Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . . . 5
⊢ (𝑥 = 1 → (2 · 𝑥) = (2 ·
1)) |
2 | 1 | oveq2d 7271 |
. . . 4
⊢ (𝑥 = 1 → (1...(2 ·
𝑥)) = (1...(2 ·
1))) |
3 | 2 | sumeq1d 15341 |
. . 3
⊢ (𝑥 = 1 → Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(2 · 1))(cos‘(𝑛 ·
π))) |
4 | 3 | eqeq1d 2740 |
. 2
⊢ (𝑥 = 1 → (Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = 0 ↔ Σ𝑛 ∈ (1...(2 ·
1))(cos‘(𝑛 ·
π)) = 0)) |
5 | | oveq2 7263 |
. . . . 5
⊢ (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦)) |
6 | 5 | oveq2d 7271 |
. . . 4
⊢ (𝑥 = 𝑦 → (1...(2 · 𝑥)) = (1...(2 · 𝑦))) |
7 | 6 | sumeq1d 15341 |
. . 3
⊢ (𝑥 = 𝑦 → Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π))) |
8 | 7 | eqeq1d 2740 |
. 2
⊢ (𝑥 = 𝑦 → (Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = 0 ↔ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0)) |
9 | | oveq2 7263 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (2 · 𝑥) = (2 · (𝑦 + 1))) |
10 | 9 | oveq2d 7271 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (1...(2 · 𝑥)) = (1...(2 · (𝑦 + 1)))) |
11 | 10 | sumeq1d 15341 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π))) |
12 | 11 | eqeq1d 2740 |
. 2
⊢ (𝑥 = (𝑦 + 1) → (Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = 0 ↔ Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) =
0)) |
13 | | oveq2 7263 |
. . . . 5
⊢ (𝑥 = 𝐾 → (2 · 𝑥) = (2 · 𝐾)) |
14 | 13 | oveq2d 7271 |
. . . 4
⊢ (𝑥 = 𝐾 → (1...(2 · 𝑥)) = (1...(2 · 𝐾))) |
15 | 14 | sumeq1d 15341 |
. . 3
⊢ (𝑥 = 𝐾 → Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(2 · 𝐾))(cos‘(𝑛 · π))) |
16 | 15 | eqeq1d 2740 |
. 2
⊢ (𝑥 = 𝐾 → (Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = 0 ↔ Σ𝑛 ∈ (1...(2 · 𝐾))(cos‘(𝑛 · π)) = 0)) |
17 | | ax-1cn 10860 |
. . . . . 6
⊢ 1 ∈
ℂ |
18 | 17 | 2timesi 12041 |
. . . . 5
⊢ (2
· 1) = (1 + 1) |
19 | 18 | oveq2i 7266 |
. . . 4
⊢ (1...(2
· 1)) = (1...(1 + 1)) |
20 | 19 | sumeq1i 15338 |
. . 3
⊢
Σ𝑛 ∈
(1...(2 · 1))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(1 + 1))(cos‘(𝑛 ·
π)) |
21 | | 1z 12280 |
. . . . . . . 8
⊢ 1 ∈
ℤ |
22 | | uzid 12526 |
. . . . . . . 8
⊢ (1 ∈
ℤ → 1 ∈ (ℤ≥‘1)) |
23 | 21, 22 | ax-mp 5 |
. . . . . . 7
⊢ 1 ∈
(ℤ≥‘1) |
24 | 23 | a1i 11 |
. . . . . 6
⊢ (⊤
→ 1 ∈ (ℤ≥‘1)) |
25 | | elfzelz 13185 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (1...(1 + 1)) →
𝑛 ∈
ℤ) |
26 | 25 | zcnd 12356 |
. . . . . . . . 9
⊢ (𝑛 ∈ (1...(1 + 1)) →
𝑛 ∈
ℂ) |
27 | 26 | adantl 481 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑛
∈ (1...(1 + 1))) → 𝑛 ∈ ℂ) |
28 | | picn 25521 |
. . . . . . . . 9
⊢ π
∈ ℂ |
29 | 28 | a1i 11 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑛
∈ (1...(1 + 1))) → π ∈ ℂ) |
30 | 27, 29 | mulcld 10926 |
. . . . . . 7
⊢
((⊤ ∧ 𝑛
∈ (1...(1 + 1))) → (𝑛 · π) ∈
ℂ) |
31 | 30 | coscld 15768 |
. . . . . 6
⊢
((⊤ ∧ 𝑛
∈ (1...(1 + 1))) → (cos‘(𝑛 · π)) ∈
ℂ) |
32 | | id 22 |
. . . . . . . 8
⊢ (𝑛 = (1 + 1) → 𝑛 = (1 + 1)) |
33 | | 1p1e2 12028 |
. . . . . . . 8
⊢ (1 + 1) =
2 |
34 | 32, 33 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝑛 = (1 + 1) → 𝑛 = 2) |
35 | 34 | fvoveq1d 7277 |
. . . . . 6
⊢ (𝑛 = (1 + 1) →
(cos‘(𝑛 ·
π)) = (cos‘(2 · π))) |
36 | 24, 31, 35 | fsump1 15396 |
. . . . 5
⊢ (⊤
→ Σ𝑛 ∈
(1...(1 + 1))(cos‘(𝑛
· π)) = (Σ𝑛
∈ (1...1)(cos‘(𝑛
· π)) + (cos‘(2 · π)))) |
37 | 36 | mptru 1546 |
. . . 4
⊢
Σ𝑛 ∈
(1...(1 + 1))(cos‘(𝑛
· π)) = (Σ𝑛
∈ (1...1)(cos‘(𝑛
· π)) + (cos‘(2 · π))) |
38 | | coscl 15764 |
. . . . . . . 8
⊢ (π
∈ ℂ → (cos‘π) ∈ ℂ) |
39 | 28, 38 | ax-mp 5 |
. . . . . . 7
⊢
(cos‘π) ∈ ℂ |
40 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (𝑛 = 1 → (𝑛 · π) = (1 ·
π)) |
41 | 28 | mulid2i 10911 |
. . . . . . . . . 10
⊢ (1
· π) = π |
42 | 40, 41 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (𝑛 = 1 → (𝑛 · π) = π) |
43 | 42 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑛 = 1 → (cos‘(𝑛 · π)) =
(cos‘π)) |
44 | 43 | fsum1 15387 |
. . . . . . 7
⊢ ((1
∈ ℤ ∧ (cos‘π) ∈ ℂ) → Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) =
(cos‘π)) |
45 | 21, 39, 44 | mp2an 688 |
. . . . . 6
⊢
Σ𝑛 ∈
(1...1)(cos‘(𝑛
· π)) = (cos‘π) |
46 | | cospi 25534 |
. . . . . 6
⊢
(cos‘π) = -1 |
47 | 45, 46 | eqtri 2766 |
. . . . 5
⊢
Σ𝑛 ∈
(1...1)(cos‘(𝑛
· π)) = -1 |
48 | | cos2pi 25538 |
. . . . 5
⊢
(cos‘(2 · π)) = 1 |
49 | 47, 48 | oveq12i 7267 |
. . . 4
⊢
(Σ𝑛 ∈
(1...1)(cos‘(𝑛
· π)) + (cos‘(2 · π))) = (-1 + 1) |
50 | | neg1cn 12017 |
. . . . 5
⊢ -1 ∈
ℂ |
51 | | 1pneg1e0 12022 |
. . . . 5
⊢ (1 + -1)
= 0 |
52 | 17, 50, 51 | addcomli 11097 |
. . . 4
⊢ (-1 + 1)
= 0 |
53 | 37, 49, 52 | 3eqtri 2770 |
. . 3
⊢
Σ𝑛 ∈
(1...(1 + 1))(cos‘(𝑛
· π)) = 0 |
54 | 20, 53 | eqtri 2766 |
. 2
⊢
Σ𝑛 ∈
(1...(2 · 1))(cos‘(𝑛 · π)) = 0 |
55 | 18 | oveq2i 7266 |
. . . . . . . 8
⊢ ((2
· 𝑦) + (2 ·
1)) = ((2 · 𝑦) + (1
+ 1)) |
56 | | 2cnd 11981 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ → 2 ∈
ℂ) |
57 | | nncn 11911 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℂ) |
58 | 17 | a1i 11 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ → 1 ∈
ℂ) |
59 | 56, 57, 58 | adddid 10930 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ → (2
· (𝑦 + 1)) = ((2
· 𝑦) + (2 ·
1))) |
60 | 56, 57 | mulcld 10926 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ → (2
· 𝑦) ∈
ℂ) |
61 | 60, 58, 58 | addassd 10928 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ → (((2
· 𝑦) + 1) + 1) = ((2
· 𝑦) + (1 +
1))) |
62 | 55, 59, 61 | 3eqtr4a 2805 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → (2
· (𝑦 + 1)) = (((2
· 𝑦) + 1) +
1)) |
63 | 62 | oveq2d 7271 |
. . . . . 6
⊢ (𝑦 ∈ ℕ → (1...(2
· (𝑦 + 1))) =
(1...(((2 · 𝑦) + 1)
+ 1))) |
64 | 63 | sumeq1d 15341 |
. . . . 5
⊢ (𝑦 ∈ ℕ →
Σ𝑛 ∈ (1...(2
· (𝑦 +
1)))(cos‘(𝑛 ·
π)) = Σ𝑛 ∈
(1...(((2 · 𝑦) + 1)
+ 1))(cos‘(𝑛 ·
π))) |
65 | 64 | adantr 480 |
. . . 4
⊢ ((𝑦 ∈ ℕ ∧
Σ𝑛 ∈ (1...(2
· 𝑦))(cos‘(𝑛 · π)) = 0) → Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))(cos‘(𝑛 ·
π))) |
66 | | 1red 10907 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ → 1 ∈
ℝ) |
67 | | 2re 11977 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
68 | 67 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ → 2 ∈
ℝ) |
69 | | nnre 11910 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℝ) |
70 | 68, 69 | remulcld 10936 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ → (2
· 𝑦) ∈
ℝ) |
71 | 70, 66 | readdcld 10935 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ → ((2
· 𝑦) + 1) ∈
ℝ) |
72 | | 2rp 12664 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ+ |
73 | 72 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ → 2 ∈
ℝ+) |
74 | | nnrp 12670 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℝ+) |
75 | 73, 74 | rpmulcld 12717 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ → (2
· 𝑦) ∈
ℝ+) |
76 | 66, 75 | ltaddrp2d 12735 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ → 1 <
((2 · 𝑦) +
1)) |
77 | 66, 71, 76 | ltled 11053 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → 1 ≤
((2 · 𝑦) +
1)) |
78 | | 2z 12282 |
. . . . . . . . . . 11
⊢ 2 ∈
ℤ |
79 | 78 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ → 2 ∈
ℤ) |
80 | | nnz 12272 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℤ) |
81 | 79, 80 | zmulcld 12361 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ → (2
· 𝑦) ∈
ℤ) |
82 | 81 | peano2zd 12358 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ → ((2
· 𝑦) + 1) ∈
ℤ) |
83 | | eluz 12525 |
. . . . . . . 8
⊢ ((1
∈ ℤ ∧ ((2 · 𝑦) + 1) ∈ ℤ) → (((2 ·
𝑦) + 1) ∈
(ℤ≥‘1) ↔ 1 ≤ ((2 · 𝑦) + 1))) |
84 | 21, 82, 83 | sylancr 586 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → (((2
· 𝑦) + 1) ∈
(ℤ≥‘1) ↔ 1 ≤ ((2 · 𝑦) + 1))) |
85 | 77, 84 | mpbird 256 |
. . . . . 6
⊢ (𝑦 ∈ ℕ → ((2
· 𝑦) + 1) ∈
(ℤ≥‘1)) |
86 | | elfzelz 13185 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → 𝑛 ∈
ℤ) |
87 | 86 | zcnd 12356 |
. . . . . . . . 9
⊢ (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → 𝑛 ∈
ℂ) |
88 | 28 | a1i 11 |
. . . . . . . . 9
⊢ (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → π ∈
ℂ) |
89 | 87, 88 | mulcld 10926 |
. . . . . . . 8
⊢ (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → (𝑛 · π) ∈
ℂ) |
90 | 89 | coscld 15768 |
. . . . . . 7
⊢ (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) →
(cos‘(𝑛 ·
π)) ∈ ℂ) |
91 | 90 | adantl 481 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ ∧ 𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))) →
(cos‘(𝑛 ·
π)) ∈ ℂ) |
92 | | fvoveq1 7278 |
. . . . . 6
⊢ (𝑛 = (((2 · 𝑦) + 1) + 1) →
(cos‘(𝑛 ·
π)) = (cos‘((((2 · 𝑦) + 1) + 1) · π))) |
93 | 85, 91, 92 | fsump1 15396 |
. . . . 5
⊢ (𝑦 ∈ ℕ →
Σ𝑛 ∈ (1...(((2
· 𝑦) + 1) +
1))(cos‘(𝑛 ·
π)) = (Σ𝑛 ∈
(1...((2 · 𝑦) +
1))(cos‘(𝑛 ·
π)) + (cos‘((((2 · 𝑦) + 1) + 1) ·
π)))) |
94 | 93 | adantr 480 |
. . . 4
⊢ ((𝑦 ∈ ℕ ∧
Σ𝑛 ∈ (1...(2
· 𝑦))(cos‘(𝑛 · π)) = 0) → Σ𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) +
(cos‘((((2 · 𝑦) + 1) + 1) ·
π)))) |
95 | | 1lt2 12074 |
. . . . . . . . . . . 12
⊢ 1 <
2 |
96 | 95 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ → 1 <
2) |
97 | | 2t1e2 12066 |
. . . . . . . . . . . 12
⊢ (2
· 1) = 2 |
98 | | nnge1 11931 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ → 1 ≤
𝑦) |
99 | 66, 69, 73 | lemul2d 12745 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ → (1 ≤
𝑦 ↔ (2 · 1)
≤ (2 · 𝑦))) |
100 | 98, 99 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ → (2
· 1) ≤ (2 · 𝑦)) |
101 | 97, 100 | eqbrtrrid 5106 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ → 2 ≤ (2
· 𝑦)) |
102 | 66, 68, 70, 96, 101 | ltletrd 11065 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ → 1 < (2
· 𝑦)) |
103 | 66, 70, 102 | ltled 11053 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ → 1 ≤ (2
· 𝑦)) |
104 | | eluz 12525 |
. . . . . . . . . 10
⊢ ((1
∈ ℤ ∧ (2 · 𝑦) ∈ ℤ) → ((2 · 𝑦) ∈
(ℤ≥‘1) ↔ 1 ≤ (2 · 𝑦))) |
105 | 21, 81, 104 | sylancr 586 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ → ((2
· 𝑦) ∈
(ℤ≥‘1) ↔ 1 ≤ (2 · 𝑦))) |
106 | 103, 105 | mpbird 256 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ → (2
· 𝑦) ∈
(ℤ≥‘1)) |
107 | | elfzelz 13185 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (1...((2 · 𝑦) + 1)) → 𝑛 ∈
ℤ) |
108 | 107 | zcnd 12356 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (1...((2 · 𝑦) + 1)) → 𝑛 ∈
ℂ) |
109 | 28 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (1...((2 · 𝑦) + 1)) → π ∈
ℂ) |
110 | 108, 109 | mulcld 10926 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (1...((2 · 𝑦) + 1)) → (𝑛 · π) ∈
ℂ) |
111 | 110 | coscld 15768 |
. . . . . . . . 9
⊢ (𝑛 ∈ (1...((2 · 𝑦) + 1)) → (cos‘(𝑛 · π)) ∈
ℂ) |
112 | 111 | adantl 481 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ 𝑛 ∈ (1...((2 · 𝑦) + 1))) →
(cos‘(𝑛 ·
π)) ∈ ℂ) |
113 | | fvoveq1 7278 |
. . . . . . . 8
⊢ (𝑛 = ((2 · 𝑦) + 1) → (cos‘(𝑛 · π)) =
(cos‘(((2 · 𝑦)
+ 1) · π))) |
114 | 106, 112,
113 | fsump1 15396 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ →
Σ𝑛 ∈ (1...((2
· 𝑦) +
1))(cos‘(𝑛 ·
π)) = (Σ𝑛 ∈
(1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 ·
𝑦) + 1) ·
π)))) |
115 | 33, 97 | eqtr4i 2769 |
. . . . . . . . . . . 12
⊢ (1 + 1) =
(2 · 1) |
116 | 115 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ → (1 + 1) =
(2 · 1)) |
117 | 116 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ → ((2
· 𝑦) + (1 + 1)) =
((2 · 𝑦) + (2
· 1))) |
118 | 117, 61, 59 | 3eqtr4d 2788 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ → (((2
· 𝑦) + 1) + 1) = (2
· (𝑦 +
1))) |
119 | 118 | fvoveq1d 7277 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ →
(cos‘((((2 · 𝑦) + 1) + 1) · π)) = (cos‘((2
· (𝑦 + 1)) ·
π))) |
120 | 57, 58 | addcld 10925 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ → (𝑦 + 1) ∈
ℂ) |
121 | 28 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ → π
∈ ℂ) |
122 | 56, 120, 121 | mulassd 10929 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ → ((2
· (𝑦 + 1)) ·
π) = (2 · ((𝑦 +
1) · π))) |
123 | 122 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ → (((2
· (𝑦 + 1)) ·
π) / (2 · π)) = ((2 · ((𝑦 + 1) · π)) / (2 ·
π))) |
124 | 120, 121 | mulcld 10926 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ → ((𝑦 + 1) · π) ∈
ℂ) |
125 | | 0re 10908 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ |
126 | | pipos 25522 |
. . . . . . . . . . . . . 14
⊢ 0 <
π |
127 | 125, 126 | gtneii 11017 |
. . . . . . . . . . . . 13
⊢ π ≠
0 |
128 | 127 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ → π ≠
0) |
129 | 73 | rpne0d 12706 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ → 2 ≠
0) |
130 | 124, 121,
56, 128, 129 | divcan5d 11707 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ → ((2
· ((𝑦 + 1) ·
π)) / (2 · π)) = (((𝑦 + 1) · π) /
π)) |
131 | 120, 121,
128 | divcan4d 11687 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ → (((𝑦 + 1) · π) / π) =
(𝑦 + 1)) |
132 | 123, 130,
131 | 3eqtrd 2782 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ → (((2
· (𝑦 + 1)) ·
π) / (2 · π)) = (𝑦 + 1)) |
133 | 80 | peano2zd 12358 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ → (𝑦 + 1) ∈
ℤ) |
134 | 132, 133 | eqeltrd 2839 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ → (((2
· (𝑦 + 1)) ·
π) / (2 · π)) ∈ ℤ) |
135 | | peano2cn 11077 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℂ → (𝑦 + 1) ∈
ℂ) |
136 | 57, 135 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ → (𝑦 + 1) ∈
ℂ) |
137 | 56, 136 | mulcld 10926 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ → (2
· (𝑦 + 1)) ∈
ℂ) |
138 | 137, 121 | mulcld 10926 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ → ((2
· (𝑦 + 1)) ·
π) ∈ ℂ) |
139 | | coseq1 25586 |
. . . . . . . . . 10
⊢ (((2
· (𝑦 + 1)) ·
π) ∈ ℂ → ((cos‘((2 · (𝑦 + 1)) · π)) = 1 ↔ (((2
· (𝑦 + 1)) ·
π) / (2 · π)) ∈ ℤ)) |
140 | 138, 139 | syl 17 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ →
((cos‘((2 · (𝑦
+ 1)) · π)) = 1 ↔ (((2 · (𝑦 + 1)) · π) / (2 · π))
∈ ℤ)) |
141 | 134, 140 | mpbird 256 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ →
(cos‘((2 · (𝑦
+ 1)) · π)) = 1) |
142 | 119, 141 | eqtrd 2778 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ →
(cos‘((((2 · 𝑦) + 1) + 1) · π)) =
1) |
143 | 114, 142 | oveq12d 7273 |
. . . . . 6
⊢ (𝑦 ∈ ℕ →
(Σ𝑛 ∈ (1...((2
· 𝑦) +
1))(cos‘(𝑛 ·
π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))) = ((Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 ·
𝑦) + 1) · π))) +
1)) |
144 | 143 | adantr 480 |
. . . . 5
⊢ ((𝑦 ∈ ℕ ∧
Σ𝑛 ∈ (1...(2
· 𝑦))(cos‘(𝑛 · π)) = 0) → (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) +
(cos‘((((2 · 𝑦) + 1) + 1) · π))) = ((Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 ·
𝑦) + 1) · π))) +
1)) |
145 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧
Σ𝑛 ∈ (1...(2
· 𝑦))(cos‘(𝑛 · π)) = 0) → Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) |
146 | 60, 58, 121 | adddird 10931 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ → (((2
· 𝑦) + 1) ·
π) = (((2 · 𝑦)
· π) + (1 · π))) |
147 | 60, 121 | mulcld 10926 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ → ((2
· 𝑦) · π)
∈ ℂ) |
148 | 41, 121 | eqeltrid 2843 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ → (1
· π) ∈ ℂ) |
149 | 147, 148 | addcomd 11107 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ → (((2
· 𝑦) · π)
+ (1 · π)) = ((1 · π) + ((2 · 𝑦) · π))) |
150 | 41 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ → (1
· π) = π) |
151 | 56, 57 | mulcomd 10927 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℕ → (2
· 𝑦) = (𝑦 · 2)) |
152 | 151 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℕ → ((2
· 𝑦) · π)
= ((𝑦 · 2) ·
π)) |
153 | 57, 56, 121 | mulassd 10929 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℕ → ((𝑦 · 2) · π) =
(𝑦 · (2 ·
π))) |
154 | 152, 153 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ → ((2
· 𝑦) · π)
= (𝑦 · (2 ·
π))) |
155 | 150, 154 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ → ((1
· π) + ((2 · 𝑦) · π)) = (π + (𝑦 · (2 ·
π)))) |
156 | 146, 149,
155 | 3eqtrd 2782 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ → (((2
· 𝑦) + 1) ·
π) = (π + (𝑦 ·
(2 · π)))) |
157 | 156 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ →
(cos‘(((2 · 𝑦)
+ 1) · π)) = (cos‘(π + (𝑦 · (2 ·
π))))) |
158 | | cosper 25544 |
. . . . . . . . . . 11
⊢ ((π
∈ ℂ ∧ 𝑦
∈ ℤ) → (cos‘(π + (𝑦 · (2 · π)))) =
(cos‘π)) |
159 | 28, 80, 158 | sylancr 586 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ →
(cos‘(π + (𝑦
· (2 · π)))) = (cos‘π)) |
160 | 46 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ →
(cos‘π) = -1) |
161 | 157, 159,
160 | 3eqtrd 2782 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ →
(cos‘(((2 · 𝑦)
+ 1) · π)) = -1) |
162 | 161 | adantr 480 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧
Σ𝑛 ∈ (1...(2
· 𝑦))(cos‘(𝑛 · π)) = 0) → (cos‘(((2
· 𝑦) + 1) ·
π)) = -1) |
163 | 145, 162 | oveq12d 7273 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧
Σ𝑛 ∈ (1...(2
· 𝑦))(cos‘(𝑛 · π)) = 0) → (Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 ·
𝑦) + 1) · π))) =
(0 + -1)) |
164 | 163 | oveq1d 7270 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ ∧
Σ𝑛 ∈ (1...(2
· 𝑦))(cos‘(𝑛 · π)) = 0) → ((Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 ·
𝑦) + 1) · π))) +
1) = ((0 + -1) + 1)) |
165 | 50 | addid2i 11093 |
. . . . . . . 8
⊢ (0 + -1)
= -1 |
166 | 165 | oveq1i 7265 |
. . . . . . 7
⊢ ((0 + -1)
+ 1) = (-1 + 1) |
167 | 166, 52 | eqtri 2766 |
. . . . . 6
⊢ ((0 + -1)
+ 1) = 0 |
168 | 164, 167 | eqtrdi 2795 |
. . . . 5
⊢ ((𝑦 ∈ ℕ ∧
Σ𝑛 ∈ (1...(2
· 𝑦))(cos‘(𝑛 · π)) = 0) → ((Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 ·
𝑦) + 1) · π))) +
1) = 0) |
169 | 144, 168 | eqtrd 2778 |
. . . 4
⊢ ((𝑦 ∈ ℕ ∧
Σ𝑛 ∈ (1...(2
· 𝑦))(cos‘(𝑛 · π)) = 0) → (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) +
(cos‘((((2 · 𝑦) + 1) + 1) · π))) =
0) |
170 | 65, 94, 169 | 3eqtrd 2782 |
. . 3
⊢ ((𝑦 ∈ ℕ ∧
Σ𝑛 ∈ (1...(2
· 𝑦))(cos‘(𝑛 · π)) = 0) → Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) =
0) |
171 | 170 | ex 412 |
. 2
⊢ (𝑦 ∈ ℕ →
(Σ𝑛 ∈ (1...(2
· 𝑦))(cos‘(𝑛 · π)) = 0 → Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) =
0)) |
172 | 4, 8, 12, 16, 54, 171 | nnind 11921 |
1
⊢ (𝐾 ∈ ℕ →
Σ𝑛 ∈ (1...(2
· 𝐾))(cos‘(𝑛 · π)) = 0) |