MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zesq Structured version   Visualization version   GIF version

Theorem zesq 14133
Description: An integer is even iff its square is even. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
zesq (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ((𝑁↑2) / 2) ∈ ℤ))

Proof of Theorem zesq
StepHypRef Expression
1 zcn 12473 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2 sqval 14021 . . . . . . 7 (𝑁 ∈ ℂ → (𝑁↑2) = (𝑁 · 𝑁))
31, 2syl 17 . . . . . 6 (𝑁 ∈ ℤ → (𝑁↑2) = (𝑁 · 𝑁))
43oveq1d 7361 . . . . 5 (𝑁 ∈ ℤ → ((𝑁↑2) / 2) = ((𝑁 · 𝑁) / 2))
5 2cnd 12203 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℂ)
6 2ne0 12229 . . . . . . 7 2 ≠ 0
76a1i 11 . . . . . 6 (𝑁 ∈ ℤ → 2 ≠ 0)
81, 1, 5, 7divassd 11932 . . . . 5 (𝑁 ∈ ℤ → ((𝑁 · 𝑁) / 2) = (𝑁 · (𝑁 / 2)))
94, 8eqtrd 2766 . . . 4 (𝑁 ∈ ℤ → ((𝑁↑2) / 2) = (𝑁 · (𝑁 / 2)))
109adantr 480 . . 3 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → ((𝑁↑2) / 2) = (𝑁 · (𝑁 / 2)))
11 zmulcl 12521 . . 3 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → (𝑁 · (𝑁 / 2)) ∈ ℤ)
1210, 11eqeltrd 2831 . 2 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → ((𝑁↑2) / 2) ∈ ℤ)
131adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 𝑁 ∈ ℂ)
14 sqcl 14025 . . . . . . . . . . 11 (𝑁 ∈ ℂ → (𝑁↑2) ∈ ℂ)
1513, 14syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁↑2) ∈ ℂ)
16 peano2cn 11285 . . . . . . . . . 10 ((𝑁↑2) ∈ ℂ → ((𝑁↑2) + 1) ∈ ℂ)
1715, 16syl 17 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁↑2) + 1) ∈ ℂ)
1817halfcld 12366 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁↑2) + 1) / 2) ∈ ℂ)
1918, 13pncand 11473 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((((𝑁↑2) + 1) / 2) + 𝑁) − 𝑁) = (((𝑁↑2) + 1) / 2))
20 binom21 14126 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → ((𝑁 + 1)↑2) = (((𝑁↑2) + (2 · 𝑁)) + 1))
2113, 20syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1)↑2) = (((𝑁↑2) + (2 · 𝑁)) + 1))
22 peano2cn 11285 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
2313, 22syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁 + 1) ∈ ℂ)
24 sqval 14021 . . . . . . . . . . . . 13 ((𝑁 + 1) ∈ ℂ → ((𝑁 + 1)↑2) = ((𝑁 + 1) · (𝑁 + 1)))
2523, 24syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1)↑2) = ((𝑁 + 1) · (𝑁 + 1)))
26 2cn 12200 . . . . . . . . . . . . . 14 2 ∈ ℂ
27 mulcl 11090 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (2 · 𝑁) ∈ ℂ)
2826, 13, 27sylancr 587 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (2 · 𝑁) ∈ ℂ)
29 1cnd 11107 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 1 ∈ ℂ)
3015, 28, 29add32d 11341 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁↑2) + (2 · 𝑁)) + 1) = (((𝑁↑2) + 1) + (2 · 𝑁)))
3121, 25, 303eqtr3d 2774 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) · (𝑁 + 1)) = (((𝑁↑2) + 1) + (2 · 𝑁)))
3231oveq1d 7361 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁 + 1) · (𝑁 + 1)) / 2) = ((((𝑁↑2) + 1) + (2 · 𝑁)) / 2))
33 2cnd 12203 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 2 ∈ ℂ)
346a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 2 ≠ 0)
3523, 23, 33, 34divassd 11932 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁 + 1) · (𝑁 + 1)) / 2) = ((𝑁 + 1) · ((𝑁 + 1) / 2)))
3617, 28, 33, 34divdird 11935 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((((𝑁↑2) + 1) + (2 · 𝑁)) / 2) = ((((𝑁↑2) + 1) / 2) + ((2 · 𝑁) / 2)))
3713, 33, 34divcan3d 11902 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((2 · 𝑁) / 2) = 𝑁)
3837oveq2d 7362 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((((𝑁↑2) + 1) / 2) + ((2 · 𝑁) / 2)) = ((((𝑁↑2) + 1) / 2) + 𝑁))
3936, 38eqtrd 2766 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((((𝑁↑2) + 1) + (2 · 𝑁)) / 2) = ((((𝑁↑2) + 1) / 2) + 𝑁))
4032, 35, 393eqtr3d 2774 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) · ((𝑁 + 1) / 2)) = ((((𝑁↑2) + 1) / 2) + 𝑁))
41 peano2z 12513 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
42 zmulcl 12521 . . . . . . . . . 10 (((𝑁 + 1) ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) · ((𝑁 + 1) / 2)) ∈ ℤ)
4341, 42sylan 580 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) · ((𝑁 + 1) / 2)) ∈ ℤ)
4440, 43eqeltrrd 2832 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((((𝑁↑2) + 1) / 2) + 𝑁) ∈ ℤ)
45 simpl 482 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 𝑁 ∈ ℤ)
4644, 45zsubcld 12582 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((((𝑁↑2) + 1) / 2) + 𝑁) − 𝑁) ∈ ℤ)
4719, 46eqeltrrd 2832 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁↑2) + 1) / 2) ∈ ℤ)
4847ex 412 . . . . 5 (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ → (((𝑁↑2) + 1) / 2) ∈ ℤ))
4948con3d 152 . . . 4 (𝑁 ∈ ℤ → (¬ (((𝑁↑2) + 1) / 2) ∈ ℤ → ¬ ((𝑁 + 1) / 2) ∈ ℤ))
50 zsqcl 14036 . . . . 5 (𝑁 ∈ ℤ → (𝑁↑2) ∈ ℤ)
51 zeo2 12560 . . . . 5 ((𝑁↑2) ∈ ℤ → (((𝑁↑2) / 2) ∈ ℤ ↔ ¬ (((𝑁↑2) + 1) / 2) ∈ ℤ))
5250, 51syl 17 . . . 4 (𝑁 ∈ ℤ → (((𝑁↑2) / 2) ∈ ℤ ↔ ¬ (((𝑁↑2) + 1) / 2) ∈ ℤ))
53 zeo2 12560 . . . 4 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℤ))
5449, 52, 533imtr4d 294 . . 3 (𝑁 ∈ ℤ → (((𝑁↑2) / 2) ∈ ℤ → (𝑁 / 2) ∈ ℤ))
5554imp 406 . 2 ((𝑁 ∈ ℤ ∧ ((𝑁↑2) / 2) ∈ ℤ) → (𝑁 / 2) ∈ ℤ)
5612, 55impbida 800 1 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ((𝑁↑2) / 2) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  cmin 11344   / cdiv 11774  2c2 12180  cz 12468  cexp 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-seq 13909  df-exp 13969
This theorem is referenced by:  nnesq  14134  sqrt2irrlem  16157
  Copyright terms: Public domain W3C validator