Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkertrigeqlem1 Structured version   Visualization version   GIF version

Theorem dirkertrigeqlem1 43894
Description: Sum of an even number of alternating cos values. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
dirkertrigeqlem1 (𝐾 ∈ ℕ → Σ𝑛 ∈ (1...(2 · 𝐾))(cos‘(𝑛 · π)) = 0)
Distinct variable group:   𝑛,𝐾

Proof of Theorem dirkertrigeqlem1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7324 . . . . 5 (𝑥 = 1 → (2 · 𝑥) = (2 · 1))
21oveq2d 7332 . . . 4 (𝑥 = 1 → (1...(2 · 𝑥)) = (1...(2 · 1)))
32sumeq1d 15489 . . 3 (𝑥 = 1 → Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(2 · 1))(cos‘(𝑛 · π)))
43eqeq1d 2738 . 2 (𝑥 = 1 → (Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = 0 ↔ Σ𝑛 ∈ (1...(2 · 1))(cos‘(𝑛 · π)) = 0))
5 oveq2 7324 . . . . 5 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
65oveq2d 7332 . . . 4 (𝑥 = 𝑦 → (1...(2 · 𝑥)) = (1...(2 · 𝑦)))
76sumeq1d 15489 . . 3 (𝑥 = 𝑦 → Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)))
87eqeq1d 2738 . 2 (𝑥 = 𝑦 → (Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = 0 ↔ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0))
9 oveq2 7324 . . . . 5 (𝑥 = (𝑦 + 1) → (2 · 𝑥) = (2 · (𝑦 + 1)))
109oveq2d 7332 . . . 4 (𝑥 = (𝑦 + 1) → (1...(2 · 𝑥)) = (1...(2 · (𝑦 + 1))))
1110sumeq1d 15489 . . 3 (𝑥 = (𝑦 + 1) → Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)))
1211eqeq1d 2738 . 2 (𝑥 = (𝑦 + 1) → (Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = 0 ↔ Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = 0))
13 oveq2 7324 . . . . 5 (𝑥 = 𝐾 → (2 · 𝑥) = (2 · 𝐾))
1413oveq2d 7332 . . . 4 (𝑥 = 𝐾 → (1...(2 · 𝑥)) = (1...(2 · 𝐾)))
1514sumeq1d 15489 . . 3 (𝑥 = 𝐾 → Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(2 · 𝐾))(cos‘(𝑛 · π)))
1615eqeq1d 2738 . 2 (𝑥 = 𝐾 → (Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = 0 ↔ Σ𝑛 ∈ (1...(2 · 𝐾))(cos‘(𝑛 · π)) = 0))
17 ax-1cn 11008 . . . . . 6 1 ∈ ℂ
18172timesi 12190 . . . . 5 (2 · 1) = (1 + 1)
1918oveq2i 7327 . . . 4 (1...(2 · 1)) = (1...(1 + 1))
2019sumeq1i 15486 . . 3 Σ𝑛 ∈ (1...(2 · 1))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(1 + 1))(cos‘(𝑛 · π))
21 1z 12429 . . . . . . . 8 1 ∈ ℤ
22 uzid 12676 . . . . . . . 8 (1 ∈ ℤ → 1 ∈ (ℤ‘1))
2321, 22ax-mp 5 . . . . . . 7 1 ∈ (ℤ‘1)
2423a1i 11 . . . . . 6 (⊤ → 1 ∈ (ℤ‘1))
25 elfzelz 13335 . . . . . . . . . 10 (𝑛 ∈ (1...(1 + 1)) → 𝑛 ∈ ℤ)
2625zcnd 12506 . . . . . . . . 9 (𝑛 ∈ (1...(1 + 1)) → 𝑛 ∈ ℂ)
2726adantl 482 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ (1...(1 + 1))) → 𝑛 ∈ ℂ)
28 picn 25696 . . . . . . . . 9 π ∈ ℂ
2928a1i 11 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ (1...(1 + 1))) → π ∈ ℂ)
3027, 29mulcld 11074 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ (1...(1 + 1))) → (𝑛 · π) ∈ ℂ)
3130coscld 15916 . . . . . 6 ((⊤ ∧ 𝑛 ∈ (1...(1 + 1))) → (cos‘(𝑛 · π)) ∈ ℂ)
32 id 22 . . . . . . . 8 (𝑛 = (1 + 1) → 𝑛 = (1 + 1))
33 1p1e2 12177 . . . . . . . 8 (1 + 1) = 2
3432, 33eqtrdi 2792 . . . . . . 7 (𝑛 = (1 + 1) → 𝑛 = 2)
3534fvoveq1d 7338 . . . . . 6 (𝑛 = (1 + 1) → (cos‘(𝑛 · π)) = (cos‘(2 · π)))
3624, 31, 35fsump1 15544 . . . . 5 (⊤ → Σ𝑛 ∈ (1...(1 + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) + (cos‘(2 · π))))
3736mptru 1547 . . . 4 Σ𝑛 ∈ (1...(1 + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) + (cos‘(2 · π)))
38 coscl 15912 . . . . . . . 8 (π ∈ ℂ → (cos‘π) ∈ ℂ)
3928, 38ax-mp 5 . . . . . . 7 (cos‘π) ∈ ℂ
40 oveq1 7323 . . . . . . . . . 10 (𝑛 = 1 → (𝑛 · π) = (1 · π))
4128mulid2i 11059 . . . . . . . . . 10 (1 · π) = π
4240, 41eqtrdi 2792 . . . . . . . . 9 (𝑛 = 1 → (𝑛 · π) = π)
4342fveq2d 6815 . . . . . . . 8 (𝑛 = 1 → (cos‘(𝑛 · π)) = (cos‘π))
4443fsum1 15535 . . . . . . 7 ((1 ∈ ℤ ∧ (cos‘π) ∈ ℂ) → Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) = (cos‘π))
4521, 39, 44mp2an 689 . . . . . 6 Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) = (cos‘π)
46 cospi 25709 . . . . . 6 (cos‘π) = -1
4745, 46eqtri 2764 . . . . 5 Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) = -1
48 cos2pi 25713 . . . . 5 (cos‘(2 · π)) = 1
4947, 48oveq12i 7328 . . . 4 𝑛 ∈ (1...1)(cos‘(𝑛 · π)) + (cos‘(2 · π))) = (-1 + 1)
50 neg1cn 12166 . . . . 5 -1 ∈ ℂ
51 1pneg1e0 12171 . . . . 5 (1 + -1) = 0
5217, 50, 51addcomli 11246 . . . 4 (-1 + 1) = 0
5337, 49, 523eqtri 2768 . . 3 Σ𝑛 ∈ (1...(1 + 1))(cos‘(𝑛 · π)) = 0
5420, 53eqtri 2764 . 2 Σ𝑛 ∈ (1...(2 · 1))(cos‘(𝑛 · π)) = 0
5518oveq2i 7327 . . . . . . . 8 ((2 · 𝑦) + (2 · 1)) = ((2 · 𝑦) + (1 + 1))
56 2cnd 12130 . . . . . . . . 9 (𝑦 ∈ ℕ → 2 ∈ ℂ)
57 nncn 12060 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
5817a1i 11 . . . . . . . . 9 (𝑦 ∈ ℕ → 1 ∈ ℂ)
5956, 57, 58adddid 11078 . . . . . . . 8 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) = ((2 · 𝑦) + (2 · 1)))
6056, 57mulcld 11074 . . . . . . . . 9 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℂ)
6160, 58, 58addassd 11076 . . . . . . . 8 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) + 1) = ((2 · 𝑦) + (1 + 1)))
6255, 59, 613eqtr4a 2802 . . . . . . 7 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) = (((2 · 𝑦) + 1) + 1))
6362oveq2d 7332 . . . . . 6 (𝑦 ∈ ℕ → (1...(2 · (𝑦 + 1))) = (1...(((2 · 𝑦) + 1) + 1)))
6463sumeq1d 15489 . . . . 5 (𝑦 ∈ ℕ → Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))(cos‘(𝑛 · π)))
6564adantr 481 . . . 4 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))(cos‘(𝑛 · π)))
66 1red 11055 . . . . . . . 8 (𝑦 ∈ ℕ → 1 ∈ ℝ)
67 2re 12126 . . . . . . . . . . 11 2 ∈ ℝ
6867a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℕ → 2 ∈ ℝ)
69 nnre 12059 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
7068, 69remulcld 11084 . . . . . . . . 9 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℝ)
7170, 66readdcld 11083 . . . . . . . 8 (𝑦 ∈ ℕ → ((2 · 𝑦) + 1) ∈ ℝ)
72 2rp 12814 . . . . . . . . . . 11 2 ∈ ℝ+
7372a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℕ → 2 ∈ ℝ+)
74 nnrp 12820 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
7573, 74rpmulcld 12867 . . . . . . . . 9 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℝ+)
7666, 75ltaddrp2d 12885 . . . . . . . 8 (𝑦 ∈ ℕ → 1 < ((2 · 𝑦) + 1))
7766, 71, 76ltled 11202 . . . . . . 7 (𝑦 ∈ ℕ → 1 ≤ ((2 · 𝑦) + 1))
78 2z 12431 . . . . . . . . . . 11 2 ∈ ℤ
7978a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℕ → 2 ∈ ℤ)
80 nnz 12421 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
8179, 80zmulcld 12511 . . . . . . . . 9 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℤ)
8281peano2zd 12508 . . . . . . . 8 (𝑦 ∈ ℕ → ((2 · 𝑦) + 1) ∈ ℤ)
83 eluz 12675 . . . . . . . 8 ((1 ∈ ℤ ∧ ((2 · 𝑦) + 1) ∈ ℤ) → (((2 · 𝑦) + 1) ∈ (ℤ‘1) ↔ 1 ≤ ((2 · 𝑦) + 1)))
8421, 82, 83sylancr 587 . . . . . . 7 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) ∈ (ℤ‘1) ↔ 1 ≤ ((2 · 𝑦) + 1)))
8577, 84mpbird 256 . . . . . 6 (𝑦 ∈ ℕ → ((2 · 𝑦) + 1) ∈ (ℤ‘1))
86 elfzelz 13335 . . . . . . . . . 10 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → 𝑛 ∈ ℤ)
8786zcnd 12506 . . . . . . . . 9 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → 𝑛 ∈ ℂ)
8828a1i 11 . . . . . . . . 9 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → π ∈ ℂ)
8987, 88mulcld 11074 . . . . . . . 8 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → (𝑛 · π) ∈ ℂ)
9089coscld 15916 . . . . . . 7 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → (cos‘(𝑛 · π)) ∈ ℂ)
9190adantl 482 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))) → (cos‘(𝑛 · π)) ∈ ℂ)
92 fvoveq1 7339 . . . . . 6 (𝑛 = (((2 · 𝑦) + 1) + 1) → (cos‘(𝑛 · π)) = (cos‘((((2 · 𝑦) + 1) + 1) · π)))
9385, 91, 92fsump1 15544 . . . . 5 (𝑦 ∈ ℕ → Σ𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))))
9493adantr 481 . . . 4 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → Σ𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))))
95 1lt2 12223 . . . . . . . . . . . 12 1 < 2
9695a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 1 < 2)
97 2t1e2 12215 . . . . . . . . . . . 12 (2 · 1) = 2
98 nnge1 12080 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 1 ≤ 𝑦)
9966, 69, 73lemul2d 12895 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (1 ≤ 𝑦 ↔ (2 · 1) ≤ (2 · 𝑦)))
10098, 99mpbid 231 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (2 · 1) ≤ (2 · 𝑦))
10197, 100eqbrtrrid 5122 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 2 ≤ (2 · 𝑦))
10266, 68, 70, 96, 101ltletrd 11214 . . . . . . . . . 10 (𝑦 ∈ ℕ → 1 < (2 · 𝑦))
10366, 70, 102ltled 11202 . . . . . . . . 9 (𝑦 ∈ ℕ → 1 ≤ (2 · 𝑦))
104 eluz 12675 . . . . . . . . . 10 ((1 ∈ ℤ ∧ (2 · 𝑦) ∈ ℤ) → ((2 · 𝑦) ∈ (ℤ‘1) ↔ 1 ≤ (2 · 𝑦)))
10521, 81, 104sylancr 587 . . . . . . . . 9 (𝑦 ∈ ℕ → ((2 · 𝑦) ∈ (ℤ‘1) ↔ 1 ≤ (2 · 𝑦)))
106103, 105mpbird 256 . . . . . . . 8 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ (ℤ‘1))
107 elfzelz 13335 . . . . . . . . . . . 12 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → 𝑛 ∈ ℤ)
108107zcnd 12506 . . . . . . . . . . 11 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → 𝑛 ∈ ℂ)
10928a1i 11 . . . . . . . . . . 11 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → π ∈ ℂ)
110108, 109mulcld 11074 . . . . . . . . . 10 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → (𝑛 · π) ∈ ℂ)
111110coscld 15916 . . . . . . . . 9 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → (cos‘(𝑛 · π)) ∈ ℂ)
112111adantl 482 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑛 ∈ (1...((2 · 𝑦) + 1))) → (cos‘(𝑛 · π)) ∈ ℂ)
113 fvoveq1 7339 . . . . . . . 8 (𝑛 = ((2 · 𝑦) + 1) → (cos‘(𝑛 · π)) = (cos‘(((2 · 𝑦) + 1) · π)))
114106, 112, 113fsump1 15544 . . . . . . 7 (𝑦 ∈ ℕ → Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))))
11533, 97eqtr4i 2767 . . . . . . . . . . . 12 (1 + 1) = (2 · 1)
116115a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (1 + 1) = (2 · 1))
117116oveq2d 7332 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((2 · 𝑦) + (1 + 1)) = ((2 · 𝑦) + (2 · 1)))
118117, 61, 593eqtr4d 2786 . . . . . . . . 9 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) + 1) = (2 · (𝑦 + 1)))
119118fvoveq1d 7338 . . . . . . . 8 (𝑦 ∈ ℕ → (cos‘((((2 · 𝑦) + 1) + 1) · π)) = (cos‘((2 · (𝑦 + 1)) · π)))
12057, 58addcld 11073 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℂ)
12128a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → π ∈ ℂ)
12256, 120, 121mulassd 11077 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) · π) = (2 · ((𝑦 + 1) · π)))
123122oveq1d 7331 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) · π) / (2 · π)) = ((2 · ((𝑦 + 1) · π)) / (2 · π)))
124120, 121mulcld 11074 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((𝑦 + 1) · π) ∈ ℂ)
125 0re 11056 . . . . . . . . . . . . . 14 0 ∈ ℝ
126 pipos 25697 . . . . . . . . . . . . . 14 0 < π
127125, 126gtneii 11166 . . . . . . . . . . . . 13 π ≠ 0
128127a1i 11 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → π ≠ 0)
12973rpne0d 12856 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 2 ≠ 0)
130124, 121, 56, 128, 129divcan5d 11856 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((2 · ((𝑦 + 1) · π)) / (2 · π)) = (((𝑦 + 1) · π) / π))
131120, 121, 128divcan4d 11836 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((𝑦 + 1) · π) / π) = (𝑦 + 1))
132123, 130, 1313eqtrd 2780 . . . . . . . . . 10 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) · π) / (2 · π)) = (𝑦 + 1))
13380peano2zd 12508 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℤ)
134132, 133eqeltrd 2837 . . . . . . . . 9 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) · π) / (2 · π)) ∈ ℤ)
135 peano2cn 11226 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (𝑦 + 1) ∈ ℂ)
13657, 135syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℂ)
13756, 136mulcld 11074 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) ∈ ℂ)
138137, 121mulcld 11074 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) · π) ∈ ℂ)
139 coseq1 25761 . . . . . . . . . 10 (((2 · (𝑦 + 1)) · π) ∈ ℂ → ((cos‘((2 · (𝑦 + 1)) · π)) = 1 ↔ (((2 · (𝑦 + 1)) · π) / (2 · π)) ∈ ℤ))
140138, 139syl 17 . . . . . . . . 9 (𝑦 ∈ ℕ → ((cos‘((2 · (𝑦 + 1)) · π)) = 1 ↔ (((2 · (𝑦 + 1)) · π) / (2 · π)) ∈ ℤ))
141134, 140mpbird 256 . . . . . . . 8 (𝑦 ∈ ℕ → (cos‘((2 · (𝑦 + 1)) · π)) = 1)
142119, 141eqtrd 2776 . . . . . . 7 (𝑦 ∈ ℕ → (cos‘((((2 · 𝑦) + 1) + 1) · π)) = 1)
143114, 142oveq12d 7334 . . . . . 6 (𝑦 ∈ ℕ → (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))) = ((Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) + 1))
144143adantr 481 . . . . 5 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))) = ((Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) + 1))
145 simpr 485 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0)
14660, 58, 121adddird 11079 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) · π) = (((2 · 𝑦) · π) + (1 · π)))
14760, 121mulcld 11074 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · 𝑦) · π) ∈ ℂ)
14841, 121eqeltrid 2841 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (1 · π) ∈ ℂ)
149147, 148addcomd 11256 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((2 · 𝑦) · π) + (1 · π)) = ((1 · π) + ((2 · 𝑦) · π)))
15041a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (1 · π) = π)
15156, 57mulcomd 11075 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (2 · 𝑦) = (𝑦 · 2))
152151oveq1d 7331 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((2 · 𝑦) · π) = ((𝑦 · 2) · π))
15357, 56, 121mulassd 11077 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((𝑦 · 2) · π) = (𝑦 · (2 · π)))
154152, 153eqtrd 2776 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · 𝑦) · π) = (𝑦 · (2 · π)))
155150, 154oveq12d 7334 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((1 · π) + ((2 · 𝑦) · π)) = (π + (𝑦 · (2 · π))))
156146, 149, 1553eqtrd 2780 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) · π) = (π + (𝑦 · (2 · π))))
157156fveq2d 6815 . . . . . . . . . 10 (𝑦 ∈ ℕ → (cos‘(((2 · 𝑦) + 1) · π)) = (cos‘(π + (𝑦 · (2 · π)))))
158 cosper 25719 . . . . . . . . . . 11 ((π ∈ ℂ ∧ 𝑦 ∈ ℤ) → (cos‘(π + (𝑦 · (2 · π)))) = (cos‘π))
15928, 80, 158sylancr 587 . . . . . . . . . 10 (𝑦 ∈ ℕ → (cos‘(π + (𝑦 · (2 · π)))) = (cos‘π))
16046a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℕ → (cos‘π) = -1)
161157, 159, 1603eqtrd 2780 . . . . . . . . 9 (𝑦 ∈ ℕ → (cos‘(((2 · 𝑦) + 1) · π)) = -1)
162161adantr 481 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → (cos‘(((2 · 𝑦) + 1) · π)) = -1)
163145, 162oveq12d 7334 . . . . . . 7 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → (Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) = (0 + -1))
164163oveq1d 7331 . . . . . 6 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → ((Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) + 1) = ((0 + -1) + 1))
16550addid2i 11242 . . . . . . . 8 (0 + -1) = -1
166165oveq1i 7326 . . . . . . 7 ((0 + -1) + 1) = (-1 + 1)
167166, 52eqtri 2764 . . . . . 6 ((0 + -1) + 1) = 0
168164, 167eqtrdi 2792 . . . . 5 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → ((Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) + 1) = 0)
169144, 168eqtrd 2776 . . . 4 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))) = 0)
17065, 94, 1693eqtrd 2780 . . 3 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = 0)
171170ex 413 . 2 (𝑦 ∈ ℕ → (Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0 → Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = 0))
1724, 8, 12, 16, 54, 171nnind 12070 1 (𝐾 ∈ ℕ → Σ𝑛 ∈ (1...(2 · 𝐾))(cos‘(𝑛 · π)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wtru 1541  wcel 2105  wne 2940   class class class wbr 5086  cfv 6465  (class class class)co 7316  cc 10948  cr 10949  0cc0 10950  1c1 10951   + caddc 10953   · cmul 10955   < clt 11088  cle 11089  -cneg 11285   / cdiv 11711  cn 12052  2c2 12107  cz 12398  cuz 12661  +crp 12809  ...cfz 13318  Σcsu 15473  cosccos 15850  πcpi 15852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-inf2 9476  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027  ax-pre-sup 11028  ax-addf 11029  ax-mulf 11030
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-se 5563  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-isom 6474  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-of 7574  df-om 7759  df-1st 7877  df-2nd 7878  df-supp 8026  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-2o 8346  df-er 8547  df-map 8666  df-pm 8667  df-ixp 8735  df-en 8783  df-dom 8784  df-sdom 8785  df-fin 8786  df-fsupp 9205  df-fi 9246  df-sup 9277  df-inf 9278  df-oi 9345  df-card 9774  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-div 11712  df-nn 12053  df-2 12115  df-3 12116  df-4 12117  df-5 12118  df-6 12119  df-7 12120  df-8 12121  df-9 12122  df-n0 12313  df-z 12399  df-dec 12517  df-uz 12662  df-q 12768  df-rp 12810  df-xneg 12927  df-xadd 12928  df-xmul 12929  df-ioo 13162  df-ioc 13163  df-ico 13164  df-icc 13165  df-fz 13319  df-fzo 13462  df-fl 13591  df-mod 13669  df-seq 13801  df-exp 13862  df-fac 14067  df-bc 14096  df-hash 14124  df-shft 14854  df-cj 14886  df-re 14887  df-im 14888  df-sqrt 15022  df-abs 15023  df-limsup 15256  df-clim 15273  df-rlim 15274  df-sum 15474  df-ef 15853  df-sin 15855  df-cos 15856  df-pi 15858  df-struct 16922  df-sets 16939  df-slot 16957  df-ndx 16969  df-base 16987  df-ress 17016  df-plusg 17049  df-mulr 17050  df-starv 17051  df-sca 17052  df-vsca 17053  df-ip 17054  df-tset 17055  df-ple 17056  df-ds 17058  df-unif 17059  df-hom 17060  df-cco 17061  df-rest 17207  df-topn 17208  df-0g 17226  df-gsum 17227  df-topgen 17228  df-pt 17229  df-prds 17232  df-xrs 17287  df-qtop 17292  df-imas 17293  df-xps 17295  df-mre 17369  df-mrc 17370  df-acs 17372  df-mgm 18400  df-sgrp 18449  df-mnd 18460  df-submnd 18505  df-mulg 18774  df-cntz 18996  df-cmn 19460  df-psmet 20669  df-xmet 20670  df-met 20671  df-bl 20672  df-mopn 20673  df-fbas 20674  df-fg 20675  df-cnfld 20678  df-top 22123  df-topon 22140  df-topsp 22162  df-bases 22176  df-cld 22250  df-ntr 22251  df-cls 22252  df-nei 22329  df-lp 22367  df-perf 22368  df-cn 22458  df-cnp 22459  df-haus 22546  df-tx 22793  df-hmeo 22986  df-fil 23077  df-fm 23169  df-flim 23170  df-flf 23171  df-xms 23553  df-ms 23554  df-tms 23555  df-cncf 24121  df-limc 25110  df-dv 25111
This theorem is referenced by:  dirkertrigeqlem3  43896
  Copyright terms: Public domain W3C validator