Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xp1d2m1eqxm1d2 | Structured version Visualization version GIF version |
Description: A complex number increased by 1, then divided by 2, then decreased by 1 equals the complex number decreased by 1 and then divided by 2. (Contributed by AV, 24-May-2020.) |
Ref | Expression |
---|---|
xp1d2m1eqxm1d2 | ⊢ (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) = ((𝑋 − 1) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2cn 11147 | . . . 4 ⊢ (𝑋 ∈ ℂ → (𝑋 + 1) ∈ ℂ) | |
2 | 1 | halfcld 12218 | . . 3 ⊢ (𝑋 ∈ ℂ → ((𝑋 + 1) / 2) ∈ ℂ) |
3 | peano2cnm 11287 | . . 3 ⊢ (((𝑋 + 1) / 2) ∈ ℂ → (((𝑋 + 1) / 2) − 1) ∈ ℂ) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) ∈ ℂ) |
5 | peano2cnm 11287 | . . 3 ⊢ (𝑋 ∈ ℂ → (𝑋 − 1) ∈ ℂ) | |
6 | 5 | halfcld 12218 | . 2 ⊢ (𝑋 ∈ ℂ → ((𝑋 − 1) / 2) ∈ ℂ) |
7 | 2cnd 12051 | . 2 ⊢ (𝑋 ∈ ℂ → 2 ∈ ℂ) | |
8 | 2ne0 12077 | . . 3 ⊢ 2 ≠ 0 | |
9 | 8 | a1i 11 | . 2 ⊢ (𝑋 ∈ ℂ → 2 ≠ 0) |
10 | 1cnd 10970 | . . . 4 ⊢ (𝑋 ∈ ℂ → 1 ∈ ℂ) | |
11 | 2, 10, 7 | subdird 11432 | . . 3 ⊢ (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) − 1) · 2) = ((((𝑋 + 1) / 2) · 2) − (1 · 2))) |
12 | 1, 7, 9 | divcan1d 11752 | . . . 4 ⊢ (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) · 2) = (𝑋 + 1)) |
13 | 7 | mulid2d 10993 | . . . 4 ⊢ (𝑋 ∈ ℂ → (1 · 2) = 2) |
14 | 12, 13 | oveq12d 7293 | . . 3 ⊢ (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) · 2) − (1 · 2)) = ((𝑋 + 1) − 2)) |
15 | 5, 7, 9 | divcan1d 11752 | . . . 4 ⊢ (𝑋 ∈ ℂ → (((𝑋 − 1) / 2) · 2) = (𝑋 − 1)) |
16 | 2m1e1 12099 | . . . . . 6 ⊢ (2 − 1) = 1 | |
17 | 16 | a1i 11 | . . . . 5 ⊢ (𝑋 ∈ ℂ → (2 − 1) = 1) |
18 | 17 | oveq2d 7291 | . . . 4 ⊢ (𝑋 ∈ ℂ → (𝑋 − (2 − 1)) = (𝑋 − 1)) |
19 | id 22 | . . . . 5 ⊢ (𝑋 ∈ ℂ → 𝑋 ∈ ℂ) | |
20 | 19, 7, 10 | subsub3d 11362 | . . . 4 ⊢ (𝑋 ∈ ℂ → (𝑋 − (2 − 1)) = ((𝑋 + 1) − 2)) |
21 | 15, 18, 20 | 3eqtr2rd 2785 | . . 3 ⊢ (𝑋 ∈ ℂ → ((𝑋 + 1) − 2) = (((𝑋 − 1) / 2) · 2)) |
22 | 11, 14, 21 | 3eqtrd 2782 | . 2 ⊢ (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) − 1) · 2) = (((𝑋 − 1) / 2) · 2)) |
23 | 4, 6, 7, 9, 22 | mulcan2ad 11611 | 1 ⊢ (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) = ((𝑋 − 1) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 − cmin 11205 / cdiv 11632 2c2 12028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-2 12036 |
This theorem is referenced by: mod2eq1n2dvds 16056 zob 16068 nno 16091 nn0ob 16093 dignn0flhalflem1 45961 |
Copyright terms: Public domain | W3C validator |