MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp1d2m1eqxm1d2 Structured version   Visualization version   GIF version

Theorem xp1d2m1eqxm1d2 11570
Description: A complex number increased by 1, then divided by 2, then decreased by 1 equals the complex number decreased by 1 and then divided by 2. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
xp1d2m1eqxm1d2 (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) = ((𝑋 − 1) / 2))

Proof of Theorem xp1d2m1eqxm1d2
StepHypRef Expression
1 peano2cn 10496 . . . 4 (𝑋 ∈ ℂ → (𝑋 + 1) ∈ ℂ)
21halfcld 11561 . . 3 (𝑋 ∈ ℂ → ((𝑋 + 1) / 2) ∈ ℂ)
3 peano2cnm 10637 . . 3 (((𝑋 + 1) / 2) ∈ ℂ → (((𝑋 + 1) / 2) − 1) ∈ ℂ)
42, 3syl 17 . 2 (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) ∈ ℂ)
5 peano2cnm 10637 . . 3 (𝑋 ∈ ℂ → (𝑋 − 1) ∈ ℂ)
65halfcld 11561 . 2 (𝑋 ∈ ℂ → ((𝑋 − 1) / 2) ∈ ℂ)
7 2cnd 11387 . 2 (𝑋 ∈ ℂ → 2 ∈ ℂ)
8 2ne0 11420 . . 3 2 ≠ 0
98a1i 11 . 2 (𝑋 ∈ ℂ → 2 ≠ 0)
10 1cnd 10321 . . . 4 (𝑋 ∈ ℂ → 1 ∈ ℂ)
112, 10, 7subdird 10777 . . 3 (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) − 1) · 2) = ((((𝑋 + 1) / 2) · 2) − (1 · 2)))
121, 7, 9divcan1d 11092 . . . 4 (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) · 2) = (𝑋 + 1))
137mulid2d 10345 . . . 4 (𝑋 ∈ ℂ → (1 · 2) = 2)
1412, 13oveq12d 6894 . . 3 (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) · 2) − (1 · 2)) = ((𝑋 + 1) − 2))
155, 7, 9divcan1d 11092 . . . 4 (𝑋 ∈ ℂ → (((𝑋 − 1) / 2) · 2) = (𝑋 − 1))
16 2m1e1 11442 . . . . . 6 (2 − 1) = 1
1716a1i 11 . . . . 5 (𝑋 ∈ ℂ → (2 − 1) = 1)
1817oveq2d 6892 . . . 4 (𝑋 ∈ ℂ → (𝑋 − (2 − 1)) = (𝑋 − 1))
19 id 22 . . . . 5 (𝑋 ∈ ℂ → 𝑋 ∈ ℂ)
2019, 7, 10subsub3d 10712 . . . 4 (𝑋 ∈ ℂ → (𝑋 − (2 − 1)) = ((𝑋 + 1) − 2))
2115, 18, 203eqtr2rd 2838 . . 3 (𝑋 ∈ ℂ → ((𝑋 + 1) − 2) = (((𝑋 − 1) / 2) · 2))
2211, 14, 213eqtrd 2835 . 2 (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) − 1) · 2) = (((𝑋 − 1) / 2) · 2))
234, 6, 7, 9, 22mulcan2ad 10953 1 (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) = ((𝑋 − 1) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1653  wcel 2157  wne 2969  (class class class)co 6876  cc 10220  0cc0 10222  1c1 10223   + caddc 10225   · cmul 10227  cmin 10554   / cdiv 10974  2c2 11364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-br 4842  df-opab 4904  df-mpt 4921  df-id 5218  df-po 5231  df-so 5232  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-div 10975  df-2 11372
This theorem is referenced by:  mod2eq1n2dvds  15404  zob  15416  nno  15431  nn0ob  15433  dignn0flhalflem1  43196
  Copyright terms: Public domain W3C validator