Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xp1d2m1eqxm1d2 | Structured version Visualization version GIF version |
Description: A complex number increased by 1, then divided by 2, then decreased by 1 equals the complex number decreased by 1 and then divided by 2. (Contributed by AV, 24-May-2020.) |
Ref | Expression |
---|---|
xp1d2m1eqxm1d2 | ⊢ (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) = ((𝑋 − 1) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2cn 10850 | . . . 4 ⊢ (𝑋 ∈ ℂ → (𝑋 + 1) ∈ ℂ) | |
2 | 1 | halfcld 11919 | . . 3 ⊢ (𝑋 ∈ ℂ → ((𝑋 + 1) / 2) ∈ ℂ) |
3 | peano2cnm 10990 | . . 3 ⊢ (((𝑋 + 1) / 2) ∈ ℂ → (((𝑋 + 1) / 2) − 1) ∈ ℂ) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) ∈ ℂ) |
5 | peano2cnm 10990 | . . 3 ⊢ (𝑋 ∈ ℂ → (𝑋 − 1) ∈ ℂ) | |
6 | 5 | halfcld 11919 | . 2 ⊢ (𝑋 ∈ ℂ → ((𝑋 − 1) / 2) ∈ ℂ) |
7 | 2cnd 11752 | . 2 ⊢ (𝑋 ∈ ℂ → 2 ∈ ℂ) | |
8 | 2ne0 11778 | . . 3 ⊢ 2 ≠ 0 | |
9 | 8 | a1i 11 | . 2 ⊢ (𝑋 ∈ ℂ → 2 ≠ 0) |
10 | 1cnd 10674 | . . . 4 ⊢ (𝑋 ∈ ℂ → 1 ∈ ℂ) | |
11 | 2, 10, 7 | subdird 11135 | . . 3 ⊢ (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) − 1) · 2) = ((((𝑋 + 1) / 2) · 2) − (1 · 2))) |
12 | 1, 7, 9 | divcan1d 11455 | . . . 4 ⊢ (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) · 2) = (𝑋 + 1)) |
13 | 7 | mulid2d 10697 | . . . 4 ⊢ (𝑋 ∈ ℂ → (1 · 2) = 2) |
14 | 12, 13 | oveq12d 7168 | . . 3 ⊢ (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) · 2) − (1 · 2)) = ((𝑋 + 1) − 2)) |
15 | 5, 7, 9 | divcan1d 11455 | . . . 4 ⊢ (𝑋 ∈ ℂ → (((𝑋 − 1) / 2) · 2) = (𝑋 − 1)) |
16 | 2m1e1 11800 | . . . . . 6 ⊢ (2 − 1) = 1 | |
17 | 16 | a1i 11 | . . . . 5 ⊢ (𝑋 ∈ ℂ → (2 − 1) = 1) |
18 | 17 | oveq2d 7166 | . . . 4 ⊢ (𝑋 ∈ ℂ → (𝑋 − (2 − 1)) = (𝑋 − 1)) |
19 | id 22 | . . . . 5 ⊢ (𝑋 ∈ ℂ → 𝑋 ∈ ℂ) | |
20 | 19, 7, 10 | subsub3d 11065 | . . . 4 ⊢ (𝑋 ∈ ℂ → (𝑋 − (2 − 1)) = ((𝑋 + 1) − 2)) |
21 | 15, 18, 20 | 3eqtr2rd 2800 | . . 3 ⊢ (𝑋 ∈ ℂ → ((𝑋 + 1) − 2) = (((𝑋 − 1) / 2) · 2)) |
22 | 11, 14, 21 | 3eqtrd 2797 | . 2 ⊢ (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) − 1) · 2) = (((𝑋 − 1) / 2) · 2)) |
23 | 4, 6, 7, 9, 22 | mulcan2ad 11314 | 1 ⊢ (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) = ((𝑋 − 1) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 (class class class)co 7150 ℂcc 10573 0cc0 10575 1c1 10576 + caddc 10578 · cmul 10580 − cmin 10908 / cdiv 11335 2c2 11729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-po 5443 df-so 5444 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-2 11737 |
This theorem is referenced by: mod2eq1n2dvds 15748 zob 15760 nno 15783 nn0ob 15785 dignn0flhalflem1 45394 |
Copyright terms: Public domain | W3C validator |