MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zesq Structured version   Visualization version   GIF version

Theorem zesq 13950
Description: An integer is even iff its square is even. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
zesq (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ((𝑁↑2) / 2) ∈ ℤ))

Proof of Theorem zesq
StepHypRef Expression
1 zcn 12333 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2 sqval 13844 . . . . . . 7 (𝑁 ∈ ℂ → (𝑁↑2) = (𝑁 · 𝑁))
31, 2syl 17 . . . . . 6 (𝑁 ∈ ℤ → (𝑁↑2) = (𝑁 · 𝑁))
43oveq1d 7299 . . . . 5 (𝑁 ∈ ℤ → ((𝑁↑2) / 2) = ((𝑁 · 𝑁) / 2))
5 2cnd 12060 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℂ)
6 2ne0 12086 . . . . . . 7 2 ≠ 0
76a1i 11 . . . . . 6 (𝑁 ∈ ℤ → 2 ≠ 0)
81, 1, 5, 7divassd 11795 . . . . 5 (𝑁 ∈ ℤ → ((𝑁 · 𝑁) / 2) = (𝑁 · (𝑁 / 2)))
94, 8eqtrd 2779 . . . 4 (𝑁 ∈ ℤ → ((𝑁↑2) / 2) = (𝑁 · (𝑁 / 2)))
109adantr 481 . . 3 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → ((𝑁↑2) / 2) = (𝑁 · (𝑁 / 2)))
11 zmulcl 12378 . . 3 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → (𝑁 · (𝑁 / 2)) ∈ ℤ)
1210, 11eqeltrd 2840 . 2 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → ((𝑁↑2) / 2) ∈ ℤ)
131adantr 481 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 𝑁 ∈ ℂ)
14 sqcl 13847 . . . . . . . . . . 11 (𝑁 ∈ ℂ → (𝑁↑2) ∈ ℂ)
1513, 14syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁↑2) ∈ ℂ)
16 peano2cn 11156 . . . . . . . . . 10 ((𝑁↑2) ∈ ℂ → ((𝑁↑2) + 1) ∈ ℂ)
1715, 16syl 17 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁↑2) + 1) ∈ ℂ)
1817halfcld 12227 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁↑2) + 1) / 2) ∈ ℂ)
1918, 13pncand 11342 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((((𝑁↑2) + 1) / 2) + 𝑁) − 𝑁) = (((𝑁↑2) + 1) / 2))
20 binom21 13943 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → ((𝑁 + 1)↑2) = (((𝑁↑2) + (2 · 𝑁)) + 1))
2113, 20syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1)↑2) = (((𝑁↑2) + (2 · 𝑁)) + 1))
22 peano2cn 11156 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
2313, 22syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁 + 1) ∈ ℂ)
24 sqval 13844 . . . . . . . . . . . . 13 ((𝑁 + 1) ∈ ℂ → ((𝑁 + 1)↑2) = ((𝑁 + 1) · (𝑁 + 1)))
2523, 24syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1)↑2) = ((𝑁 + 1) · (𝑁 + 1)))
26 2cn 12057 . . . . . . . . . . . . . 14 2 ∈ ℂ
27 mulcl 10964 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (2 · 𝑁) ∈ ℂ)
2826, 13, 27sylancr 587 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (2 · 𝑁) ∈ ℂ)
29 1cnd 10979 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 1 ∈ ℂ)
3015, 28, 29add32d 11211 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁↑2) + (2 · 𝑁)) + 1) = (((𝑁↑2) + 1) + (2 · 𝑁)))
3121, 25, 303eqtr3d 2787 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) · (𝑁 + 1)) = (((𝑁↑2) + 1) + (2 · 𝑁)))
3231oveq1d 7299 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁 + 1) · (𝑁 + 1)) / 2) = ((((𝑁↑2) + 1) + (2 · 𝑁)) / 2))
33 2cnd 12060 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 2 ∈ ℂ)
346a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 2 ≠ 0)
3523, 23, 33, 34divassd 11795 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁 + 1) · (𝑁 + 1)) / 2) = ((𝑁 + 1) · ((𝑁 + 1) / 2)))
3617, 28, 33, 34divdird 11798 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((((𝑁↑2) + 1) + (2 · 𝑁)) / 2) = ((((𝑁↑2) + 1) / 2) + ((2 · 𝑁) / 2)))
3713, 33, 34divcan3d 11765 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((2 · 𝑁) / 2) = 𝑁)
3837oveq2d 7300 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((((𝑁↑2) + 1) / 2) + ((2 · 𝑁) / 2)) = ((((𝑁↑2) + 1) / 2) + 𝑁))
3936, 38eqtrd 2779 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((((𝑁↑2) + 1) + (2 · 𝑁)) / 2) = ((((𝑁↑2) + 1) / 2) + 𝑁))
4032, 35, 393eqtr3d 2787 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) · ((𝑁 + 1) / 2)) = ((((𝑁↑2) + 1) / 2) + 𝑁))
41 peano2z 12370 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
42 zmulcl 12378 . . . . . . . . . 10 (((𝑁 + 1) ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) · ((𝑁 + 1) / 2)) ∈ ℤ)
4341, 42sylan 580 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) · ((𝑁 + 1) / 2)) ∈ ℤ)
4440, 43eqeltrrd 2841 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((((𝑁↑2) + 1) / 2) + 𝑁) ∈ ℤ)
45 simpl 483 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 𝑁 ∈ ℤ)
4644, 45zsubcld 12440 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((((𝑁↑2) + 1) / 2) + 𝑁) − 𝑁) ∈ ℤ)
4719, 46eqeltrrd 2841 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁↑2) + 1) / 2) ∈ ℤ)
4847ex 413 . . . . 5 (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ → (((𝑁↑2) + 1) / 2) ∈ ℤ))
4948con3d 152 . . . 4 (𝑁 ∈ ℤ → (¬ (((𝑁↑2) + 1) / 2) ∈ ℤ → ¬ ((𝑁 + 1) / 2) ∈ ℤ))
50 zsqcl 13857 . . . . 5 (𝑁 ∈ ℤ → (𝑁↑2) ∈ ℤ)
51 zeo2 12416 . . . . 5 ((𝑁↑2) ∈ ℤ → (((𝑁↑2) / 2) ∈ ℤ ↔ ¬ (((𝑁↑2) + 1) / 2) ∈ ℤ))
5250, 51syl 17 . . . 4 (𝑁 ∈ ℤ → (((𝑁↑2) / 2) ∈ ℤ ↔ ¬ (((𝑁↑2) + 1) / 2) ∈ ℤ))
53 zeo2 12416 . . . 4 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℤ))
5449, 52, 533imtr4d 294 . . 3 (𝑁 ∈ ℤ → (((𝑁↑2) / 2) ∈ ℤ → (𝑁 / 2) ∈ ℤ))
5554imp 407 . 2 ((𝑁 ∈ ℤ ∧ ((𝑁↑2) / 2) ∈ ℤ) → (𝑁 / 2) ∈ ℤ)
5612, 55impbida 798 1 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ((𝑁↑2) / 2) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2107  wne 2944  (class class class)co 7284  cc 10878  0cc0 10880  1c1 10881   + caddc 10883   · cmul 10885  cmin 11214   / cdiv 11641  2c2 12037  cz 12328  cexp 13791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-n0 12243  df-z 12329  df-uz 12592  df-seq 13731  df-exp 13792
This theorem is referenced by:  nnesq  13951  sqrt2irrlem  15966
  Copyright terms: Public domain W3C validator