![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xp1d2m1eqxm1d2 | Structured version Visualization version GIF version |
Description: A complex number increased by 1, then divided by 2, then decreased by 1 equals the complex number decreased by 1 and then divided by 2. (Contributed by AV, 24-May-2020.) |
Ref | Expression |
---|---|
xp1d2m1eqxm1d2 | ⊢ (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) = ((𝑋 − 1) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2cn 10496 | . . . 4 ⊢ (𝑋 ∈ ℂ → (𝑋 + 1) ∈ ℂ) | |
2 | 1 | halfcld 11561 | . . 3 ⊢ (𝑋 ∈ ℂ → ((𝑋 + 1) / 2) ∈ ℂ) |
3 | peano2cnm 10637 | . . 3 ⊢ (((𝑋 + 1) / 2) ∈ ℂ → (((𝑋 + 1) / 2) − 1) ∈ ℂ) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) ∈ ℂ) |
5 | peano2cnm 10637 | . . 3 ⊢ (𝑋 ∈ ℂ → (𝑋 − 1) ∈ ℂ) | |
6 | 5 | halfcld 11561 | . 2 ⊢ (𝑋 ∈ ℂ → ((𝑋 − 1) / 2) ∈ ℂ) |
7 | 2cnd 11387 | . 2 ⊢ (𝑋 ∈ ℂ → 2 ∈ ℂ) | |
8 | 2ne0 11420 | . . 3 ⊢ 2 ≠ 0 | |
9 | 8 | a1i 11 | . 2 ⊢ (𝑋 ∈ ℂ → 2 ≠ 0) |
10 | 1cnd 10321 | . . . 4 ⊢ (𝑋 ∈ ℂ → 1 ∈ ℂ) | |
11 | 2, 10, 7 | subdird 10777 | . . 3 ⊢ (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) − 1) · 2) = ((((𝑋 + 1) / 2) · 2) − (1 · 2))) |
12 | 1, 7, 9 | divcan1d 11092 | . . . 4 ⊢ (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) · 2) = (𝑋 + 1)) |
13 | 7 | mulid2d 10345 | . . . 4 ⊢ (𝑋 ∈ ℂ → (1 · 2) = 2) |
14 | 12, 13 | oveq12d 6894 | . . 3 ⊢ (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) · 2) − (1 · 2)) = ((𝑋 + 1) − 2)) |
15 | 5, 7, 9 | divcan1d 11092 | . . . 4 ⊢ (𝑋 ∈ ℂ → (((𝑋 − 1) / 2) · 2) = (𝑋 − 1)) |
16 | 2m1e1 11442 | . . . . . 6 ⊢ (2 − 1) = 1 | |
17 | 16 | a1i 11 | . . . . 5 ⊢ (𝑋 ∈ ℂ → (2 − 1) = 1) |
18 | 17 | oveq2d 6892 | . . . 4 ⊢ (𝑋 ∈ ℂ → (𝑋 − (2 − 1)) = (𝑋 − 1)) |
19 | id 22 | . . . . 5 ⊢ (𝑋 ∈ ℂ → 𝑋 ∈ ℂ) | |
20 | 19, 7, 10 | subsub3d 10712 | . . . 4 ⊢ (𝑋 ∈ ℂ → (𝑋 − (2 − 1)) = ((𝑋 + 1) − 2)) |
21 | 15, 18, 20 | 3eqtr2rd 2838 | . . 3 ⊢ (𝑋 ∈ ℂ → ((𝑋 + 1) − 2) = (((𝑋 − 1) / 2) · 2)) |
22 | 11, 14, 21 | 3eqtrd 2835 | . 2 ⊢ (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) − 1) · 2) = (((𝑋 − 1) / 2) · 2)) |
23 | 4, 6, 7, 9, 22 | mulcan2ad 10953 | 1 ⊢ (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) = ((𝑋 − 1) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ≠ wne 2969 (class class class)co 6876 ℂcc 10220 0cc0 10222 1c1 10223 + caddc 10225 · cmul 10227 − cmin 10554 / cdiv 10974 2c2 11364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-po 5231 df-so 5232 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-div 10975 df-2 11372 |
This theorem is referenced by: mod2eq1n2dvds 15404 zob 15416 nno 15431 nn0ob 15433 dignn0flhalflem1 43196 |
Copyright terms: Public domain | W3C validator |