MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp1d2m1eqxm1d2 Structured version   Visualization version   GIF version

Theorem xp1d2m1eqxm1d2 12227
Description: A complex number increased by 1, then divided by 2, then decreased by 1 equals the complex number decreased by 1 and then divided by 2. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
xp1d2m1eqxm1d2 (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) = ((𝑋 − 1) / 2))

Proof of Theorem xp1d2m1eqxm1d2
StepHypRef Expression
1 peano2cn 11147 . . . 4 (𝑋 ∈ ℂ → (𝑋 + 1) ∈ ℂ)
21halfcld 12218 . . 3 (𝑋 ∈ ℂ → ((𝑋 + 1) / 2) ∈ ℂ)
3 peano2cnm 11287 . . 3 (((𝑋 + 1) / 2) ∈ ℂ → (((𝑋 + 1) / 2) − 1) ∈ ℂ)
42, 3syl 17 . 2 (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) ∈ ℂ)
5 peano2cnm 11287 . . 3 (𝑋 ∈ ℂ → (𝑋 − 1) ∈ ℂ)
65halfcld 12218 . 2 (𝑋 ∈ ℂ → ((𝑋 − 1) / 2) ∈ ℂ)
7 2cnd 12051 . 2 (𝑋 ∈ ℂ → 2 ∈ ℂ)
8 2ne0 12077 . . 3 2 ≠ 0
98a1i 11 . 2 (𝑋 ∈ ℂ → 2 ≠ 0)
10 1cnd 10970 . . . 4 (𝑋 ∈ ℂ → 1 ∈ ℂ)
112, 10, 7subdird 11432 . . 3 (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) − 1) · 2) = ((((𝑋 + 1) / 2) · 2) − (1 · 2)))
121, 7, 9divcan1d 11752 . . . 4 (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) · 2) = (𝑋 + 1))
137mulid2d 10993 . . . 4 (𝑋 ∈ ℂ → (1 · 2) = 2)
1412, 13oveq12d 7293 . . 3 (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) · 2) − (1 · 2)) = ((𝑋 + 1) − 2))
155, 7, 9divcan1d 11752 . . . 4 (𝑋 ∈ ℂ → (((𝑋 − 1) / 2) · 2) = (𝑋 − 1))
16 2m1e1 12099 . . . . . 6 (2 − 1) = 1
1716a1i 11 . . . . 5 (𝑋 ∈ ℂ → (2 − 1) = 1)
1817oveq2d 7291 . . . 4 (𝑋 ∈ ℂ → (𝑋 − (2 − 1)) = (𝑋 − 1))
19 id 22 . . . . 5 (𝑋 ∈ ℂ → 𝑋 ∈ ℂ)
2019, 7, 10subsub3d 11362 . . . 4 (𝑋 ∈ ℂ → (𝑋 − (2 − 1)) = ((𝑋 + 1) − 2))
2115, 18, 203eqtr2rd 2785 . . 3 (𝑋 ∈ ℂ → ((𝑋 + 1) − 2) = (((𝑋 − 1) / 2) · 2))
2211, 14, 213eqtrd 2782 . 2 (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) − 1) · 2) = (((𝑋 − 1) / 2) · 2))
234, 6, 7, 9, 22mulcan2ad 11611 1 (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) = ((𝑋 − 1) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wne 2943  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205   / cdiv 11632  2c2 12028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-2 12036
This theorem is referenced by:  mod2eq1n2dvds  16056  zob  16068  nno  16091  nn0ob  16093  dignn0flhalflem1  45961
  Copyright terms: Public domain W3C validator