Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkertrigeqlem1 Structured version   Visualization version   GIF version

Theorem dirkertrigeqlem1 46127
Description: Sum of an even number of alternating cos values. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
dirkertrigeqlem1 (𝐾 ∈ ℕ → Σ𝑛 ∈ (1...(2 · 𝐾))(cos‘(𝑛 · π)) = 0)
Distinct variable group:   𝑛,𝐾

Proof of Theorem dirkertrigeqlem1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7413 . . . . 5 (𝑥 = 1 → (2 · 𝑥) = (2 · 1))
21oveq2d 7421 . . . 4 (𝑥 = 1 → (1...(2 · 𝑥)) = (1...(2 · 1)))
32sumeq1d 15716 . . 3 (𝑥 = 1 → Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(2 · 1))(cos‘(𝑛 · π)))
43eqeq1d 2737 . 2 (𝑥 = 1 → (Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = 0 ↔ Σ𝑛 ∈ (1...(2 · 1))(cos‘(𝑛 · π)) = 0))
5 oveq2 7413 . . . . 5 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
65oveq2d 7421 . . . 4 (𝑥 = 𝑦 → (1...(2 · 𝑥)) = (1...(2 · 𝑦)))
76sumeq1d 15716 . . 3 (𝑥 = 𝑦 → Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)))
87eqeq1d 2737 . 2 (𝑥 = 𝑦 → (Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = 0 ↔ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0))
9 oveq2 7413 . . . . 5 (𝑥 = (𝑦 + 1) → (2 · 𝑥) = (2 · (𝑦 + 1)))
109oveq2d 7421 . . . 4 (𝑥 = (𝑦 + 1) → (1...(2 · 𝑥)) = (1...(2 · (𝑦 + 1))))
1110sumeq1d 15716 . . 3 (𝑥 = (𝑦 + 1) → Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)))
1211eqeq1d 2737 . 2 (𝑥 = (𝑦 + 1) → (Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = 0 ↔ Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = 0))
13 oveq2 7413 . . . . 5 (𝑥 = 𝐾 → (2 · 𝑥) = (2 · 𝐾))
1413oveq2d 7421 . . . 4 (𝑥 = 𝐾 → (1...(2 · 𝑥)) = (1...(2 · 𝐾)))
1514sumeq1d 15716 . . 3 (𝑥 = 𝐾 → Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(2 · 𝐾))(cos‘(𝑛 · π)))
1615eqeq1d 2737 . 2 (𝑥 = 𝐾 → (Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = 0 ↔ Σ𝑛 ∈ (1...(2 · 𝐾))(cos‘(𝑛 · π)) = 0))
17 ax-1cn 11187 . . . . . 6 1 ∈ ℂ
18172timesi 12378 . . . . 5 (2 · 1) = (1 + 1)
1918oveq2i 7416 . . . 4 (1...(2 · 1)) = (1...(1 + 1))
2019sumeq1i 15713 . . 3 Σ𝑛 ∈ (1...(2 · 1))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(1 + 1))(cos‘(𝑛 · π))
21 1z 12622 . . . . . . . 8 1 ∈ ℤ
22 uzid 12867 . . . . . . . 8 (1 ∈ ℤ → 1 ∈ (ℤ‘1))
2321, 22ax-mp 5 . . . . . . 7 1 ∈ (ℤ‘1)
2423a1i 11 . . . . . 6 (⊤ → 1 ∈ (ℤ‘1))
25 elfzelz 13541 . . . . . . . . . 10 (𝑛 ∈ (1...(1 + 1)) → 𝑛 ∈ ℤ)
2625zcnd 12698 . . . . . . . . 9 (𝑛 ∈ (1...(1 + 1)) → 𝑛 ∈ ℂ)
2726adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ (1...(1 + 1))) → 𝑛 ∈ ℂ)
28 picn 26419 . . . . . . . . 9 π ∈ ℂ
2928a1i 11 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ (1...(1 + 1))) → π ∈ ℂ)
3027, 29mulcld 11255 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ (1...(1 + 1))) → (𝑛 · π) ∈ ℂ)
3130coscld 16149 . . . . . 6 ((⊤ ∧ 𝑛 ∈ (1...(1 + 1))) → (cos‘(𝑛 · π)) ∈ ℂ)
32 id 22 . . . . . . . 8 (𝑛 = (1 + 1) → 𝑛 = (1 + 1))
33 1p1e2 12365 . . . . . . . 8 (1 + 1) = 2
3432, 33eqtrdi 2786 . . . . . . 7 (𝑛 = (1 + 1) → 𝑛 = 2)
3534fvoveq1d 7427 . . . . . 6 (𝑛 = (1 + 1) → (cos‘(𝑛 · π)) = (cos‘(2 · π)))
3624, 31, 35fsump1 15772 . . . . 5 (⊤ → Σ𝑛 ∈ (1...(1 + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) + (cos‘(2 · π))))
3736mptru 1547 . . . 4 Σ𝑛 ∈ (1...(1 + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) + (cos‘(2 · π)))
38 coscl 16145 . . . . . . . 8 (π ∈ ℂ → (cos‘π) ∈ ℂ)
3928, 38ax-mp 5 . . . . . . 7 (cos‘π) ∈ ℂ
40 oveq1 7412 . . . . . . . . . 10 (𝑛 = 1 → (𝑛 · π) = (1 · π))
4128mullidi 11240 . . . . . . . . . 10 (1 · π) = π
4240, 41eqtrdi 2786 . . . . . . . . 9 (𝑛 = 1 → (𝑛 · π) = π)
4342fveq2d 6880 . . . . . . . 8 (𝑛 = 1 → (cos‘(𝑛 · π)) = (cos‘π))
4443fsum1 15763 . . . . . . 7 ((1 ∈ ℤ ∧ (cos‘π) ∈ ℂ) → Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) = (cos‘π))
4521, 39, 44mp2an 692 . . . . . 6 Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) = (cos‘π)
46 cospi 26433 . . . . . 6 (cos‘π) = -1
4745, 46eqtri 2758 . . . . 5 Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) = -1
48 cos2pi 26437 . . . . 5 (cos‘(2 · π)) = 1
4947, 48oveq12i 7417 . . . 4 𝑛 ∈ (1...1)(cos‘(𝑛 · π)) + (cos‘(2 · π))) = (-1 + 1)
50 neg1cn 12354 . . . . 5 -1 ∈ ℂ
51 1pneg1e0 12359 . . . . 5 (1 + -1) = 0
5217, 50, 51addcomli 11427 . . . 4 (-1 + 1) = 0
5337, 49, 523eqtri 2762 . . 3 Σ𝑛 ∈ (1...(1 + 1))(cos‘(𝑛 · π)) = 0
5420, 53eqtri 2758 . 2 Σ𝑛 ∈ (1...(2 · 1))(cos‘(𝑛 · π)) = 0
5518oveq2i 7416 . . . . . . . 8 ((2 · 𝑦) + (2 · 1)) = ((2 · 𝑦) + (1 + 1))
56 2cnd 12318 . . . . . . . . 9 (𝑦 ∈ ℕ → 2 ∈ ℂ)
57 nncn 12248 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
5817a1i 11 . . . . . . . . 9 (𝑦 ∈ ℕ → 1 ∈ ℂ)
5956, 57, 58adddid 11259 . . . . . . . 8 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) = ((2 · 𝑦) + (2 · 1)))
6056, 57mulcld 11255 . . . . . . . . 9 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℂ)
6160, 58, 58addassd 11257 . . . . . . . 8 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) + 1) = ((2 · 𝑦) + (1 + 1)))
6255, 59, 613eqtr4a 2796 . . . . . . 7 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) = (((2 · 𝑦) + 1) + 1))
6362oveq2d 7421 . . . . . 6 (𝑦 ∈ ℕ → (1...(2 · (𝑦 + 1))) = (1...(((2 · 𝑦) + 1) + 1)))
6463sumeq1d 15716 . . . . 5 (𝑦 ∈ ℕ → Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))(cos‘(𝑛 · π)))
6564adantr 480 . . . 4 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))(cos‘(𝑛 · π)))
66 1red 11236 . . . . . . . 8 (𝑦 ∈ ℕ → 1 ∈ ℝ)
67 2re 12314 . . . . . . . . . . 11 2 ∈ ℝ
6867a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℕ → 2 ∈ ℝ)
69 nnre 12247 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
7068, 69remulcld 11265 . . . . . . . . 9 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℝ)
7170, 66readdcld 11264 . . . . . . . 8 (𝑦 ∈ ℕ → ((2 · 𝑦) + 1) ∈ ℝ)
72 2rp 13013 . . . . . . . . . . 11 2 ∈ ℝ+
7372a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℕ → 2 ∈ ℝ+)
74 nnrp 13020 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
7573, 74rpmulcld 13067 . . . . . . . . 9 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℝ+)
7666, 75ltaddrp2d 13085 . . . . . . . 8 (𝑦 ∈ ℕ → 1 < ((2 · 𝑦) + 1))
7766, 71, 76ltled 11383 . . . . . . 7 (𝑦 ∈ ℕ → 1 ≤ ((2 · 𝑦) + 1))
78 2z 12624 . . . . . . . . . . 11 2 ∈ ℤ
7978a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℕ → 2 ∈ ℤ)
80 nnz 12609 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
8179, 80zmulcld 12703 . . . . . . . . 9 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℤ)
8281peano2zd 12700 . . . . . . . 8 (𝑦 ∈ ℕ → ((2 · 𝑦) + 1) ∈ ℤ)
83 eluz 12866 . . . . . . . 8 ((1 ∈ ℤ ∧ ((2 · 𝑦) + 1) ∈ ℤ) → (((2 · 𝑦) + 1) ∈ (ℤ‘1) ↔ 1 ≤ ((2 · 𝑦) + 1)))
8421, 82, 83sylancr 587 . . . . . . 7 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) ∈ (ℤ‘1) ↔ 1 ≤ ((2 · 𝑦) + 1)))
8577, 84mpbird 257 . . . . . 6 (𝑦 ∈ ℕ → ((2 · 𝑦) + 1) ∈ (ℤ‘1))
86 elfzelz 13541 . . . . . . . . . 10 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → 𝑛 ∈ ℤ)
8786zcnd 12698 . . . . . . . . 9 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → 𝑛 ∈ ℂ)
8828a1i 11 . . . . . . . . 9 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → π ∈ ℂ)
8987, 88mulcld 11255 . . . . . . . 8 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → (𝑛 · π) ∈ ℂ)
9089coscld 16149 . . . . . . 7 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → (cos‘(𝑛 · π)) ∈ ℂ)
9190adantl 481 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))) → (cos‘(𝑛 · π)) ∈ ℂ)
92 fvoveq1 7428 . . . . . 6 (𝑛 = (((2 · 𝑦) + 1) + 1) → (cos‘(𝑛 · π)) = (cos‘((((2 · 𝑦) + 1) + 1) · π)))
9385, 91, 92fsump1 15772 . . . . 5 (𝑦 ∈ ℕ → Σ𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))))
9493adantr 480 . . . 4 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → Σ𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))))
95 1lt2 12411 . . . . . . . . . . . 12 1 < 2
9695a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 1 < 2)
97 2t1e2 12403 . . . . . . . . . . . 12 (2 · 1) = 2
98 nnge1 12268 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 1 ≤ 𝑦)
9966, 69, 73lemul2d 13095 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (1 ≤ 𝑦 ↔ (2 · 1) ≤ (2 · 𝑦)))
10098, 99mpbid 232 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (2 · 1) ≤ (2 · 𝑦))
10197, 100eqbrtrrid 5155 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 2 ≤ (2 · 𝑦))
10266, 68, 70, 96, 101ltletrd 11395 . . . . . . . . . 10 (𝑦 ∈ ℕ → 1 < (2 · 𝑦))
10366, 70, 102ltled 11383 . . . . . . . . 9 (𝑦 ∈ ℕ → 1 ≤ (2 · 𝑦))
104 eluz 12866 . . . . . . . . . 10 ((1 ∈ ℤ ∧ (2 · 𝑦) ∈ ℤ) → ((2 · 𝑦) ∈ (ℤ‘1) ↔ 1 ≤ (2 · 𝑦)))
10521, 81, 104sylancr 587 . . . . . . . . 9 (𝑦 ∈ ℕ → ((2 · 𝑦) ∈ (ℤ‘1) ↔ 1 ≤ (2 · 𝑦)))
106103, 105mpbird 257 . . . . . . . 8 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ (ℤ‘1))
107 elfzelz 13541 . . . . . . . . . . . 12 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → 𝑛 ∈ ℤ)
108107zcnd 12698 . . . . . . . . . . 11 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → 𝑛 ∈ ℂ)
10928a1i 11 . . . . . . . . . . 11 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → π ∈ ℂ)
110108, 109mulcld 11255 . . . . . . . . . 10 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → (𝑛 · π) ∈ ℂ)
111110coscld 16149 . . . . . . . . 9 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → (cos‘(𝑛 · π)) ∈ ℂ)
112111adantl 481 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑛 ∈ (1...((2 · 𝑦) + 1))) → (cos‘(𝑛 · π)) ∈ ℂ)
113 fvoveq1 7428 . . . . . . . 8 (𝑛 = ((2 · 𝑦) + 1) → (cos‘(𝑛 · π)) = (cos‘(((2 · 𝑦) + 1) · π)))
114106, 112, 113fsump1 15772 . . . . . . 7 (𝑦 ∈ ℕ → Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))))
11533, 97eqtr4i 2761 . . . . . . . . . . . 12 (1 + 1) = (2 · 1)
116115a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (1 + 1) = (2 · 1))
117116oveq2d 7421 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((2 · 𝑦) + (1 + 1)) = ((2 · 𝑦) + (2 · 1)))
118117, 61, 593eqtr4d 2780 . . . . . . . . 9 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) + 1) = (2 · (𝑦 + 1)))
119118fvoveq1d 7427 . . . . . . . 8 (𝑦 ∈ ℕ → (cos‘((((2 · 𝑦) + 1) + 1) · π)) = (cos‘((2 · (𝑦 + 1)) · π)))
12057, 58addcld 11254 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℂ)
12128a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → π ∈ ℂ)
12256, 120, 121mulassd 11258 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) · π) = (2 · ((𝑦 + 1) · π)))
123122oveq1d 7420 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) · π) / (2 · π)) = ((2 · ((𝑦 + 1) · π)) / (2 · π)))
124120, 121mulcld 11255 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((𝑦 + 1) · π) ∈ ℂ)
125 0re 11237 . . . . . . . . . . . . . 14 0 ∈ ℝ
126 pipos 26420 . . . . . . . . . . . . . 14 0 < π
127125, 126gtneii 11347 . . . . . . . . . . . . 13 π ≠ 0
128127a1i 11 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → π ≠ 0)
12973rpne0d 13056 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 2 ≠ 0)
130124, 121, 56, 128, 129divcan5d 12043 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((2 · ((𝑦 + 1) · π)) / (2 · π)) = (((𝑦 + 1) · π) / π))
131120, 121, 128divcan4d 12023 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((𝑦 + 1) · π) / π) = (𝑦 + 1))
132123, 130, 1313eqtrd 2774 . . . . . . . . . 10 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) · π) / (2 · π)) = (𝑦 + 1))
13380peano2zd 12700 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℤ)
134132, 133eqeltrd 2834 . . . . . . . . 9 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) · π) / (2 · π)) ∈ ℤ)
135 peano2cn 11407 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (𝑦 + 1) ∈ ℂ)
13657, 135syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℂ)
13756, 136mulcld 11255 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) ∈ ℂ)
138137, 121mulcld 11255 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) · π) ∈ ℂ)
139 coseq1 26486 . . . . . . . . . 10 (((2 · (𝑦 + 1)) · π) ∈ ℂ → ((cos‘((2 · (𝑦 + 1)) · π)) = 1 ↔ (((2 · (𝑦 + 1)) · π) / (2 · π)) ∈ ℤ))
140138, 139syl 17 . . . . . . . . 9 (𝑦 ∈ ℕ → ((cos‘((2 · (𝑦 + 1)) · π)) = 1 ↔ (((2 · (𝑦 + 1)) · π) / (2 · π)) ∈ ℤ))
141134, 140mpbird 257 . . . . . . . 8 (𝑦 ∈ ℕ → (cos‘((2 · (𝑦 + 1)) · π)) = 1)
142119, 141eqtrd 2770 . . . . . . 7 (𝑦 ∈ ℕ → (cos‘((((2 · 𝑦) + 1) + 1) · π)) = 1)
143114, 142oveq12d 7423 . . . . . 6 (𝑦 ∈ ℕ → (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))) = ((Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) + 1))
144143adantr 480 . . . . 5 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))) = ((Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) + 1))
145 simpr 484 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0)
14660, 58, 121adddird 11260 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) · π) = (((2 · 𝑦) · π) + (1 · π)))
14760, 121mulcld 11255 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · 𝑦) · π) ∈ ℂ)
14841, 121eqeltrid 2838 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (1 · π) ∈ ℂ)
149147, 148addcomd 11437 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((2 · 𝑦) · π) + (1 · π)) = ((1 · π) + ((2 · 𝑦) · π)))
15041a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (1 · π) = π)
15156, 57mulcomd 11256 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (2 · 𝑦) = (𝑦 · 2))
152151oveq1d 7420 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((2 · 𝑦) · π) = ((𝑦 · 2) · π))
15357, 56, 121mulassd 11258 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((𝑦 · 2) · π) = (𝑦 · (2 · π)))
154152, 153eqtrd 2770 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · 𝑦) · π) = (𝑦 · (2 · π)))
155150, 154oveq12d 7423 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((1 · π) + ((2 · 𝑦) · π)) = (π + (𝑦 · (2 · π))))
156146, 149, 1553eqtrd 2774 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) · π) = (π + (𝑦 · (2 · π))))
157156fveq2d 6880 . . . . . . . . . 10 (𝑦 ∈ ℕ → (cos‘(((2 · 𝑦) + 1) · π)) = (cos‘(π + (𝑦 · (2 · π)))))
158 cosper 26443 . . . . . . . . . . 11 ((π ∈ ℂ ∧ 𝑦 ∈ ℤ) → (cos‘(π + (𝑦 · (2 · π)))) = (cos‘π))
15928, 80, 158sylancr 587 . . . . . . . . . 10 (𝑦 ∈ ℕ → (cos‘(π + (𝑦 · (2 · π)))) = (cos‘π))
16046a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℕ → (cos‘π) = -1)
161157, 159, 1603eqtrd 2774 . . . . . . . . 9 (𝑦 ∈ ℕ → (cos‘(((2 · 𝑦) + 1) · π)) = -1)
162161adantr 480 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → (cos‘(((2 · 𝑦) + 1) · π)) = -1)
163145, 162oveq12d 7423 . . . . . . 7 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → (Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) = (0 + -1))
164163oveq1d 7420 . . . . . 6 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → ((Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) + 1) = ((0 + -1) + 1))
16550addlidi 11423 . . . . . . . 8 (0 + -1) = -1
166165oveq1i 7415 . . . . . . 7 ((0 + -1) + 1) = (-1 + 1)
167166, 52eqtri 2758 . . . . . 6 ((0 + -1) + 1) = 0
168164, 167eqtrdi 2786 . . . . 5 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → ((Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) + 1) = 0)
169144, 168eqtrd 2770 . . . 4 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))) = 0)
17065, 94, 1693eqtrd 2774 . . 3 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = 0)
171170ex 412 . 2 (𝑦 ∈ ℕ → (Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0 → Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = 0))
1724, 8, 12, 16, 54, 171nnind 12258 1 (𝐾 ∈ ℕ → Σ𝑛 ∈ (1...(2 · 𝐾))(cos‘(𝑛 · π)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2108  wne 2932   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134   < clt 11269  cle 11270  -cneg 11467   / cdiv 11894  cn 12240  2c2 12295  cz 12588  cuz 12852  +crp 13008  ...cfz 13524  Σcsu 15702  cosccos 16080  πcpi 16082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820
This theorem is referenced by:  dirkertrigeqlem3  46129
  Copyright terms: Public domain W3C validator