Step | Hyp | Ref
| Expression |
1 | | eluznn 12351 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈
(ℤ≥‘𝐴)) → 𝐵 ∈ ℕ) |
2 | | fveq2 6659 |
. . . . . . . 8
⊢ (𝑎 = 𝐵 → (!‘𝑎) = (!‘𝐵)) |
3 | 2 | negeqd 10911 |
. . . . . . 7
⊢ (𝑎 = 𝐵 → -(!‘𝑎) = -(!‘𝐵)) |
4 | 3 | oveq2d 7167 |
. . . . . 6
⊢ (𝑎 = 𝐵 → (2↑-(!‘𝑎)) = (2↑-(!‘𝐵))) |
5 | | aaliou3lem.b |
. . . . . 6
⊢ 𝐹 = (𝑎 ∈ ℕ ↦
(2↑-(!‘𝑎))) |
6 | | ovex 7184 |
. . . . . 6
⊢
(2↑-(!‘𝐵)) ∈ V |
7 | 4, 5, 6 | fvmpt 6760 |
. . . . 5
⊢ (𝐵 ∈ ℕ → (𝐹‘𝐵) = (2↑-(!‘𝐵))) |
8 | 1, 7 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈
(ℤ≥‘𝐴)) → (𝐹‘𝐵) = (2↑-(!‘𝐵))) |
9 | | 2rp 12428 |
. . . . 5
⊢ 2 ∈
ℝ+ |
10 | 1 | nnnn0d 11987 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈
(ℤ≥‘𝐴)) → 𝐵 ∈
ℕ0) |
11 | 10 | faccld 13687 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈
(ℤ≥‘𝐴)) → (!‘𝐵) ∈ ℕ) |
12 | 11 | nnzd 12118 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈
(ℤ≥‘𝐴)) → (!‘𝐵) ∈ ℤ) |
13 | 12 | znegcld 12121 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈
(ℤ≥‘𝐴)) → -(!‘𝐵) ∈ ℤ) |
14 | | rpexpcl 13491 |
. . . . 5
⊢ ((2
∈ ℝ+ ∧ -(!‘𝐵) ∈ ℤ) →
(2↑-(!‘𝐵))
∈ ℝ+) |
15 | 9, 13, 14 | sylancr 591 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈
(ℤ≥‘𝐴)) → (2↑-(!‘𝐵)) ∈
ℝ+) |
16 | 8, 15 | eqeltrd 2853 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈
(ℤ≥‘𝐴)) → (𝐹‘𝐵) ∈
ℝ+) |
17 | 16 | rpred 12465 |
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈
(ℤ≥‘𝐴)) → (𝐹‘𝐵) ∈ ℝ) |
18 | 16 | rpgt0d 12468 |
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈
(ℤ≥‘𝐴)) → 0 < (𝐹‘𝐵)) |
19 | | fveq2 6659 |
. . . . . 6
⊢ (𝑏 = 𝐴 → (𝐹‘𝑏) = (𝐹‘𝐴)) |
20 | | fveq2 6659 |
. . . . . 6
⊢ (𝑏 = 𝐴 → (𝐺‘𝑏) = (𝐺‘𝐴)) |
21 | 19, 20 | breq12d 5046 |
. . . . 5
⊢ (𝑏 = 𝐴 → ((𝐹‘𝑏) ≤ (𝐺‘𝑏) ↔ (𝐹‘𝐴) ≤ (𝐺‘𝐴))) |
22 | 21 | imbi2d 345 |
. . . 4
⊢ (𝑏 = 𝐴 → ((𝐴 ∈ ℕ → (𝐹‘𝑏) ≤ (𝐺‘𝑏)) ↔ (𝐴 ∈ ℕ → (𝐹‘𝐴) ≤ (𝐺‘𝐴)))) |
23 | | fveq2 6659 |
. . . . . 6
⊢ (𝑏 = 𝑑 → (𝐹‘𝑏) = (𝐹‘𝑑)) |
24 | | fveq2 6659 |
. . . . . 6
⊢ (𝑏 = 𝑑 → (𝐺‘𝑏) = (𝐺‘𝑑)) |
25 | 23, 24 | breq12d 5046 |
. . . . 5
⊢ (𝑏 = 𝑑 → ((𝐹‘𝑏) ≤ (𝐺‘𝑏) ↔ (𝐹‘𝑑) ≤ (𝐺‘𝑑))) |
26 | 25 | imbi2d 345 |
. . . 4
⊢ (𝑏 = 𝑑 → ((𝐴 ∈ ℕ → (𝐹‘𝑏) ≤ (𝐺‘𝑏)) ↔ (𝐴 ∈ ℕ → (𝐹‘𝑑) ≤ (𝐺‘𝑑)))) |
27 | | fveq2 6659 |
. . . . . 6
⊢ (𝑏 = (𝑑 + 1) → (𝐹‘𝑏) = (𝐹‘(𝑑 + 1))) |
28 | | fveq2 6659 |
. . . . . 6
⊢ (𝑏 = (𝑑 + 1) → (𝐺‘𝑏) = (𝐺‘(𝑑 + 1))) |
29 | 27, 28 | breq12d 5046 |
. . . . 5
⊢ (𝑏 = (𝑑 + 1) → ((𝐹‘𝑏) ≤ (𝐺‘𝑏) ↔ (𝐹‘(𝑑 + 1)) ≤ (𝐺‘(𝑑 + 1)))) |
30 | 29 | imbi2d 345 |
. . . 4
⊢ (𝑏 = (𝑑 + 1) → ((𝐴 ∈ ℕ → (𝐹‘𝑏) ≤ (𝐺‘𝑏)) ↔ (𝐴 ∈ ℕ → (𝐹‘(𝑑 + 1)) ≤ (𝐺‘(𝑑 + 1))))) |
31 | | fveq2 6659 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (𝐹‘𝑏) = (𝐹‘𝐵)) |
32 | | fveq2 6659 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (𝐺‘𝑏) = (𝐺‘𝐵)) |
33 | 31, 32 | breq12d 5046 |
. . . . 5
⊢ (𝑏 = 𝐵 → ((𝐹‘𝑏) ≤ (𝐺‘𝑏) ↔ (𝐹‘𝐵) ≤ (𝐺‘𝐵))) |
34 | 33 | imbi2d 345 |
. . . 4
⊢ (𝑏 = 𝐵 → ((𝐴 ∈ ℕ → (𝐹‘𝑏) ≤ (𝐺‘𝑏)) ↔ (𝐴 ∈ ℕ → (𝐹‘𝐵) ≤ (𝐺‘𝐵)))) |
35 | | nnnn0 11934 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℕ0) |
36 | 35 | faccld 13687 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ →
(!‘𝐴) ∈
ℕ) |
37 | 36 | nnzd 12118 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ →
(!‘𝐴) ∈
ℤ) |
38 | 37 | znegcld 12121 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ →
-(!‘𝐴) ∈
ℤ) |
39 | | rpexpcl 13491 |
. . . . . . . . 9
⊢ ((2
∈ ℝ+ ∧ -(!‘𝐴) ∈ ℤ) →
(2↑-(!‘𝐴))
∈ ℝ+) |
40 | 9, 38, 39 | sylancr 591 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ →
(2↑-(!‘𝐴))
∈ ℝ+) |
41 | 40 | rpred 12465 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ →
(2↑-(!‘𝐴))
∈ ℝ) |
42 | 41 | leidd 11237 |
. . . . . 6
⊢ (𝐴 ∈ ℕ →
(2↑-(!‘𝐴)) ≤
(2↑-(!‘𝐴))) |
43 | | nncn 11675 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℂ) |
44 | 43 | subidd 11016 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → (𝐴 − 𝐴) = 0) |
45 | 44 | oveq2d 7167 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ → ((1 /
2)↑(𝐴 − 𝐴)) = ((1 /
2)↑0)) |
46 | | halfcn 11882 |
. . . . . . . . . 10
⊢ (1 / 2)
∈ ℂ |
47 | | exp0 13476 |
. . . . . . . . . 10
⊢ ((1 / 2)
∈ ℂ → ((1 / 2)↑0) = 1) |
48 | 46, 47 | ax-mp 5 |
. . . . . . . . 9
⊢ ((1 /
2)↑0) = 1 |
49 | 45, 48 | eqtrdi 2810 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ → ((1 /
2)↑(𝐴 − 𝐴)) = 1) |
50 | 49 | oveq2d 7167 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ →
((2↑-(!‘𝐴))
· ((1 / 2)↑(𝐴
− 𝐴))) =
((2↑-(!‘𝐴))
· 1)) |
51 | 40 | rpcnd 12467 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ →
(2↑-(!‘𝐴))
∈ ℂ) |
52 | 51 | mulid1d 10689 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ →
((2↑-(!‘𝐴))
· 1) = (2↑-(!‘𝐴))) |
53 | 50, 52 | eqtrd 2794 |
. . . . . 6
⊢ (𝐴 ∈ ℕ →
((2↑-(!‘𝐴))
· ((1 / 2)↑(𝐴
− 𝐴))) =
(2↑-(!‘𝐴))) |
54 | 42, 53 | breqtrrd 5061 |
. . . . 5
⊢ (𝐴 ∈ ℕ →
(2↑-(!‘𝐴)) ≤
((2↑-(!‘𝐴))
· ((1 / 2)↑(𝐴
− 𝐴)))) |
55 | | fveq2 6659 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (!‘𝑎) = (!‘𝐴)) |
56 | 55 | negeqd 10911 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → -(!‘𝑎) = -(!‘𝐴)) |
57 | 56 | oveq2d 7167 |
. . . . . 6
⊢ (𝑎 = 𝐴 → (2↑-(!‘𝑎)) = (2↑-(!‘𝐴))) |
58 | | ovex 7184 |
. . . . . 6
⊢
(2↑-(!‘𝐴)) ∈ V |
59 | 57, 5, 58 | fvmpt 6760 |
. . . . 5
⊢ (𝐴 ∈ ℕ → (𝐹‘𝐴) = (2↑-(!‘𝐴))) |
60 | | nnz 12036 |
. . . . . 6
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℤ) |
61 | | uzid 12290 |
. . . . . 6
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
(ℤ≥‘𝐴)) |
62 | | oveq1 7158 |
. . . . . . . . 9
⊢ (𝑐 = 𝐴 → (𝑐 − 𝐴) = (𝐴 − 𝐴)) |
63 | 62 | oveq2d 7167 |
. . . . . . . 8
⊢ (𝑐 = 𝐴 → ((1 / 2)↑(𝑐 − 𝐴)) = ((1 / 2)↑(𝐴 − 𝐴))) |
64 | 63 | oveq2d 7167 |
. . . . . . 7
⊢ (𝑐 = 𝐴 → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴))) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐴 − 𝐴)))) |
65 | | aaliou3lem.a |
. . . . . . 7
⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦
((2↑-(!‘𝐴))
· ((1 / 2)↑(𝑐
− 𝐴)))) |
66 | | ovex 7184 |
. . . . . . 7
⊢
((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐴 − 𝐴))) ∈ V |
67 | 64, 65, 66 | fvmpt 6760 |
. . . . . 6
⊢ (𝐴 ∈
(ℤ≥‘𝐴) → (𝐺‘𝐴) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐴 − 𝐴)))) |
68 | 60, 61, 67 | 3syl 18 |
. . . . 5
⊢ (𝐴 ∈ ℕ → (𝐺‘𝐴) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐴 − 𝐴)))) |
69 | 54, 59, 68 | 3brtr4d 5065 |
. . . 4
⊢ (𝐴 ∈ ℕ → (𝐹‘𝐴) ≤ (𝐺‘𝐴)) |
70 | | eluznn 12351 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → 𝑑 ∈ ℕ) |
71 | 70 | nnnn0d 11987 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → 𝑑 ∈ ℕ0) |
72 | 71 | faccld 13687 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (!‘𝑑) ∈ ℕ) |
73 | 72 | nnzd 12118 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (!‘𝑑) ∈ ℤ) |
74 | 73 | znegcld 12121 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → -(!‘𝑑) ∈ ℤ) |
75 | | rpexpcl 13491 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ ℝ+ ∧ -(!‘𝑑) ∈ ℤ) →
(2↑-(!‘𝑑))
∈ ℝ+) |
76 | 9, 74, 75 | sylancr 591 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (2↑-(!‘𝑑)) ∈
ℝ+) |
77 | 76 | rpred 12465 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (2↑-(!‘𝑑)) ∈
ℝ) |
78 | 76 | rpge0d 12469 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → 0 ≤ (2↑-(!‘𝑑))) |
79 | | simpl 487 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → 𝐴 ∈ ℕ) |
80 | 79 | nnnn0d 11987 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → 𝐴 ∈
ℕ0) |
81 | 80 | faccld 13687 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (!‘𝐴) ∈ ℕ) |
82 | 81 | nnzd 12118 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (!‘𝐴) ∈ ℤ) |
83 | 82 | znegcld 12121 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → -(!‘𝐴) ∈ ℤ) |
84 | 9, 83, 39 | sylancr 591 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (2↑-(!‘𝐴)) ∈
ℝ+) |
85 | | halfre 11881 |
. . . . . . . . . . . . . . . 16
⊢ (1 / 2)
∈ ℝ |
86 | | halfgt0 11883 |
. . . . . . . . . . . . . . . 16
⊢ 0 < (1
/ 2) |
87 | 85, 86 | elrpii 12426 |
. . . . . . . . . . . . . . 15
⊢ (1 / 2)
∈ ℝ+ |
88 | | eluzelz 12285 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 ∈
(ℤ≥‘𝐴) → 𝑑 ∈ ℤ) |
89 | | zsubcl 12056 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑑 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑑 − 𝐴) ∈ ℤ) |
90 | 88, 60, 89 | syl2anr 600 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (𝑑 − 𝐴) ∈ ℤ) |
91 | | rpexpcl 13491 |
. . . . . . . . . . . . . . 15
⊢ (((1 / 2)
∈ ℝ+ ∧ (𝑑 − 𝐴) ∈ ℤ) → ((1 /
2)↑(𝑑 − 𝐴)) ∈
ℝ+) |
92 | 87, 90, 91 | sylancr 591 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → ((1 / 2)↑(𝑑 − 𝐴)) ∈
ℝ+) |
93 | 84, 92 | rpmulcld 12481 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑 − 𝐴))) ∈
ℝ+) |
94 | 93 | rpred 12465 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑 − 𝐴))) ∈ ℝ) |
95 | 77, 78, 94 | jca31 519 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (((2↑-(!‘𝑑)) ∈ ℝ ∧ 0 ≤
(2↑-(!‘𝑑)))
∧ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑 − 𝐴))) ∈ ℝ)) |
96 | 95 | adantr 485 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) ∧ (2↑-(!‘𝑑)) ≤ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑 − 𝐴)))) → (((2↑-(!‘𝑑)) ∈ ℝ ∧ 0 ≤
(2↑-(!‘𝑑)))
∧ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑 − 𝐴))) ∈ ℝ)) |
97 | 88 | adantl 486 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → 𝑑 ∈ ℤ) |
98 | 74, 97 | zmulcld 12125 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (-(!‘𝑑) · 𝑑) ∈ ℤ) |
99 | | rpexpcl 13491 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ ℝ+ ∧ (-(!‘𝑑) · 𝑑) ∈ ℤ) →
(2↑(-(!‘𝑑)
· 𝑑)) ∈
ℝ+) |
100 | 9, 98, 99 | sylancr 591 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (2↑(-(!‘𝑑) · 𝑑)) ∈
ℝ+) |
101 | 100 | rpred 12465 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (2↑(-(!‘𝑑) · 𝑑)) ∈ ℝ) |
102 | 100 | rpge0d 12469 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → 0 ≤ (2↑(-(!‘𝑑) · 𝑑))) |
103 | 85 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (1 / 2) ∈
ℝ) |
104 | 101, 102,
103 | jca31 519 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (((2↑(-(!‘𝑑) · 𝑑)) ∈ ℝ ∧ 0 ≤
(2↑(-(!‘𝑑)
· 𝑑))) ∧ (1 / 2)
∈ ℝ)) |
105 | 104 | adantr 485 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) ∧ (2↑-(!‘𝑑)) ≤ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑 − 𝐴)))) → (((2↑(-(!‘𝑑) · 𝑑)) ∈ ℝ ∧ 0 ≤
(2↑(-(!‘𝑑)
· 𝑑))) ∧ (1 / 2)
∈ ℝ)) |
106 | | simpr 489 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) ∧ (2↑-(!‘𝑑)) ≤ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑 − 𝐴)))) → (2↑-(!‘𝑑)) ≤ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑 − 𝐴)))) |
107 | | 2re 11741 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℝ |
108 | | 1le2 11876 |
. . . . . . . . . . . . 13
⊢ 1 ≤
2 |
109 | 72 | nncnd 11683 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (!‘𝑑) ∈ ℂ) |
110 | 97 | zcnd 12120 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → 𝑑 ∈ ℂ) |
111 | 109, 110 | mulneg1d 11124 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (-(!‘𝑑) · 𝑑) = -((!‘𝑑) · 𝑑)) |
112 | 72, 70 | nnmulcld 11720 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → ((!‘𝑑) · 𝑑) ∈ ℕ) |
113 | 112 | nnge1d 11715 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → 1 ≤ ((!‘𝑑) · 𝑑)) |
114 | | 1re 10672 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℝ |
115 | 112 | nnred 11682 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → ((!‘𝑑) · 𝑑) ∈ ℝ) |
116 | | leneg 11174 |
. . . . . . . . . . . . . . . . 17
⊢ ((1
∈ ℝ ∧ ((!‘𝑑) · 𝑑) ∈ ℝ) → (1 ≤
((!‘𝑑) · 𝑑) ↔ -((!‘𝑑) · 𝑑) ≤ -1)) |
117 | 114, 115,
116 | sylancr 591 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (1 ≤ ((!‘𝑑) · 𝑑) ↔ -((!‘𝑑) · 𝑑) ≤ -1)) |
118 | 113, 117 | mpbid 235 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → -((!‘𝑑) · 𝑑) ≤ -1) |
119 | 111, 118 | eqbrtrd 5055 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (-(!‘𝑑) · 𝑑) ≤ -1) |
120 | | neg1z 12050 |
. . . . . . . . . . . . . . 15
⊢ -1 ∈
ℤ |
121 | | eluz 12289 |
. . . . . . . . . . . . . . 15
⊢
(((-(!‘𝑑)
· 𝑑) ∈ ℤ
∧ -1 ∈ ℤ) → (-1 ∈
(ℤ≥‘(-(!‘𝑑) · 𝑑)) ↔ (-(!‘𝑑) · 𝑑) ≤ -1)) |
122 | 98, 120, 121 | sylancl 590 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (-1 ∈
(ℤ≥‘(-(!‘𝑑) · 𝑑)) ↔ (-(!‘𝑑) · 𝑑) ≤ -1)) |
123 | 119, 122 | mpbird 260 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → -1 ∈
(ℤ≥‘(-(!‘𝑑) · 𝑑))) |
124 | | leexp2a 13579 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℝ ∧ 1 ≤ 2 ∧ -1 ∈
(ℤ≥‘(-(!‘𝑑) · 𝑑))) → (2↑(-(!‘𝑑) · 𝑑)) ≤ (2↑-1)) |
125 | 107, 108,
123, 124 | mp3an12i 1463 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (2↑(-(!‘𝑑) · 𝑑)) ≤ (2↑-1)) |
126 | | 2cn 11742 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℂ |
127 | | expn1 13482 |
. . . . . . . . . . . . 13
⊢ (2 ∈
ℂ → (2↑-1) = (1 / 2)) |
128 | 126, 127 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(2↑-1) = (1 / 2) |
129 | 125, 128 | breqtrdi 5074 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (2↑(-(!‘𝑑) · 𝑑)) ≤ (1 / 2)) |
130 | 129 | adantr 485 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) ∧ (2↑-(!‘𝑑)) ≤ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑 − 𝐴)))) → (2↑(-(!‘𝑑) · 𝑑)) ≤ (1 / 2)) |
131 | | lemul12a 11529 |
. . . . . . . . . . 11
⊢
(((((2↑-(!‘𝑑)) ∈ ℝ ∧ 0 ≤
(2↑-(!‘𝑑)))
∧ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑 − 𝐴))) ∈ ℝ) ∧
(((2↑(-(!‘𝑑)
· 𝑑)) ∈ ℝ
∧ 0 ≤ (2↑(-(!‘𝑑) · 𝑑))) ∧ (1 / 2) ∈ ℝ)) →
(((2↑-(!‘𝑑))
≤ ((2↑-(!‘𝐴))
· ((1 / 2)↑(𝑑
− 𝐴))) ∧
(2↑(-(!‘𝑑)
· 𝑑)) ≤ (1 / 2))
→ ((2↑-(!‘𝑑)) · (2↑(-(!‘𝑑) · 𝑑))) ≤ (((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑 − 𝐴))) · (1 / 2)))) |
132 | 131 | 3impia 1115 |
. . . . . . . . . 10
⊢
(((((2↑-(!‘𝑑)) ∈ ℝ ∧ 0 ≤
(2↑-(!‘𝑑)))
∧ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑 − 𝐴))) ∈ ℝ) ∧
(((2↑(-(!‘𝑑)
· 𝑑)) ∈ ℝ
∧ 0 ≤ (2↑(-(!‘𝑑) · 𝑑))) ∧ (1 / 2) ∈ ℝ) ∧
((2↑-(!‘𝑑)) ≤
((2↑-(!‘𝐴))
· ((1 / 2)↑(𝑑
− 𝐴))) ∧
(2↑(-(!‘𝑑)
· 𝑑)) ≤ (1 / 2)))
→ ((2↑-(!‘𝑑)) · (2↑(-(!‘𝑑) · 𝑑))) ≤ (((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑 − 𝐴))) · (1 / 2))) |
133 | 96, 105, 106, 130, 132 | syl112anc 1372 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) ∧ (2↑-(!‘𝑑)) ≤ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑 − 𝐴)))) → ((2↑-(!‘𝑑)) ·
(2↑(-(!‘𝑑)
· 𝑑))) ≤
(((2↑-(!‘𝐴))
· ((1 / 2)↑(𝑑
− 𝐴))) · (1 /
2))) |
134 | 133 | ex 417 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → ((2↑-(!‘𝑑)) ≤ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑 − 𝐴))) → ((2↑-(!‘𝑑)) ·
(2↑(-(!‘𝑑)
· 𝑑))) ≤
(((2↑-(!‘𝐴))
· ((1 / 2)↑(𝑑
− 𝐴))) · (1 /
2)))) |
135 | | facp1 13681 |
. . . . . . . . . . . . . 14
⊢ (𝑑 ∈ ℕ0
→ (!‘(𝑑 + 1)) =
((!‘𝑑) ·
(𝑑 + 1))) |
136 | 71, 135 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (!‘(𝑑 + 1)) = ((!‘𝑑) · (𝑑 + 1))) |
137 | 136 | negeqd 10911 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → -(!‘(𝑑 + 1)) = -((!‘𝑑) · (𝑑 + 1))) |
138 | | ax-1cn 10626 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
139 | | addcom 10857 |
. . . . . . . . . . . . . . 15
⊢ ((𝑑 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑑 + 1) =
(1 + 𝑑)) |
140 | 110, 138,
139 | sylancl 590 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (𝑑 + 1) = (1 + 𝑑)) |
141 | 140 | oveq2d 7167 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (-(!‘𝑑) · (𝑑 + 1)) = (-(!‘𝑑) · (1 + 𝑑))) |
142 | | peano2cn 10843 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 ∈ ℂ → (𝑑 + 1) ∈
ℂ) |
143 | 110, 142 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (𝑑 + 1) ∈ ℂ) |
144 | 109, 143 | mulneg1d 11124 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (-(!‘𝑑) · (𝑑 + 1)) = -((!‘𝑑) · (𝑑 + 1))) |
145 | 74 | zcnd 12120 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → -(!‘𝑑) ∈ ℂ) |
146 | | 1cnd 10667 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → 1 ∈ ℂ) |
147 | 145, 146,
110 | adddid 10696 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (-(!‘𝑑) · (1 + 𝑑)) = ((-(!‘𝑑) · 1) + (-(!‘𝑑) · 𝑑))) |
148 | 145 | mulid1d 10689 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (-(!‘𝑑) · 1) = -(!‘𝑑)) |
149 | 148 | oveq1d 7166 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → ((-(!‘𝑑) · 1) + (-(!‘𝑑) · 𝑑)) = (-(!‘𝑑) + (-(!‘𝑑) · 𝑑))) |
150 | 147, 149 | eqtrd 2794 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (-(!‘𝑑) · (1 + 𝑑)) = (-(!‘𝑑) + (-(!‘𝑑) · 𝑑))) |
151 | 141, 144,
150 | 3eqtr3d 2802 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → -((!‘𝑑) · (𝑑 + 1)) = (-(!‘𝑑) + (-(!‘𝑑) · 𝑑))) |
152 | 137, 151 | eqtrd 2794 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → -(!‘(𝑑 + 1)) = (-(!‘𝑑) + (-(!‘𝑑) · 𝑑))) |
153 | 152 | oveq2d 7167 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (2↑-(!‘(𝑑 + 1))) =
(2↑(-(!‘𝑑) +
(-(!‘𝑑) ·
𝑑)))) |
154 | | 2cnne0 11877 |
. . . . . . . . . . . 12
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
155 | | expaddz 13516 |
. . . . . . . . . . . 12
⊢ (((2
∈ ℂ ∧ 2 ≠ 0) ∧ (-(!‘𝑑) ∈ ℤ ∧ (-(!‘𝑑) · 𝑑) ∈ ℤ)) →
(2↑(-(!‘𝑑) +
(-(!‘𝑑) ·
𝑑))) =
((2↑-(!‘𝑑))
· (2↑(-(!‘𝑑) · 𝑑)))) |
156 | 154, 155 | mpan 690 |
. . . . . . . . . . 11
⊢
((-(!‘𝑑)
∈ ℤ ∧ (-(!‘𝑑) · 𝑑) ∈ ℤ) →
(2↑(-(!‘𝑑) +
(-(!‘𝑑) ·
𝑑))) =
((2↑-(!‘𝑑))
· (2↑(-(!‘𝑑) · 𝑑)))) |
157 | 74, 98, 156 | syl2anc 588 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (2↑(-(!‘𝑑) + (-(!‘𝑑) · 𝑑))) = ((2↑-(!‘𝑑)) · (2↑(-(!‘𝑑) · 𝑑)))) |
158 | 153, 157 | eqtrd 2794 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (2↑-(!‘(𝑑 + 1))) =
((2↑-(!‘𝑑))
· (2↑(-(!‘𝑑) · 𝑑)))) |
159 | 43 | adantr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → 𝐴 ∈ ℂ) |
160 | 110, 146,
159 | addsubd 11049 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → ((𝑑 + 1) − 𝐴) = ((𝑑 − 𝐴) + 1)) |
161 | 160 | oveq2d 7167 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → ((1 / 2)↑((𝑑 + 1) − 𝐴)) = ((1 / 2)↑((𝑑 − 𝐴) + 1))) |
162 | | uznn0sub 12310 |
. . . . . . . . . . . . . 14
⊢ (𝑑 ∈
(ℤ≥‘𝐴) → (𝑑 − 𝐴) ∈
ℕ0) |
163 | 162 | adantl 486 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (𝑑 − 𝐴) ∈
ℕ0) |
164 | | expp1 13479 |
. . . . . . . . . . . . 13
⊢ (((1 / 2)
∈ ℂ ∧ (𝑑
− 𝐴) ∈
ℕ0) → ((1 / 2)↑((𝑑 − 𝐴) + 1)) = (((1 / 2)↑(𝑑 − 𝐴)) · (1 / 2))) |
165 | 46, 163, 164 | sylancr 591 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → ((1 / 2)↑((𝑑 − 𝐴) + 1)) = (((1 / 2)↑(𝑑 − 𝐴)) · (1 / 2))) |
166 | 161, 165 | eqtrd 2794 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → ((1 / 2)↑((𝑑 + 1) − 𝐴)) = (((1 / 2)↑(𝑑 − 𝐴)) · (1 / 2))) |
167 | 166 | oveq2d 7167 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → ((2↑-(!‘𝐴)) · ((1 /
2)↑((𝑑 + 1) −
𝐴))) =
((2↑-(!‘𝐴))
· (((1 / 2)↑(𝑑
− 𝐴)) · (1 /
2)))) |
168 | 84 | rpcnd 12467 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (2↑-(!‘𝐴)) ∈
ℂ) |
169 | 92 | rpcnd 12467 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → ((1 / 2)↑(𝑑 − 𝐴)) ∈ ℂ) |
170 | 46 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (1 / 2) ∈
ℂ) |
171 | 168, 169,
170 | mulassd 10695 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑 − 𝐴))) · (1 / 2)) =
((2↑-(!‘𝐴))
· (((1 / 2)↑(𝑑
− 𝐴)) · (1 /
2)))) |
172 | 167, 171 | eqtr4d 2797 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → ((2↑-(!‘𝐴)) · ((1 /
2)↑((𝑑 + 1) −
𝐴))) =
(((2↑-(!‘𝐴))
· ((1 / 2)↑(𝑑
− 𝐴))) · (1 /
2))) |
173 | 158, 172 | breq12d 5046 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → ((2↑-(!‘(𝑑 + 1))) ≤
((2↑-(!‘𝐴))
· ((1 / 2)↑((𝑑
+ 1) − 𝐴))) ↔
((2↑-(!‘𝑑))
· (2↑(-(!‘𝑑) · 𝑑))) ≤ (((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑 − 𝐴))) · (1 / 2)))) |
174 | 134, 173 | sylibrd 262 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → ((2↑-(!‘𝑑)) ≤ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑 − 𝐴))) → (2↑-(!‘(𝑑 + 1))) ≤
((2↑-(!‘𝐴))
· ((1 / 2)↑((𝑑
+ 1) − 𝐴))))) |
175 | | fveq2 6659 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑑 → (!‘𝑎) = (!‘𝑑)) |
176 | 175 | negeqd 10911 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑑 → -(!‘𝑎) = -(!‘𝑑)) |
177 | 176 | oveq2d 7167 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑑 → (2↑-(!‘𝑎)) = (2↑-(!‘𝑑))) |
178 | | ovex 7184 |
. . . . . . . . . 10
⊢
(2↑-(!‘𝑑)) ∈ V |
179 | 177, 5, 178 | fvmpt 6760 |
. . . . . . . . 9
⊢ (𝑑 ∈ ℕ → (𝐹‘𝑑) = (2↑-(!‘𝑑))) |
180 | 70, 179 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (𝐹‘𝑑) = (2↑-(!‘𝑑))) |
181 | | oveq1 7158 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑑 → (𝑐 − 𝐴) = (𝑑 − 𝐴)) |
182 | 181 | oveq2d 7167 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑑 → ((1 / 2)↑(𝑐 − 𝐴)) = ((1 / 2)↑(𝑑 − 𝐴))) |
183 | 182 | oveq2d 7167 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑑 → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴))) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑 − 𝐴)))) |
184 | | ovex 7184 |
. . . . . . . . . 10
⊢
((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑 − 𝐴))) ∈ V |
185 | 183, 65, 184 | fvmpt 6760 |
. . . . . . . . 9
⊢ (𝑑 ∈
(ℤ≥‘𝐴) → (𝐺‘𝑑) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑 − 𝐴)))) |
186 | 185 | adantl 486 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (𝐺‘𝑑) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑 − 𝐴)))) |
187 | 180, 186 | breq12d 5046 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → ((𝐹‘𝑑) ≤ (𝐺‘𝑑) ↔ (2↑-(!‘𝑑)) ≤ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑 − 𝐴))))) |
188 | 70 | peano2nnd 11684 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (𝑑 + 1) ∈ ℕ) |
189 | | fveq2 6659 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑑 + 1) → (!‘𝑎) = (!‘(𝑑 + 1))) |
190 | 189 | negeqd 10911 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑑 + 1) → -(!‘𝑎) = -(!‘(𝑑 + 1))) |
191 | 190 | oveq2d 7167 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑑 + 1) → (2↑-(!‘𝑎)) = (2↑-(!‘(𝑑 + 1)))) |
192 | | ovex 7184 |
. . . . . . . . . 10
⊢
(2↑-(!‘(𝑑
+ 1))) ∈ V |
193 | 191, 5, 192 | fvmpt 6760 |
. . . . . . . . 9
⊢ ((𝑑 + 1) ∈ ℕ →
(𝐹‘(𝑑 + 1)) =
(2↑-(!‘(𝑑 +
1)))) |
194 | 188, 193 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (𝐹‘(𝑑 + 1)) = (2↑-(!‘(𝑑 + 1)))) |
195 | | peano2uz 12334 |
. . . . . . . . . 10
⊢ (𝑑 ∈
(ℤ≥‘𝐴) → (𝑑 + 1) ∈
(ℤ≥‘𝐴)) |
196 | | oveq1 7158 |
. . . . . . . . . . . . 13
⊢ (𝑐 = (𝑑 + 1) → (𝑐 − 𝐴) = ((𝑑 + 1) − 𝐴)) |
197 | 196 | oveq2d 7167 |
. . . . . . . . . . . 12
⊢ (𝑐 = (𝑑 + 1) → ((1 / 2)↑(𝑐 − 𝐴)) = ((1 / 2)↑((𝑑 + 1) − 𝐴))) |
198 | 197 | oveq2d 7167 |
. . . . . . . . . . 11
⊢ (𝑐 = (𝑑 + 1) → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴))) = ((2↑-(!‘𝐴)) · ((1 / 2)↑((𝑑 + 1) − 𝐴)))) |
199 | | ovex 7184 |
. . . . . . . . . . 11
⊢
((2↑-(!‘𝐴)) · ((1 / 2)↑((𝑑 + 1) − 𝐴))) ∈ V |
200 | 198, 65, 199 | fvmpt 6760 |
. . . . . . . . . 10
⊢ ((𝑑 + 1) ∈
(ℤ≥‘𝐴) → (𝐺‘(𝑑 + 1)) = ((2↑-(!‘𝐴)) · ((1 / 2)↑((𝑑 + 1) − 𝐴)))) |
201 | 195, 200 | syl 17 |
. . . . . . . . 9
⊢ (𝑑 ∈
(ℤ≥‘𝐴) → (𝐺‘(𝑑 + 1)) = ((2↑-(!‘𝐴)) · ((1 / 2)↑((𝑑 + 1) − 𝐴)))) |
202 | 201 | adantl 486 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → (𝐺‘(𝑑 + 1)) = ((2↑-(!‘𝐴)) · ((1 / 2)↑((𝑑 + 1) − 𝐴)))) |
203 | 194, 202 | breq12d 5046 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → ((𝐹‘(𝑑 + 1)) ≤ (𝐺‘(𝑑 + 1)) ↔ (2↑-(!‘(𝑑 + 1))) ≤
((2↑-(!‘𝐴))
· ((1 / 2)↑((𝑑
+ 1) − 𝐴))))) |
204 | 174, 187,
203 | 3imtr4d 298 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑑 ∈
(ℤ≥‘𝐴)) → ((𝐹‘𝑑) ≤ (𝐺‘𝑑) → (𝐹‘(𝑑 + 1)) ≤ (𝐺‘(𝑑 + 1)))) |
205 | 204 | expcom 418 |
. . . . 5
⊢ (𝑑 ∈
(ℤ≥‘𝐴) → (𝐴 ∈ ℕ → ((𝐹‘𝑑) ≤ (𝐺‘𝑑) → (𝐹‘(𝑑 + 1)) ≤ (𝐺‘(𝑑 + 1))))) |
206 | 205 | a2d 29 |
. . . 4
⊢ (𝑑 ∈
(ℤ≥‘𝐴) → ((𝐴 ∈ ℕ → (𝐹‘𝑑) ≤ (𝐺‘𝑑)) → (𝐴 ∈ ℕ → (𝐹‘(𝑑 + 1)) ≤ (𝐺‘(𝑑 + 1))))) |
207 | 22, 26, 30, 34, 69, 206 | uzind4i 12343 |
. . 3
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → (𝐴 ∈ ℕ → (𝐹‘𝐵) ≤ (𝐺‘𝐵))) |
208 | 207 | impcom 412 |
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈
(ℤ≥‘𝐴)) → (𝐹‘𝐵) ≤ (𝐺‘𝐵)) |
209 | | 0xr 10719 |
. . 3
⊢ 0 ∈
ℝ* |
210 | 65 | aaliou3lem1 25030 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈
(ℤ≥‘𝐴)) → (𝐺‘𝐵) ∈ ℝ) |
211 | | elioc2 12835 |
. . 3
⊢ ((0
∈ ℝ* ∧ (𝐺‘𝐵) ∈ ℝ) → ((𝐹‘𝐵) ∈ (0(,](𝐺‘𝐵)) ↔ ((𝐹‘𝐵) ∈ ℝ ∧ 0 < (𝐹‘𝐵) ∧ (𝐹‘𝐵) ≤ (𝐺‘𝐵)))) |
212 | 209, 210,
211 | sylancr 591 |
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈
(ℤ≥‘𝐴)) → ((𝐹‘𝐵) ∈ (0(,](𝐺‘𝐵)) ↔ ((𝐹‘𝐵) ∈ ℝ ∧ 0 < (𝐹‘𝐵) ∧ (𝐹‘𝐵) ≤ (𝐺‘𝐵)))) |
213 | 17, 18, 208, 212 | mpbir3and 1340 |
1
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈
(ℤ≥‘𝐴)) → (𝐹‘𝐵) ∈ (0(,](𝐺‘𝐵))) |