℂ) ∧ ((6 ∈ ℂ ∧ 6 ≠ 0) ∧ ((𝑁↑2) ∈ ℂ ∧ (𝑁↑2) ≠ 0))) → (((π↑2) / 6) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / (𝑁↑2))) = (((π↑2) · ((2 · 𝑀) · ((2 · 𝑀) − 1))) / (6 · (𝑁↑2))))
187178, 179, 183, 181, 186syl22anc 837 . . . . . . . 8 (𝑀 ∈ ℕ → (((π↑2) / 6) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / (𝑁↑2))) = (((π↑2) · ((2 · 𝑀) · ((2 · 𝑀) − 1))) / (6 · (𝑁↑2))))
188176, 185, 1873eqtr4d 2843 . . . . . . 7 (𝑀 ∈ ℕ → (((π↑2) / (𝑁↑2)) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)) = (((π↑2) / 6) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / (𝑁↑2))))
18961a1i 11 . . . . . . . . 9 (𝑀 ∈ ℕ → π ∈ ℂ)
190189, 63, 64sqdivd 13519 . . . . . . . 8 (𝑀 ∈ ℕ → ((π / 𝑁)↑2) = ((π↑2) / (𝑁↑2)))
191190oveq1d 7150 . . . . . . 7 (𝑀 ∈ ℕ → (((π / 𝑁)↑2) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)) = (((π↑2) / (𝑁↑2)) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)))
192139, 63, 143, 63, 64, 64divmuldivd 11446 . . . . . . . . 9 (𝑀 ∈ ℕ → (((2 · 𝑀) / 𝑁) · (((2 · 𝑀) − 1) / 𝑁)) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / (𝑁 · 𝑁)))
19363sqvald 13503 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁↑2) = (𝑁 · 𝑁))
194193oveq2d 7151 . . . . . . . . 9 (𝑀 ∈ ℕ → (((2 · 𝑀) · ((2 · 𝑀) − 1)) / (𝑁↑2)) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / (𝑁 · 𝑁)))
195192, 194eqtr4d 2836 . . . . . . . 8 (𝑀 ∈ ℕ → (((2 · 𝑀) / 𝑁) · (((2 · 𝑀) − 1) / 𝑁)) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / (𝑁↑2)))
196195oveq2d 7151 . . . . . . 7 (𝑀 ∈ ℕ → (((π↑2) / 6) · (((2 · 𝑀) / 𝑁) · (((2 · 𝑀) − 1) / 𝑁))) = (((π↑2) / 6) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / (𝑁↑2))))
197188, 191, 1963eqtr4d 2843 . . . . . 6 (𝑀 ∈ ℕ → (((π / 𝑁)↑2) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)) = (((π↑2) / 6) · (((2 · 𝑀) / 𝑁) · (((2 · 𝑀) − 1) / 𝑁))))
198145, 170, 1973eqtr4d 2843 . . . . 5 (𝑀 ∈ ℕ → ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (-2 · (1 / 𝑁)))) = (((π / 𝑁)↑2) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)))
199 eqid 2798 . . . . . . 7 (𝑥 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑥𝑗))) = (𝑥 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑥𝑗)))
200 eqid 2798 . . . . . . 7 (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2)) = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2))
2013, 199, 200basellem5 25670 . . . . . 6 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
202201oveq2d 7151 . . . . 5 (𝑀 ∈ ℕ → (((π / 𝑁)↑2) · Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2)) = (((π / 𝑁)↑2) · (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6)))
203198, 202eqtr4d 2836 . . . 4 (𝑀 ∈ ℕ → ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (-2 · (1 / 𝑁)))) = (((π / 𝑁)↑2) · Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2)))
20422recnd 10658 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑-2) ∈ ℂ)
2051, 35, 204fsummulc2 15131 . . . 4 (𝑀 ∈ ℕ → (((π / 𝑁)↑2) · Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2)) = Σ𝑘 ∈ (1...𝑀)(((π / 𝑁)↑2) · ((tan‘((𝑘 · π) / 𝑁))↑-2)))
206136, 203, 2053eqtrd 2837 . . 3 (𝑀 ∈ ℕ → (𝐽𝑀) = Σ𝑘 ∈ (1...𝑀)(((π / 𝑁)↑2) · ((tan‘((𝑘 · π) / 𝑁))↑-2)))
207 basel.f . . . . 5 𝐹 = seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2)))
208207fveq1i 6646 . . . 4 (𝐹𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2)))‘𝑀)
209 oveq1 7142 . . . . . . 7 (𝑛 = 𝑘 → (𝑛↑-2) = (𝑘↑-2))
210 eqid 2798 . . . . . . 7 (𝑛 ∈ ℕ ↦ (𝑛↑-2)) = (𝑛 ∈ ℕ ↦ (𝑛↑-2))
211 ovex 7168 . . . . . . 7 (𝑘↑-2) ∈ V
212209, 210, 211fvmpt 6745 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑛↑-2))‘𝑘) = (𝑘↑-2))
21325, 212syl 17 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ (𝑛↑-2))‘𝑘) = (𝑘↑-2))
214 id 22 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ)
215 nnuz 12269 . . . . . 6 ℕ = (ℤ‘1)
216214, 215eleqtrdi 2900 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ‘1))
217213, 216, 58fsumser 15079 . . . 4 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)(𝑘↑-2) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑛↑-2)))‘𝑀))
218208, 217eqtr4id 2852 . . 3 (𝑀 ∈ ℕ → (𝐹𝑀) = Σ𝑘 ∈ (1...𝑀)(𝑘↑-2))
21991, 206, 2183brtr4d 5062 . 2 (𝑀 ∈ ℕ → (𝐽𝑀) ≤ (𝐹𝑀))
22075resincld 15488 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (sin‘((𝑘 · π) / 𝑁)) ∈ ℝ)
221 sincosq1sgn 25091 . . . . . . . . 9 (((𝑘 · π) / 𝑁) ∈ (0(,)(π / 2)) → (0 < (sin‘((𝑘 · π) / 𝑁)) ∧ 0 < (cos‘((𝑘 · π) / 𝑁))))
22213, 221syl 17 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (0 < (sin‘((𝑘 · π) / 𝑁)) ∧ 0 < (cos‘((𝑘 · π) / 𝑁))))
223222simpld 498 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 0 < (sin‘((𝑘 · π) / 𝑁)))
224223gt0ne0d 11193 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (sin‘((𝑘 · π) / 𝑁)) ≠ 0)
225220, 224, 21reexpclzd 13606 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑-2) ∈ ℝ)
22612, 225remulcld 10660 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) · ((sin‘((𝑘 · π) / 𝑁))↑-2)) ∈ ℝ)
227 sinltx 15534 . . . . . . . . . 10 (((𝑘 · π) / 𝑁) ∈ ℝ+ → (sin‘((𝑘 · π) / 𝑁)) < ((𝑘 · π) / 𝑁))
22882, 227syl 17 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (sin‘((𝑘 · π) / 𝑁)) < ((𝑘 · π) / 𝑁))
229220, 75, 228ltled 10777 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (sin‘((𝑘 · π) / 𝑁)) ≤ ((𝑘 · π) / 𝑁))
230 0re 10632 . . . . . . . . . . 11 0 ∈ ℝ
231 ltle 10718 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ (sin‘((𝑘 · π) / 𝑁)) ∈ ℝ) → (0 < (sin‘((𝑘 · π) / 𝑁)) → 0 ≤ (sin‘((𝑘 · π) / 𝑁))))
232230, 220, 231sylancr 590 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (0 < (sin‘((𝑘 · π) / 𝑁)) → 0 ≤ (sin‘((𝑘 · π) / 𝑁))))
233223, 232mpd 15 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 0 ≤ (sin‘((𝑘 · π) / 𝑁)))
234220, 75, 233, 83le2sqd 13616 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁)) ≤ ((𝑘 · π) / 𝑁) ↔ ((sin‘((𝑘 · π) / 𝑁))↑2) ≤ (((𝑘 · π) / 𝑁)↑2)))
235229, 234mpbid 235 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑2) ≤ (((𝑘 · π) / 𝑁)↑2))
236235, 73breqtrrd 5058 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑2) ≤ (((π / 𝑁)↑2) / (𝑘↑-2)))
237220resqcld 13607 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ)
238237, 12, 46lemuldiv2d 12469 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((𝑘↑-2) · ((sin‘((𝑘 · π) / 𝑁))↑2)) ≤ ((π / 𝑁)↑2) ↔ ((sin‘((𝑘 · π) / 𝑁))↑2) ≤ (((π / 𝑁)↑2) / (𝑘↑-2))))
239220, 223elrpd 12416 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (sin‘((𝑘 · π) / 𝑁)) ∈ ℝ+)
240 rpexpcl 13444 . . . . . . . . 9 (((sin‘((𝑘 · π) / 𝑁)) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((sin‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ+)
241239, 18, 240sylancl 589 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑2) ∈ ℝ+)
24228, 12, 241lemuldivd 12468 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((𝑘↑-2) · ((sin‘((𝑘 · π) / 𝑁))↑2)) ≤ ((π / 𝑁)↑2) ↔ (𝑘↑-2) ≤ (((π / 𝑁)↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2))))
243238, 242bitr3d 284 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((sin‘((𝑘 · π) / 𝑁))↑2) ≤ (((π / 𝑁)↑2) / (𝑘↑-2)) ↔ (𝑘↑-2) ≤ (((π / 𝑁)↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2))))
244236, 243mpbid 235 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑘↑-2) ≤ (((π / 𝑁)↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2)))
245220recnd 10658 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (sin‘((𝑘 · π) / 𝑁)) ∈ ℂ)
246 expneg 13433 . . . . . . . 8 (((sin‘((𝑘 · π) / 𝑁)) ∈ ℂ ∧ 2 ∈ ℕ0) → ((sin‘((𝑘 · π) / 𝑁))↑-2) = (1 / ((sin‘((𝑘 · π) / 𝑁))↑2)))
247245, 30, 246sylancl 589 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑-2) = (1 / ((sin‘((𝑘 · π) / 𝑁))↑2)))
248247oveq2d 7151 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) · ((sin‘((𝑘 · π) / 𝑁))↑-2)) = (((π / 𝑁)↑2) · (1 / ((sin‘((𝑘 · π) / 𝑁))↑2))))
249237recnd 10658 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑2) ∈ ℂ)
250241rpne0d 12424 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑2) ≠ 0)
25136, 249, 250divrecd 11408 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2)) = (((π / 𝑁)↑2) · (1 / ((sin‘((𝑘 · π) / 𝑁))↑2))))
252248, 251eqtr4d 2836 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((π / 𝑁)↑2) · ((sin‘((𝑘 · π) / 𝑁))↑-2)) = (((π / 𝑁)↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2)))
253244, 252breqtrrd 5058 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑘↑-2) ≤ (((π / 𝑁)↑2) · ((sin‘((𝑘 · π) / 𝑁))↑-2)))
2541, 28, 226, 253fsumle 15146 . . 3 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)(𝑘↑-2) ≤ Σ𝑘 ∈ (1...𝑀)(((π / 𝑁)↑2) · ((sin‘((𝑘 · π) / 𝑁))↑-2)))
25595oveq2d 7151 . . . . . 6 (𝑛 = 𝑀 → (1 + (1 / ((2 · 𝑛) + 1))) = (1 + (1 / 𝑁)))
25697, 255oveq12d 7153 . . . . 5 (𝑛 = 𝑀 → ((((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) · (1 + (1 / ((2 · 𝑛) + 1)))) = ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (1 / 𝑁))))
257 basel.k . . . . . 6 𝐾 = (𝐻f · ((ℕ × {1}) ∘f + 𝐺))
258 ovexd 7170 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 + (1 / ((2 · 𝑛) + 1))) ∈ V)
259103, 116, 117, 119, 121offval2 7406 . . . . . . . 8 (⊤ → ((ℕ × {1}) ∘f + 𝐺) = (𝑛 ∈ ℕ ↦ (1 + (1 / ((2 · 𝑛) + 1)))))
260103, 104, 258, 124, 259offval2 7406 . . . . . . 7 (⊤ → (𝐻f · ((ℕ × {1}) ∘f + 𝐺)) = (𝑛 ∈ ℕ ↦ ((((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) · (1 + (1 / ((2 · 𝑛) + 1))))))
261260mptru 1545 . . . . . 6 (𝐻f · ((ℕ × {1}) ∘f + 𝐺)) = (𝑛 ∈ ℕ ↦ ((((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) · (1 + (1 / ((2 · 𝑛) + 1)))))
262257, 261eqtri 2821 . . . . 5 𝐾 = (𝑛 ∈ ℕ ↦ ((((π↑2) / 6) · (1 − (1 / ((2 · 𝑛) + 1)))) · (1 + (1 / ((2 · 𝑛) + 1)))))
263 ovex 7168 . . . . 5 ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (1 / 𝑁))) ∈ V
264256, 262, 263fvmpt 6745 . . . 4 (𝑀 ∈ ℕ → (𝐾𝑀) = ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (1 / 𝑁))))
265 peano2cn 10801 . . . . . . . 8 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
26663, 265syl 17 . . . . . . 7 (𝑀 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
267266, 63, 64divcld 11405 . . . . . 6 (𝑀 ∈ ℕ → ((𝑁 + 1) / 𝑁) ∈ ℂ)
268138, 140, 267mulassd 10653 . . . . 5 (𝑀 ∈ ℕ → ((((π↑2) / 6) · ((2 · 𝑀) / 𝑁)) · ((𝑁 + 1) / 𝑁)) = (((π↑2) / 6) · (((2 · 𝑀) / 𝑁) · ((𝑁 + 1) / 𝑁))))
26963, 146, 63, 64divdird 11443 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑁 + 1) / 𝑁) = ((𝑁 / 𝑁) + (1 / 𝑁)))
270153oveq1d 7150 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑁 / 𝑁) + (1 / 𝑁)) = (1 + (1 / 𝑁)))
271269, 270eqtr2d 2834 . . . . . 6 (𝑀 ∈ ℕ → (1 + (1 / 𝑁)) = ((𝑁 + 1) / 𝑁))
272156, 271oveq12d 7153 . . . . 5 (𝑀 ∈ ℕ → ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (1 / 𝑁))) = ((((π↑2) / 6) · ((2 · 𝑀) / 𝑁)) · ((𝑁 + 1) / 𝑁)))
273175oveq2d 7151 . . . . . . 7 (𝑀 ∈ ℕ → (((π↑2) · ((2 · 𝑀) · (𝑁 + 1))) / ((𝑁↑2) · 6)) = (((π↑2) · ((2 · 𝑀) · (𝑁 + 1))) / (6 · (𝑁↑2))))
274139, 266mulcld 10650 . . . . . . . 8 (𝑀 ∈ ℕ → ((2 · 𝑀) · (𝑁 + 1)) ∈ ℂ)
275 divmuldiv 11329 . . . . . . . 8 ((((π↑2) ∈ ℂ ∧ ((2 · 𝑀) · (𝑁 + 1)) ∈ ℂ) ∧ (((𝑁↑2) ∈ ℂ ∧ (𝑁↑2) ≠ 0) ∧ (6 ∈ ℂ ∧ 6 ≠ 0))) → (((π↑2) / (𝑁↑2)) · (((2 · 𝑀) · (𝑁 + 1)) / 6)) = (((π↑2) · ((2 · 𝑀) · (𝑁 + 1))) / ((𝑁↑2) · 6)))
276178, 274, 181, 183, 275syl22anc 837 . . . . . . 7 (𝑀 ∈ ℕ → (((π↑2) / (𝑁↑2)) · (((2 · 𝑀) · (𝑁 + 1)) / 6)) = (((π↑2) · ((2 · 𝑀) · (𝑁 + 1))) / ((𝑁↑2) · 6)))
277 divmuldiv 11329 . . . . . . . 8 ((((π↑2) ∈ ℂ ∧ ((2 · 𝑀) · (𝑁 + 1)) ∈ ℂ) ∧ ((6 ∈ ℂ ∧ 6 ≠ 0) ∧ ((𝑁↑2) ∈ ℂ ∧ (𝑁↑2) ≠ 0))) → (((π↑2) / 6) · (((2 · 𝑀) · (𝑁 + 1)) / (𝑁↑2))) = (((π↑2) · ((2 · 𝑀) · (𝑁 + 1))) / (6 · (𝑁↑2))))
278178, 274, 183, 181, 277syl22anc 837 . . . . . . 7 (𝑀 ∈ ℕ → (((π↑2) / 6) · (((2 · 𝑀) · (𝑁 + 1)) / (𝑁↑2))) = (((π↑2) · ((2 · 𝑀) · (𝑁 + 1))) / (6 · (𝑁↑2))))
279273, 276, 2783eqtr4d 2843 . . . . . 6 (𝑀 ∈ ℕ → (((π↑2) / (𝑁↑2)) · (((2 · 𝑀) · (𝑁 + 1)) / 6)) = (((π↑2) / 6) · (((2 · 𝑀) · (𝑁 + 1)) / (𝑁↑2))))
28075recoscld 15489 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (cos‘((𝑘 · π) / 𝑁)) ∈ ℝ)
281280recnd 10658 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (cos‘((𝑘 · π) / 𝑁)) ∈ ℂ)
282281sqcld 13504 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((cos‘((𝑘 · π) / 𝑁))↑2) ∈ ℂ)
283249, 282, 249, 250divdird 11443 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((((sin‘((𝑘 · π) / 𝑁))↑2) + ((cos‘((𝑘 · π) / 𝑁))↑2)) / ((sin‘((𝑘 · π) / 𝑁))↑2)) = ((((sin‘((𝑘 · π) / 𝑁))↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2)) + (((cos‘((𝑘 · π) / 𝑁))↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2))))
28475recnd 10658 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((𝑘 · π) / 𝑁) ∈ ℂ)
285 sincossq 15521 . . . . . . . . . . . . . 14 (((𝑘 · π) / 𝑁) ∈ ℂ → (((sin‘((𝑘 · π) / 𝑁))↑2) + ((cos‘((𝑘 · π) / 𝑁))↑2)) = 1)
286284, 285syl 17 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((sin‘((𝑘 · π) / 𝑁))↑2) + ((cos‘((𝑘 · π) / 𝑁))↑2)) = 1)
287286oveq1d 7150 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((((sin‘((𝑘 · π) / 𝑁))↑2) + ((cos‘((𝑘 · π) / 𝑁))↑2)) / ((sin‘((𝑘 · π) / 𝑁))↑2)) = (1 / ((sin‘((𝑘 · π) / 𝑁))↑2)))
288249, 250dividd 11403 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((sin‘((𝑘 · π) / 𝑁))↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2)) = 1)
289222simprd 499 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 0 < (cos‘((𝑘 · π) / 𝑁)))
290289gt0ne0d 11193 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (cos‘((𝑘 · π) / 𝑁)) ≠ 0)
291 tanval 15473 . . . . . . . . . . . . . . . . . 18 ((((𝑘 · π) / 𝑁) ∈ ℂ ∧ (cos‘((𝑘 · π) / 𝑁)) ≠ 0) → (tan‘((𝑘 · π) / 𝑁)) = ((sin‘((𝑘 · π) / 𝑁)) / (cos‘((𝑘 · π) / 𝑁))))
292284, 290, 291syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (tan‘((𝑘 · π) / 𝑁)) = ((sin‘((𝑘 · π) / 𝑁)) / (cos‘((𝑘 · π) / 𝑁))))
293292oveq1d 7150 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑2) = (((sin‘((𝑘 · π) / 𝑁)) / (cos‘((𝑘 · π) / 𝑁)))↑2))
294245, 281, 290sqdivd 13519 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((sin‘((𝑘 · π) / 𝑁)) / (cos‘((𝑘 · π) / 𝑁)))↑2) = (((sin‘((𝑘 · π) / 𝑁))↑2) / ((cos‘((𝑘 · π) / 𝑁))↑2)))
295293, 294eqtrd 2833 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((tan‘((𝑘 · π) / 𝑁))↑2) = (((sin‘((𝑘 · π) / 𝑁))↑2) / ((cos‘((𝑘 · π) / 𝑁))↑2)))
296295oveq2d 7151 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (1 / ((tan‘((𝑘 · π) / 𝑁))↑2)) = (1 / (((sin‘((𝑘 · π) / 𝑁))↑2) / ((cos‘((𝑘 · π) / 𝑁))↑2))))
297 sqne0 13485 . . . . . . . . . . . . . . . . 17 ((cos‘((𝑘 · π) / 𝑁)) ∈ ℂ → (((cos‘((𝑘 · π) / 𝑁))↑2) ≠ 0 ↔ (cos‘((𝑘 · π) / 𝑁)) ≠ 0))
298281, 297syl 17 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((cos‘((𝑘 · π) / 𝑁))↑2) ≠ 0 ↔ (cos‘((𝑘 · π) / 𝑁)) ≠ 0))
299290, 298mpbird 260 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((cos‘((𝑘 · π) / 𝑁))↑2) ≠ 0)
300249, 282, 250, 299recdivd 11422 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (1 / (((sin‘((𝑘 · π) / 𝑁))↑2) / ((cos‘((𝑘 · π) / 𝑁))↑2))) = (((cos‘((𝑘 · π) / 𝑁))↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2)))
30132, 296, 3003eqtrrd 2838 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (((cos‘((𝑘 · π) / 𝑁))↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2)) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
302288, 301oveq12d 7153 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((((sin‘((𝑘 · π) / 𝑁))↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2)) + (((cos‘((𝑘 · π) / 𝑁))↑2) / ((sin‘((𝑘 · π) / 𝑁))↑2))) = (1 + ((tan‘((𝑘 · π) / 𝑁))↑-2)))
303283, 287, 3023eqtr3d 2841 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (1 / ((sin‘((𝑘 · π) / 𝑁))↑2)) = (1 + ((tan‘((𝑘 · π) / 𝑁))↑-2)))
304 addcom 10815 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ ((tan‘((𝑘 · π) / 𝑁))↑-2) ∈ ℂ) → (1 + ((tan‘((𝑘 · π) / 𝑁))↑-2)) = (((tan‘((𝑘 · π) / 𝑁))↑-2) + 1))
305141, 204, 304sylancr 590 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (1 + ((tan‘((𝑘 · π) / 𝑁))↑-2)) = (((tan‘((𝑘 · π) / 𝑁))↑-2) + 1))
306247, 303, 3053eqtrd 2837 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑-2) = (((tan‘((𝑘 · π) / 𝑁))↑-2) + 1))
307306sumeq2dv 15052 . . . . . . . . 9 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)((sin‘((𝑘 · π) / 𝑁))↑-2) = Σ𝑘 ∈ (1...𝑀)(((tan‘((𝑘 · π) / 𝑁))↑-2) + 1))
308 1cnd 10625 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → 1 ∈ ℂ)
3091, 204, 308fsumadd 15088 . . . . . . . . 9 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)(((tan‘((𝑘 · π) / 𝑁))↑-2) + 1) = (Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2) + Σ𝑘 ∈ (1...𝑀)1))
310 fsumconst 15137 . . . . . . . . . . . 12 (((1...𝑀) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 ∈ (1...𝑀)1 = ((♯‘(1...𝑀)) · 1))
3111, 141, 310sylancl 589 . . . . . . . . . . 11 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)1 = ((♯‘(1...𝑀)) · 1))
312 nnnn0 11892 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
313 hashfz1 13702 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
314312, 313syl 17 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (♯‘(1...𝑀)) = 𝑀)
315314oveq1d 7150 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((♯‘(1...𝑀)) · 1) = (𝑀 · 1))
316 nncn 11633 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
317316mulid1d 10647 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑀 · 1) = 𝑀)
318311, 315, 3173eqtrd 2837 . . . . . . . . . 10 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)1 = 𝑀)
319201, 318oveq12d 7153 . . . . . . . . 9 (𝑀 ∈ ℕ → (Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2) + Σ𝑘 ∈ (1...𝑀)1) = ((((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6) + 𝑀))
320307, 309, 3193eqtrd 2837 . . . . . . . 8 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)((sin‘((𝑘 · π) / 𝑁))↑-2) = ((((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6) + 𝑀))
321 3cn 11706 . . . . . . . . . . . . 13 3 ∈ ℂ
322321a1i 11 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 3 ∈ ℂ)
323139, 143, 322adddid 10654 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((2 · 𝑀) · (((2 · 𝑀) − 1) + 3)) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) + ((2 · 𝑀) · 3)))
324 df-3 11689 . . . . . . . . . . . . . . . . 17 3 = (2 + 1)
325324oveq1i 7145 . . . . . . . . . . . . . . . 16 (3 − 1) = ((2 + 1) − 1)
32647, 141pncan3oi 10891 . . . . . . . . . . . . . . . 16 ((2 + 1) − 1) = 2
327325, 326, 1613eqtri 2825 . . . . . . . . . . . . . . 15 (3 − 1) = (1 + 1)
328327oveq2i 7146 . . . . . . . . . . . . . 14 ((2 · 𝑀) + (3 − 1)) = ((2 · 𝑀) + (1 + 1))
329139, 146, 322subadd23d 11008 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) + 3) = ((2 · 𝑀) + (3 − 1)))
330139, 146, 146addassd 10652 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (((2 · 𝑀) + 1) + 1) = ((2 · 𝑀) + (1 + 1)))
331328, 329, 3303eqtr4a 2859 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) + 3) = (((2 · 𝑀) + 1) + 1))
3323oveq1i 7145 . . . . . . . . . . . . 13 (𝑁 + 1) = (((2 · 𝑀) + 1) + 1)
333331, 332eqtr4di 2851 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) + 3) = (𝑁 + 1))
334333oveq2d 7151 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((2 · 𝑀) · (((2 · 𝑀) − 1) + 3)) = ((2 · 𝑀) · (𝑁 + 1)))
335 2cnd 11703 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → 2 ∈ ℂ)
336335, 316, 322mul32d 10839 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → ((2 · 𝑀) · 3) = ((2 · 3) · 𝑀))
337 3t2e6 11791 . . . . . . . . . . . . . . 15 (3 · 2) = 6
338321, 47mulcomi 10638 . . . . . . . . . . . . . . 15 (3 · 2) = (2 · 3)
339337, 338eqtr3i 2823 . . . . . . . . . . . . . 14 6 = (2 · 3)
340339oveq1i 7145 . . . . . . . . . . . . 13 (6 · 𝑀) = ((2 · 3) · 𝑀)
341336, 340eqtr4di 2851 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → ((2 · 𝑀) · 3) = (6 · 𝑀))
342341oveq2d 7151 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (((2 · 𝑀) · ((2 · 𝑀) − 1)) + ((2 · 𝑀) · 3)) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) + (6 · 𝑀)))
343323, 334, 3423eqtr3d 2841 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((2 · 𝑀) · (𝑁 + 1)) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) + (6 · 𝑀)))
344343oveq1d 7150 . . . . . . . . 9 (𝑀 ∈ ℕ → (((2 · 𝑀) · (𝑁 + 1)) / 6) = ((((2 · 𝑀) · ((2 · 𝑀) − 1)) + (6 · 𝑀)) / 6))
345 mulcl 10610 . . . . . . . . . . 11 ((6 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (6 · 𝑀) ∈ ℂ)
346173, 316, 345sylancr 590 . . . . . . . . . 10 (𝑀 ∈ ℕ → (6 · 𝑀) ∈ ℂ)
347173a1i 11 . . . . . . . . . 10 (𝑀 ∈ ℕ → 6 ∈ ℂ)
348110a1i 11 . . . . . . . . . 10 (𝑀 ∈ ℕ → 6 ≠ 0)
349179, 346, 347, 348divdird 11443 . . . . . . . . 9 (𝑀 ∈ ℕ → ((((2 · 𝑀) · ((2 · 𝑀) − 1)) + (6 · 𝑀)) / 6) = ((((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6) + ((6 · 𝑀) / 6)))
350316, 347, 348divcan3d 11410 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((6 · 𝑀) / 6) = 𝑀)
351350oveq2d 7151 . . . . . . . . 9 (𝑀 ∈ ℕ → ((((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6) + ((6 · 𝑀) / 6)) = ((((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6) + 𝑀))
352344, 349, 3513eqtrd 2837 . . . . . . . 8 (𝑀 ∈ ℕ → (((2 · 𝑀) · (𝑁 + 1)) / 6) = ((((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6) + 𝑀))
353320, 352eqtr4d 2836 . . . . . . 7 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)((sin‘((𝑘 · π) / 𝑁))↑-2) = (((2 · 𝑀) · (𝑁 + 1)) / 6))
354190, 353oveq12d 7153 . . . . . 6 (𝑀 ∈ ℕ → (((π / 𝑁)↑2) · Σ𝑘 ∈ (1...𝑀)((sin‘((𝑘 · π) / 𝑁))↑-2)) = (((π↑2) / (𝑁↑2)) · (((2 · 𝑀) · (𝑁 + 1)) / 6)))
355139, 63, 266, 63, 64, 64divmuldivd 11446 . . . . . . . 8 (𝑀 ∈ ℕ → (((2 · 𝑀) / 𝑁) · ((𝑁 + 1) / 𝑁)) = (((2 · 𝑀) · (𝑁 + 1)) / (𝑁 · 𝑁)))
356193oveq2d 7151 . . . . . . . 8 (𝑀 ∈ ℕ → (((2 · 𝑀) · (𝑁 + 1)) / (𝑁↑2)) = (((2 · 𝑀) · (𝑁 + 1)) / (𝑁 · 𝑁)))
357355, 356eqtr4d 2836 . . . . . . 7 (𝑀 ∈ ℕ → (((2 · 𝑀) / 𝑁) · ((𝑁 + 1) / 𝑁)) = (((2 · 𝑀) · (𝑁 + 1)) / (𝑁↑2)))
358357oveq2d 7151 . . . . . 6 (𝑀 ∈ ℕ → (((π↑2) / 6) · (((2 · 𝑀) / 𝑁) · ((𝑁 + 1) / 𝑁))) = (((π↑2) / 6) · (((2 · 𝑀) · (𝑁 + 1)) / (𝑁↑2))))
359279, 354, 3583eqtr4d 2843 . . . . 5 (𝑀 ∈ ℕ → (((π / 𝑁)↑2) · Σ𝑘 ∈ (1...𝑀)((sin‘((𝑘 · π) / 𝑁))↑-2)) = (((π↑2) / 6) · (((2 · 𝑀) / 𝑁) · ((𝑁 + 1) / 𝑁))))
360268, 272, 3593eqtr4d 2843 . . . 4 (𝑀 ∈ ℕ → ((((π↑2) / 6) · (1 − (1 / 𝑁))) · (1 + (1 / 𝑁))) = (((π / 𝑁)↑2) · Σ𝑘 ∈ (1...𝑀)((sin‘((𝑘 · π) / 𝑁))↑-2)))
361225recnd 10658 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → ((sin‘((𝑘 · π) / 𝑁))↑-2) ∈ ℂ)
3621, 35, 361fsummulc2 15131 . . . 4 (𝑀 ∈ ℕ → (((π / 𝑁)↑2) · Σ𝑘 ∈ (1...𝑀)((sin‘((𝑘 · π) / 𝑁))↑-2)) = Σ𝑘 ∈ (1...𝑀)(((π / 𝑁)↑2) · ((sin‘((𝑘 · π) / 𝑁))↑-2)))
363264, 360, 3623eqtrd 2837 . . 3 (𝑀 ∈ ℕ → (𝐾𝑀) = Σ𝑘 ∈ (1...𝑀)(((π / 𝑁)↑2) · ((sin‘((𝑘 · π) / 𝑁))↑-2)))
364254, 218, 3633brtr4d 5062 . 2 (𝑀 ∈ ℕ → (𝐹𝑀) ≤ (𝐾𝑀))
365219, 364jca 515 1 (𝑀 ∈ ℕ → ((𝐽𝑀) ≤ (𝐹𝑀) ∧ (𝐹𝑀) ≤ (𝐾𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wtru 1539  wcel 2111  wne 2987  Vcvv 3441  {csn 4525   class class class wbr 5030  cmpt 5110   × cxp 5517  cfv 6324  (class class class)co 7135  f cof 7387  Fincfn 8492  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  cn 11625  2c2 11680  3c3 11681  6c6 11684  0cn0 11885  cz 11969  cuz 12231  +crp 12377  (,)cioo 12726  ...cfz 12885  seqcseq 13364  cexp 13425  Ccbc 13658  chash 13686  Σcsu 15034  sincsin 15409  cosccos 15410  tanctan 15411  πcpi 15412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-tan 15417  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-0p 24274  df-limc 24469  df-dv 24470  df-ply 24785  df-idp 24786  df-coe 24787  df-dgr 24788  df-quot 24887
This theorem is referenced by:  basellem9  25674
  Copyright terms: Public domain W3C validator