MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp1d2m1eqxm1d2 Structured version   Visualization version   GIF version

Theorem xp1d2m1eqxm1d2 12436
Description: A complex number increased by 1, then divided by 2, then decreased by 1 equals the complex number decreased by 1 and then divided by 2. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
xp1d2m1eqxm1d2 (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) = ((𝑋 − 1) / 2))

Proof of Theorem xp1d2m1eqxm1d2
StepHypRef Expression
1 peano2cn 11346 . . . 4 (𝑋 ∈ ℂ → (𝑋 + 1) ∈ ℂ)
21halfcld 12427 . . 3 (𝑋 ∈ ℂ → ((𝑋 + 1) / 2) ∈ ℂ)
3 peano2cnm 11488 . . 3 (((𝑋 + 1) / 2) ∈ ℂ → (((𝑋 + 1) / 2) − 1) ∈ ℂ)
42, 3syl 17 . 2 (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) ∈ ℂ)
5 peano2cnm 11488 . . 3 (𝑋 ∈ ℂ → (𝑋 − 1) ∈ ℂ)
65halfcld 12427 . 2 (𝑋 ∈ ℂ → ((𝑋 − 1) / 2) ∈ ℂ)
7 2cnd 12264 . 2 (𝑋 ∈ ℂ → 2 ∈ ℂ)
8 2ne0 12290 . . 3 2 ≠ 0
98a1i 11 . 2 (𝑋 ∈ ℂ → 2 ≠ 0)
10 1cnd 11169 . . . 4 (𝑋 ∈ ℂ → 1 ∈ ℂ)
112, 10, 7subdird 11635 . . 3 (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) − 1) · 2) = ((((𝑋 + 1) / 2) · 2) − (1 · 2)))
121, 7, 9divcan1d 11959 . . . 4 (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) · 2) = (𝑋 + 1))
137mullidd 11192 . . . 4 (𝑋 ∈ ℂ → (1 · 2) = 2)
1412, 13oveq12d 7405 . . 3 (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) · 2) − (1 · 2)) = ((𝑋 + 1) − 2))
155, 7, 9divcan1d 11959 . . . 4 (𝑋 ∈ ℂ → (((𝑋 − 1) / 2) · 2) = (𝑋 − 1))
16 2m1e1 12307 . . . . . 6 (2 − 1) = 1
1716a1i 11 . . . . 5 (𝑋 ∈ ℂ → (2 − 1) = 1)
1817oveq2d 7403 . . . 4 (𝑋 ∈ ℂ → (𝑋 − (2 − 1)) = (𝑋 − 1))
19 id 22 . . . . 5 (𝑋 ∈ ℂ → 𝑋 ∈ ℂ)
2019, 7, 10subsub3d 11563 . . . 4 (𝑋 ∈ ℂ → (𝑋 − (2 − 1)) = ((𝑋 + 1) − 2))
2115, 18, 203eqtr2rd 2771 . . 3 (𝑋 ∈ ℂ → ((𝑋 + 1) − 2) = (((𝑋 − 1) / 2) · 2))
2211, 14, 213eqtrd 2768 . 2 (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) − 1) · 2) = (((𝑋 − 1) / 2) · 2))
234, 6, 7, 9, 22mulcan2ad 11814 1 (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) = ((𝑋 − 1) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405   / cdiv 11835  2c2 12241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249
This theorem is referenced by:  mod2eq1n2dvds  16317  zob  16329  nno  16352  nn0ob  16354  dignn0flhalflem1  48604
  Copyright terms: Public domain W3C validator