Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkertrigeqlem1 Structured version   Visualization version   GIF version

Theorem dirkertrigeqlem1 46113
Description: Sum of an even number of alternating cos values. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
dirkertrigeqlem1 (𝐾 ∈ ℕ → Σ𝑛 ∈ (1...(2 · 𝐾))(cos‘(𝑛 · π)) = 0)
Distinct variable group:   𝑛,𝐾

Proof of Theorem dirkertrigeqlem1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . . 5 (𝑥 = 1 → (2 · 𝑥) = (2 · 1))
21oveq2d 7447 . . . 4 (𝑥 = 1 → (1...(2 · 𝑥)) = (1...(2 · 1)))
32sumeq1d 15736 . . 3 (𝑥 = 1 → Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(2 · 1))(cos‘(𝑛 · π)))
43eqeq1d 2739 . 2 (𝑥 = 1 → (Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = 0 ↔ Σ𝑛 ∈ (1...(2 · 1))(cos‘(𝑛 · π)) = 0))
5 oveq2 7439 . . . . 5 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
65oveq2d 7447 . . . 4 (𝑥 = 𝑦 → (1...(2 · 𝑥)) = (1...(2 · 𝑦)))
76sumeq1d 15736 . . 3 (𝑥 = 𝑦 → Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)))
87eqeq1d 2739 . 2 (𝑥 = 𝑦 → (Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = 0 ↔ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0))
9 oveq2 7439 . . . . 5 (𝑥 = (𝑦 + 1) → (2 · 𝑥) = (2 · (𝑦 + 1)))
109oveq2d 7447 . . . 4 (𝑥 = (𝑦 + 1) → (1...(2 · 𝑥)) = (1...(2 · (𝑦 + 1))))
1110sumeq1d 15736 . . 3 (𝑥 = (𝑦 + 1) → Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)))
1211eqeq1d 2739 . 2 (𝑥 = (𝑦 + 1) → (Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = 0 ↔ Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = 0))
13 oveq2 7439 . . . . 5 (𝑥 = 𝐾 → (2 · 𝑥) = (2 · 𝐾))
1413oveq2d 7447 . . . 4 (𝑥 = 𝐾 → (1...(2 · 𝑥)) = (1...(2 · 𝐾)))
1514sumeq1d 15736 . . 3 (𝑥 = 𝐾 → Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(2 · 𝐾))(cos‘(𝑛 · π)))
1615eqeq1d 2739 . 2 (𝑥 = 𝐾 → (Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = 0 ↔ Σ𝑛 ∈ (1...(2 · 𝐾))(cos‘(𝑛 · π)) = 0))
17 ax-1cn 11213 . . . . . 6 1 ∈ ℂ
18172timesi 12404 . . . . 5 (2 · 1) = (1 + 1)
1918oveq2i 7442 . . . 4 (1...(2 · 1)) = (1...(1 + 1))
2019sumeq1i 15733 . . 3 Σ𝑛 ∈ (1...(2 · 1))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(1 + 1))(cos‘(𝑛 · π))
21 1z 12647 . . . . . . . 8 1 ∈ ℤ
22 uzid 12893 . . . . . . . 8 (1 ∈ ℤ → 1 ∈ (ℤ‘1))
2321, 22ax-mp 5 . . . . . . 7 1 ∈ (ℤ‘1)
2423a1i 11 . . . . . 6 (⊤ → 1 ∈ (ℤ‘1))
25 elfzelz 13564 . . . . . . . . . 10 (𝑛 ∈ (1...(1 + 1)) → 𝑛 ∈ ℤ)
2625zcnd 12723 . . . . . . . . 9 (𝑛 ∈ (1...(1 + 1)) → 𝑛 ∈ ℂ)
2726adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ (1...(1 + 1))) → 𝑛 ∈ ℂ)
28 picn 26501 . . . . . . . . 9 π ∈ ℂ
2928a1i 11 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ (1...(1 + 1))) → π ∈ ℂ)
3027, 29mulcld 11281 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ (1...(1 + 1))) → (𝑛 · π) ∈ ℂ)
3130coscld 16167 . . . . . 6 ((⊤ ∧ 𝑛 ∈ (1...(1 + 1))) → (cos‘(𝑛 · π)) ∈ ℂ)
32 id 22 . . . . . . . 8 (𝑛 = (1 + 1) → 𝑛 = (1 + 1))
33 1p1e2 12391 . . . . . . . 8 (1 + 1) = 2
3432, 33eqtrdi 2793 . . . . . . 7 (𝑛 = (1 + 1) → 𝑛 = 2)
3534fvoveq1d 7453 . . . . . 6 (𝑛 = (1 + 1) → (cos‘(𝑛 · π)) = (cos‘(2 · π)))
3624, 31, 35fsump1 15792 . . . . 5 (⊤ → Σ𝑛 ∈ (1...(1 + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) + (cos‘(2 · π))))
3736mptru 1547 . . . 4 Σ𝑛 ∈ (1...(1 + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) + (cos‘(2 · π)))
38 coscl 16163 . . . . . . . 8 (π ∈ ℂ → (cos‘π) ∈ ℂ)
3928, 38ax-mp 5 . . . . . . 7 (cos‘π) ∈ ℂ
40 oveq1 7438 . . . . . . . . . 10 (𝑛 = 1 → (𝑛 · π) = (1 · π))
4128mullidi 11266 . . . . . . . . . 10 (1 · π) = π
4240, 41eqtrdi 2793 . . . . . . . . 9 (𝑛 = 1 → (𝑛 · π) = π)
4342fveq2d 6910 . . . . . . . 8 (𝑛 = 1 → (cos‘(𝑛 · π)) = (cos‘π))
4443fsum1 15783 . . . . . . 7 ((1 ∈ ℤ ∧ (cos‘π) ∈ ℂ) → Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) = (cos‘π))
4521, 39, 44mp2an 692 . . . . . 6 Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) = (cos‘π)
46 cospi 26514 . . . . . 6 (cos‘π) = -1
4745, 46eqtri 2765 . . . . 5 Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) = -1
48 cos2pi 26518 . . . . 5 (cos‘(2 · π)) = 1
4947, 48oveq12i 7443 . . . 4 𝑛 ∈ (1...1)(cos‘(𝑛 · π)) + (cos‘(2 · π))) = (-1 + 1)
50 neg1cn 12380 . . . . 5 -1 ∈ ℂ
51 1pneg1e0 12385 . . . . 5 (1 + -1) = 0
5217, 50, 51addcomli 11453 . . . 4 (-1 + 1) = 0
5337, 49, 523eqtri 2769 . . 3 Σ𝑛 ∈ (1...(1 + 1))(cos‘(𝑛 · π)) = 0
5420, 53eqtri 2765 . 2 Σ𝑛 ∈ (1...(2 · 1))(cos‘(𝑛 · π)) = 0
5518oveq2i 7442 . . . . . . . 8 ((2 · 𝑦) + (2 · 1)) = ((2 · 𝑦) + (1 + 1))
56 2cnd 12344 . . . . . . . . 9 (𝑦 ∈ ℕ → 2 ∈ ℂ)
57 nncn 12274 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
5817a1i 11 . . . . . . . . 9 (𝑦 ∈ ℕ → 1 ∈ ℂ)
5956, 57, 58adddid 11285 . . . . . . . 8 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) = ((2 · 𝑦) + (2 · 1)))
6056, 57mulcld 11281 . . . . . . . . 9 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℂ)
6160, 58, 58addassd 11283 . . . . . . . 8 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) + 1) = ((2 · 𝑦) + (1 + 1)))
6255, 59, 613eqtr4a 2803 . . . . . . 7 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) = (((2 · 𝑦) + 1) + 1))
6362oveq2d 7447 . . . . . 6 (𝑦 ∈ ℕ → (1...(2 · (𝑦 + 1))) = (1...(((2 · 𝑦) + 1) + 1)))
6463sumeq1d 15736 . . . . 5 (𝑦 ∈ ℕ → Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))(cos‘(𝑛 · π)))
6564adantr 480 . . . 4 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))(cos‘(𝑛 · π)))
66 1red 11262 . . . . . . . 8 (𝑦 ∈ ℕ → 1 ∈ ℝ)
67 2re 12340 . . . . . . . . . . 11 2 ∈ ℝ
6867a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℕ → 2 ∈ ℝ)
69 nnre 12273 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
7068, 69remulcld 11291 . . . . . . . . 9 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℝ)
7170, 66readdcld 11290 . . . . . . . 8 (𝑦 ∈ ℕ → ((2 · 𝑦) + 1) ∈ ℝ)
72 2rp 13039 . . . . . . . . . . 11 2 ∈ ℝ+
7372a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℕ → 2 ∈ ℝ+)
74 nnrp 13046 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
7573, 74rpmulcld 13093 . . . . . . . . 9 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℝ+)
7666, 75ltaddrp2d 13111 . . . . . . . 8 (𝑦 ∈ ℕ → 1 < ((2 · 𝑦) + 1))
7766, 71, 76ltled 11409 . . . . . . 7 (𝑦 ∈ ℕ → 1 ≤ ((2 · 𝑦) + 1))
78 2z 12649 . . . . . . . . . . 11 2 ∈ ℤ
7978a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℕ → 2 ∈ ℤ)
80 nnz 12634 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
8179, 80zmulcld 12728 . . . . . . . . 9 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℤ)
8281peano2zd 12725 . . . . . . . 8 (𝑦 ∈ ℕ → ((2 · 𝑦) + 1) ∈ ℤ)
83 eluz 12892 . . . . . . . 8 ((1 ∈ ℤ ∧ ((2 · 𝑦) + 1) ∈ ℤ) → (((2 · 𝑦) + 1) ∈ (ℤ‘1) ↔ 1 ≤ ((2 · 𝑦) + 1)))
8421, 82, 83sylancr 587 . . . . . . 7 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) ∈ (ℤ‘1) ↔ 1 ≤ ((2 · 𝑦) + 1)))
8577, 84mpbird 257 . . . . . 6 (𝑦 ∈ ℕ → ((2 · 𝑦) + 1) ∈ (ℤ‘1))
86 elfzelz 13564 . . . . . . . . . 10 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → 𝑛 ∈ ℤ)
8786zcnd 12723 . . . . . . . . 9 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → 𝑛 ∈ ℂ)
8828a1i 11 . . . . . . . . 9 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → π ∈ ℂ)
8987, 88mulcld 11281 . . . . . . . 8 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → (𝑛 · π) ∈ ℂ)
9089coscld 16167 . . . . . . 7 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → (cos‘(𝑛 · π)) ∈ ℂ)
9190adantl 481 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))) → (cos‘(𝑛 · π)) ∈ ℂ)
92 fvoveq1 7454 . . . . . 6 (𝑛 = (((2 · 𝑦) + 1) + 1) → (cos‘(𝑛 · π)) = (cos‘((((2 · 𝑦) + 1) + 1) · π)))
9385, 91, 92fsump1 15792 . . . . 5 (𝑦 ∈ ℕ → Σ𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))))
9493adantr 480 . . . 4 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → Σ𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))))
95 1lt2 12437 . . . . . . . . . . . 12 1 < 2
9695a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 1 < 2)
97 2t1e2 12429 . . . . . . . . . . . 12 (2 · 1) = 2
98 nnge1 12294 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 1 ≤ 𝑦)
9966, 69, 73lemul2d 13121 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (1 ≤ 𝑦 ↔ (2 · 1) ≤ (2 · 𝑦)))
10098, 99mpbid 232 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (2 · 1) ≤ (2 · 𝑦))
10197, 100eqbrtrrid 5179 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 2 ≤ (2 · 𝑦))
10266, 68, 70, 96, 101ltletrd 11421 . . . . . . . . . 10 (𝑦 ∈ ℕ → 1 < (2 · 𝑦))
10366, 70, 102ltled 11409 . . . . . . . . 9 (𝑦 ∈ ℕ → 1 ≤ (2 · 𝑦))
104 eluz 12892 . . . . . . . . . 10 ((1 ∈ ℤ ∧ (2 · 𝑦) ∈ ℤ) → ((2 · 𝑦) ∈ (ℤ‘1) ↔ 1 ≤ (2 · 𝑦)))
10521, 81, 104sylancr 587 . . . . . . . . 9 (𝑦 ∈ ℕ → ((2 · 𝑦) ∈ (ℤ‘1) ↔ 1 ≤ (2 · 𝑦)))
106103, 105mpbird 257 . . . . . . . 8 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ (ℤ‘1))
107 elfzelz 13564 . . . . . . . . . . . 12 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → 𝑛 ∈ ℤ)
108107zcnd 12723 . . . . . . . . . . 11 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → 𝑛 ∈ ℂ)
10928a1i 11 . . . . . . . . . . 11 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → π ∈ ℂ)
110108, 109mulcld 11281 . . . . . . . . . 10 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → (𝑛 · π) ∈ ℂ)
111110coscld 16167 . . . . . . . . 9 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → (cos‘(𝑛 · π)) ∈ ℂ)
112111adantl 481 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑛 ∈ (1...((2 · 𝑦) + 1))) → (cos‘(𝑛 · π)) ∈ ℂ)
113 fvoveq1 7454 . . . . . . . 8 (𝑛 = ((2 · 𝑦) + 1) → (cos‘(𝑛 · π)) = (cos‘(((2 · 𝑦) + 1) · π)))
114106, 112, 113fsump1 15792 . . . . . . 7 (𝑦 ∈ ℕ → Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))))
11533, 97eqtr4i 2768 . . . . . . . . . . . 12 (1 + 1) = (2 · 1)
116115a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (1 + 1) = (2 · 1))
117116oveq2d 7447 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((2 · 𝑦) + (1 + 1)) = ((2 · 𝑦) + (2 · 1)))
118117, 61, 593eqtr4d 2787 . . . . . . . . 9 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) + 1) = (2 · (𝑦 + 1)))
119118fvoveq1d 7453 . . . . . . . 8 (𝑦 ∈ ℕ → (cos‘((((2 · 𝑦) + 1) + 1) · π)) = (cos‘((2 · (𝑦 + 1)) · π)))
12057, 58addcld 11280 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℂ)
12128a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → π ∈ ℂ)
12256, 120, 121mulassd 11284 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) · π) = (2 · ((𝑦 + 1) · π)))
123122oveq1d 7446 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) · π) / (2 · π)) = ((2 · ((𝑦 + 1) · π)) / (2 · π)))
124120, 121mulcld 11281 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((𝑦 + 1) · π) ∈ ℂ)
125 0re 11263 . . . . . . . . . . . . . 14 0 ∈ ℝ
126 pipos 26502 . . . . . . . . . . . . . 14 0 < π
127125, 126gtneii 11373 . . . . . . . . . . . . 13 π ≠ 0
128127a1i 11 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → π ≠ 0)
12973rpne0d 13082 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 2 ≠ 0)
130124, 121, 56, 128, 129divcan5d 12069 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((2 · ((𝑦 + 1) · π)) / (2 · π)) = (((𝑦 + 1) · π) / π))
131120, 121, 128divcan4d 12049 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((𝑦 + 1) · π) / π) = (𝑦 + 1))
132123, 130, 1313eqtrd 2781 . . . . . . . . . 10 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) · π) / (2 · π)) = (𝑦 + 1))
13380peano2zd 12725 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℤ)
134132, 133eqeltrd 2841 . . . . . . . . 9 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) · π) / (2 · π)) ∈ ℤ)
135 peano2cn 11433 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (𝑦 + 1) ∈ ℂ)
13657, 135syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℂ)
13756, 136mulcld 11281 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) ∈ ℂ)
138137, 121mulcld 11281 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) · π) ∈ ℂ)
139 coseq1 26567 . . . . . . . . . 10 (((2 · (𝑦 + 1)) · π) ∈ ℂ → ((cos‘((2 · (𝑦 + 1)) · π)) = 1 ↔ (((2 · (𝑦 + 1)) · π) / (2 · π)) ∈ ℤ))
140138, 139syl 17 . . . . . . . . 9 (𝑦 ∈ ℕ → ((cos‘((2 · (𝑦 + 1)) · π)) = 1 ↔ (((2 · (𝑦 + 1)) · π) / (2 · π)) ∈ ℤ))
141134, 140mpbird 257 . . . . . . . 8 (𝑦 ∈ ℕ → (cos‘((2 · (𝑦 + 1)) · π)) = 1)
142119, 141eqtrd 2777 . . . . . . 7 (𝑦 ∈ ℕ → (cos‘((((2 · 𝑦) + 1) + 1) · π)) = 1)
143114, 142oveq12d 7449 . . . . . 6 (𝑦 ∈ ℕ → (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))) = ((Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) + 1))
144143adantr 480 . . . . 5 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))) = ((Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) + 1))
145 simpr 484 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0)
14660, 58, 121adddird 11286 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) · π) = (((2 · 𝑦) · π) + (1 · π)))
14760, 121mulcld 11281 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · 𝑦) · π) ∈ ℂ)
14841, 121eqeltrid 2845 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (1 · π) ∈ ℂ)
149147, 148addcomd 11463 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((2 · 𝑦) · π) + (1 · π)) = ((1 · π) + ((2 · 𝑦) · π)))
15041a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (1 · π) = π)
15156, 57mulcomd 11282 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (2 · 𝑦) = (𝑦 · 2))
152151oveq1d 7446 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((2 · 𝑦) · π) = ((𝑦 · 2) · π))
15357, 56, 121mulassd 11284 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((𝑦 · 2) · π) = (𝑦 · (2 · π)))
154152, 153eqtrd 2777 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · 𝑦) · π) = (𝑦 · (2 · π)))
155150, 154oveq12d 7449 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((1 · π) + ((2 · 𝑦) · π)) = (π + (𝑦 · (2 · π))))
156146, 149, 1553eqtrd 2781 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) · π) = (π + (𝑦 · (2 · π))))
157156fveq2d 6910 . . . . . . . . . 10 (𝑦 ∈ ℕ → (cos‘(((2 · 𝑦) + 1) · π)) = (cos‘(π + (𝑦 · (2 · π)))))
158 cosper 26524 . . . . . . . . . . 11 ((π ∈ ℂ ∧ 𝑦 ∈ ℤ) → (cos‘(π + (𝑦 · (2 · π)))) = (cos‘π))
15928, 80, 158sylancr 587 . . . . . . . . . 10 (𝑦 ∈ ℕ → (cos‘(π + (𝑦 · (2 · π)))) = (cos‘π))
16046a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℕ → (cos‘π) = -1)
161157, 159, 1603eqtrd 2781 . . . . . . . . 9 (𝑦 ∈ ℕ → (cos‘(((2 · 𝑦) + 1) · π)) = -1)
162161adantr 480 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → (cos‘(((2 · 𝑦) + 1) · π)) = -1)
163145, 162oveq12d 7449 . . . . . . 7 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → (Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) = (0 + -1))
164163oveq1d 7446 . . . . . 6 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → ((Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) + 1) = ((0 + -1) + 1))
16550addlidi 11449 . . . . . . . 8 (0 + -1) = -1
166165oveq1i 7441 . . . . . . 7 ((0 + -1) + 1) = (-1 + 1)
167166, 52eqtri 2765 . . . . . 6 ((0 + -1) + 1) = 0
168164, 167eqtrdi 2793 . . . . 5 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → ((Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) + 1) = 0)
169144, 168eqtrd 2777 . . . 4 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))) = 0)
17065, 94, 1693eqtrd 2781 . . 3 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = 0)
171170ex 412 . 2 (𝑦 ∈ ℕ → (Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0 → Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = 0))
1724, 8, 12, 16, 54, 171nnind 12284 1 (𝐾 ∈ ℕ → Σ𝑛 ∈ (1...(2 · 𝐾))(cos‘(𝑛 · π)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2108  wne 2940   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  -cneg 11493   / cdiv 11920  cn 12266  2c2 12321  cz 12613  cuz 12878  +crp 13034  ...cfz 13547  Σcsu 15722  cosccos 16100  πcpi 16102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902
This theorem is referenced by:  dirkertrigeqlem3  46115
  Copyright terms: Public domain W3C validator