MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp1d2m1eqxm1d2 Structured version   Visualization version   GIF version

Theorem xp1d2m1eqxm1d2 12157
Description: A complex number increased by 1, then divided by 2, then decreased by 1 equals the complex number decreased by 1 and then divided by 2. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
xp1d2m1eqxm1d2 (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) = ((𝑋 − 1) / 2))

Proof of Theorem xp1d2m1eqxm1d2
StepHypRef Expression
1 peano2cn 11077 . . . 4 (𝑋 ∈ ℂ → (𝑋 + 1) ∈ ℂ)
21halfcld 12148 . . 3 (𝑋 ∈ ℂ → ((𝑋 + 1) / 2) ∈ ℂ)
3 peano2cnm 11217 . . 3 (((𝑋 + 1) / 2) ∈ ℂ → (((𝑋 + 1) / 2) − 1) ∈ ℂ)
42, 3syl 17 . 2 (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) ∈ ℂ)
5 peano2cnm 11217 . . 3 (𝑋 ∈ ℂ → (𝑋 − 1) ∈ ℂ)
65halfcld 12148 . 2 (𝑋 ∈ ℂ → ((𝑋 − 1) / 2) ∈ ℂ)
7 2cnd 11981 . 2 (𝑋 ∈ ℂ → 2 ∈ ℂ)
8 2ne0 12007 . . 3 2 ≠ 0
98a1i 11 . 2 (𝑋 ∈ ℂ → 2 ≠ 0)
10 1cnd 10901 . . . 4 (𝑋 ∈ ℂ → 1 ∈ ℂ)
112, 10, 7subdird 11362 . . 3 (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) − 1) · 2) = ((((𝑋 + 1) / 2) · 2) − (1 · 2)))
121, 7, 9divcan1d 11682 . . . 4 (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) · 2) = (𝑋 + 1))
137mulid2d 10924 . . . 4 (𝑋 ∈ ℂ → (1 · 2) = 2)
1412, 13oveq12d 7273 . . 3 (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) · 2) − (1 · 2)) = ((𝑋 + 1) − 2))
155, 7, 9divcan1d 11682 . . . 4 (𝑋 ∈ ℂ → (((𝑋 − 1) / 2) · 2) = (𝑋 − 1))
16 2m1e1 12029 . . . . . 6 (2 − 1) = 1
1716a1i 11 . . . . 5 (𝑋 ∈ ℂ → (2 − 1) = 1)
1817oveq2d 7271 . . . 4 (𝑋 ∈ ℂ → (𝑋 − (2 − 1)) = (𝑋 − 1))
19 id 22 . . . . 5 (𝑋 ∈ ℂ → 𝑋 ∈ ℂ)
2019, 7, 10subsub3d 11292 . . . 4 (𝑋 ∈ ℂ → (𝑋 − (2 − 1)) = ((𝑋 + 1) − 2))
2115, 18, 203eqtr2rd 2785 . . 3 (𝑋 ∈ ℂ → ((𝑋 + 1) − 2) = (((𝑋 − 1) / 2) · 2))
2211, 14, 213eqtrd 2782 . 2 (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) − 1) · 2) = (((𝑋 − 1) / 2) · 2))
234, 6, 7, 9, 22mulcan2ad 11541 1 (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) = ((𝑋 − 1) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wne 2942  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135   / cdiv 11562  2c2 11958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966
This theorem is referenced by:  mod2eq1n2dvds  15984  zob  15996  nno  16019  nn0ob  16021  dignn0flhalflem1  45849
  Copyright terms: Public domain W3C validator