MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp1d2m1eqxm1d2 Structured version   Visualization version   GIF version

Theorem xp1d2m1eqxm1d2 11883
Description: A complex number increased by 1, then divided by 2, then decreased by 1 equals the complex number decreased by 1 and then divided by 2. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
xp1d2m1eqxm1d2 (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) = ((𝑋 − 1) / 2))

Proof of Theorem xp1d2m1eqxm1d2
StepHypRef Expression
1 peano2cn 10804 . . . 4 (𝑋 ∈ ℂ → (𝑋 + 1) ∈ ℂ)
21halfcld 11874 . . 3 (𝑋 ∈ ℂ → ((𝑋 + 1) / 2) ∈ ℂ)
3 peano2cnm 10944 . . 3 (((𝑋 + 1) / 2) ∈ ℂ → (((𝑋 + 1) / 2) − 1) ∈ ℂ)
42, 3syl 17 . 2 (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) ∈ ℂ)
5 peano2cnm 10944 . . 3 (𝑋 ∈ ℂ → (𝑋 − 1) ∈ ℂ)
65halfcld 11874 . 2 (𝑋 ∈ ℂ → ((𝑋 − 1) / 2) ∈ ℂ)
7 2cnd 11707 . 2 (𝑋 ∈ ℂ → 2 ∈ ℂ)
8 2ne0 11733 . . 3 2 ≠ 0
98a1i 11 . 2 (𝑋 ∈ ℂ → 2 ≠ 0)
10 1cnd 10628 . . . 4 (𝑋 ∈ ℂ → 1 ∈ ℂ)
112, 10, 7subdird 11089 . . 3 (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) − 1) · 2) = ((((𝑋 + 1) / 2) · 2) − (1 · 2)))
121, 7, 9divcan1d 11409 . . . 4 (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) · 2) = (𝑋 + 1))
137mulid2d 10651 . . . 4 (𝑋 ∈ ℂ → (1 · 2) = 2)
1412, 13oveq12d 7169 . . 3 (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) · 2) − (1 · 2)) = ((𝑋 + 1) − 2))
155, 7, 9divcan1d 11409 . . . 4 (𝑋 ∈ ℂ → (((𝑋 − 1) / 2) · 2) = (𝑋 − 1))
16 2m1e1 11755 . . . . . 6 (2 − 1) = 1
1716a1i 11 . . . . 5 (𝑋 ∈ ℂ → (2 − 1) = 1)
1817oveq2d 7167 . . . 4 (𝑋 ∈ ℂ → (𝑋 − (2 − 1)) = (𝑋 − 1))
19 id 22 . . . . 5 (𝑋 ∈ ℂ → 𝑋 ∈ ℂ)
2019, 7, 10subsub3d 11019 . . . 4 (𝑋 ∈ ℂ → (𝑋 − (2 − 1)) = ((𝑋 + 1) − 2))
2115, 18, 203eqtr2rd 2867 . . 3 (𝑋 ∈ ℂ → ((𝑋 + 1) − 2) = (((𝑋 − 1) / 2) · 2))
2211, 14, 213eqtrd 2864 . 2 (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) − 1) · 2) = (((𝑋 − 1) / 2) · 2))
234, 6, 7, 9, 22mulcan2ad 11268 1 (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) = ((𝑋 − 1) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1530  wcel 2107  wne 3020  (class class class)co 7151  cc 10527  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  cmin 10862   / cdiv 11289  2c2 11684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-po 5472  df-so 5473  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-2 11692
This theorem is referenced by:  mod2eq1n2dvds  15688  zob  15700  nno  15725  nn0ob  15727  dignn0flhalflem1  44509
  Copyright terms: Public domain W3C validator