Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkertrigeqlem1 Structured version   Visualization version   GIF version

Theorem dirkertrigeqlem1 42432
Description: Sum of an even number of alternating cos values. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
dirkertrigeqlem1 (𝐾 ∈ ℕ → Σ𝑛 ∈ (1...(2 · 𝐾))(cos‘(𝑛 · π)) = 0)
Distinct variable group:   𝑛,𝐾

Proof of Theorem dirkertrigeqlem1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7164 . . . . 5 (𝑥 = 1 → (2 · 𝑥) = (2 · 1))
21oveq2d 7172 . . . 4 (𝑥 = 1 → (1...(2 · 𝑥)) = (1...(2 · 1)))
32sumeq1d 15058 . . 3 (𝑥 = 1 → Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(2 · 1))(cos‘(𝑛 · π)))
43eqeq1d 2823 . 2 (𝑥 = 1 → (Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = 0 ↔ Σ𝑛 ∈ (1...(2 · 1))(cos‘(𝑛 · π)) = 0))
5 oveq2 7164 . . . . 5 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
65oveq2d 7172 . . . 4 (𝑥 = 𝑦 → (1...(2 · 𝑥)) = (1...(2 · 𝑦)))
76sumeq1d 15058 . . 3 (𝑥 = 𝑦 → Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)))
87eqeq1d 2823 . 2 (𝑥 = 𝑦 → (Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = 0 ↔ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0))
9 oveq2 7164 . . . . 5 (𝑥 = (𝑦 + 1) → (2 · 𝑥) = (2 · (𝑦 + 1)))
109oveq2d 7172 . . . 4 (𝑥 = (𝑦 + 1) → (1...(2 · 𝑥)) = (1...(2 · (𝑦 + 1))))
1110sumeq1d 15058 . . 3 (𝑥 = (𝑦 + 1) → Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)))
1211eqeq1d 2823 . 2 (𝑥 = (𝑦 + 1) → (Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = 0 ↔ Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = 0))
13 oveq2 7164 . . . . 5 (𝑥 = 𝐾 → (2 · 𝑥) = (2 · 𝐾))
1413oveq2d 7172 . . . 4 (𝑥 = 𝐾 → (1...(2 · 𝑥)) = (1...(2 · 𝐾)))
1514sumeq1d 15058 . . 3 (𝑥 = 𝐾 → Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(2 · 𝐾))(cos‘(𝑛 · π)))
1615eqeq1d 2823 . 2 (𝑥 = 𝐾 → (Σ𝑛 ∈ (1...(2 · 𝑥))(cos‘(𝑛 · π)) = 0 ↔ Σ𝑛 ∈ (1...(2 · 𝐾))(cos‘(𝑛 · π)) = 0))
17 ax-1cn 10595 . . . . . 6 1 ∈ ℂ
18172timesi 11776 . . . . 5 (2 · 1) = (1 + 1)
1918oveq2i 7167 . . . 4 (1...(2 · 1)) = (1...(1 + 1))
2019sumeq1i 15055 . . 3 Σ𝑛 ∈ (1...(2 · 1))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(1 + 1))(cos‘(𝑛 · π))
21 1z 12013 . . . . . . . 8 1 ∈ ℤ
22 uzid 12259 . . . . . . . 8 (1 ∈ ℤ → 1 ∈ (ℤ‘1))
2321, 22ax-mp 5 . . . . . . 7 1 ∈ (ℤ‘1)
2423a1i 11 . . . . . 6 (⊤ → 1 ∈ (ℤ‘1))
25 elfzelz 12909 . . . . . . . . . 10 (𝑛 ∈ (1...(1 + 1)) → 𝑛 ∈ ℤ)
2625zcnd 12089 . . . . . . . . 9 (𝑛 ∈ (1...(1 + 1)) → 𝑛 ∈ ℂ)
2726adantl 484 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ (1...(1 + 1))) → 𝑛 ∈ ℂ)
28 picn 25045 . . . . . . . . 9 π ∈ ℂ
2928a1i 11 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ (1...(1 + 1))) → π ∈ ℂ)
3027, 29mulcld 10661 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ (1...(1 + 1))) → (𝑛 · π) ∈ ℂ)
3130coscld 15484 . . . . . 6 ((⊤ ∧ 𝑛 ∈ (1...(1 + 1))) → (cos‘(𝑛 · π)) ∈ ℂ)
32 id 22 . . . . . . . 8 (𝑛 = (1 + 1) → 𝑛 = (1 + 1))
33 1p1e2 11763 . . . . . . . 8 (1 + 1) = 2
3432, 33syl6eq 2872 . . . . . . 7 (𝑛 = (1 + 1) → 𝑛 = 2)
3534fvoveq1d 7178 . . . . . 6 (𝑛 = (1 + 1) → (cos‘(𝑛 · π)) = (cos‘(2 · π)))
3624, 31, 35fsump1 15111 . . . . 5 (⊤ → Σ𝑛 ∈ (1...(1 + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) + (cos‘(2 · π))))
3736mptru 1544 . . . 4 Σ𝑛 ∈ (1...(1 + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) + (cos‘(2 · π)))
38 coscl 15480 . . . . . . . 8 (π ∈ ℂ → (cos‘π) ∈ ℂ)
3928, 38ax-mp 5 . . . . . . 7 (cos‘π) ∈ ℂ
40 oveq1 7163 . . . . . . . . . 10 (𝑛 = 1 → (𝑛 · π) = (1 · π))
4128mulid2i 10646 . . . . . . . . . 10 (1 · π) = π
4240, 41syl6eq 2872 . . . . . . . . 9 (𝑛 = 1 → (𝑛 · π) = π)
4342fveq2d 6674 . . . . . . . 8 (𝑛 = 1 → (cos‘(𝑛 · π)) = (cos‘π))
4443fsum1 15102 . . . . . . 7 ((1 ∈ ℤ ∧ (cos‘π) ∈ ℂ) → Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) = (cos‘π))
4521, 39, 44mp2an 690 . . . . . 6 Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) = (cos‘π)
46 cospi 25058 . . . . . 6 (cos‘π) = -1
4745, 46eqtri 2844 . . . . 5 Σ𝑛 ∈ (1...1)(cos‘(𝑛 · π)) = -1
48 cos2pi 25062 . . . . 5 (cos‘(2 · π)) = 1
4947, 48oveq12i 7168 . . . 4 𝑛 ∈ (1...1)(cos‘(𝑛 · π)) + (cos‘(2 · π))) = (-1 + 1)
50 neg1cn 11752 . . . . 5 -1 ∈ ℂ
51 1pneg1e0 11757 . . . . 5 (1 + -1) = 0
5217, 50, 51addcomli 10832 . . . 4 (-1 + 1) = 0
5337, 49, 523eqtri 2848 . . 3 Σ𝑛 ∈ (1...(1 + 1))(cos‘(𝑛 · π)) = 0
5420, 53eqtri 2844 . 2 Σ𝑛 ∈ (1...(2 · 1))(cos‘(𝑛 · π)) = 0
5518oveq2i 7167 . . . . . . . 8 ((2 · 𝑦) + (2 · 1)) = ((2 · 𝑦) + (1 + 1))
56 2cnd 11716 . . . . . . . . 9 (𝑦 ∈ ℕ → 2 ∈ ℂ)
57 nncn 11646 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
5817a1i 11 . . . . . . . . 9 (𝑦 ∈ ℕ → 1 ∈ ℂ)
5956, 57, 58adddid 10665 . . . . . . . 8 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) = ((2 · 𝑦) + (2 · 1)))
6056, 57mulcld 10661 . . . . . . . . 9 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℂ)
6160, 58, 58addassd 10663 . . . . . . . 8 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) + 1) = ((2 · 𝑦) + (1 + 1)))
6255, 59, 613eqtr4a 2882 . . . . . . 7 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) = (((2 · 𝑦) + 1) + 1))
6362oveq2d 7172 . . . . . 6 (𝑦 ∈ ℕ → (1...(2 · (𝑦 + 1))) = (1...(((2 · 𝑦) + 1) + 1)))
6463sumeq1d 15058 . . . . 5 (𝑦 ∈ ℕ → Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))(cos‘(𝑛 · π)))
6564adantr 483 . . . 4 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = Σ𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))(cos‘(𝑛 · π)))
66 1red 10642 . . . . . . . 8 (𝑦 ∈ ℕ → 1 ∈ ℝ)
67 2re 11712 . . . . . . . . . . 11 2 ∈ ℝ
6867a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℕ → 2 ∈ ℝ)
69 nnre 11645 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
7068, 69remulcld 10671 . . . . . . . . 9 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℝ)
7170, 66readdcld 10670 . . . . . . . 8 (𝑦 ∈ ℕ → ((2 · 𝑦) + 1) ∈ ℝ)
72 2rp 12395 . . . . . . . . . . 11 2 ∈ ℝ+
7372a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℕ → 2 ∈ ℝ+)
74 nnrp 12401 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
7573, 74rpmulcld 12448 . . . . . . . . 9 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℝ+)
7666, 75ltaddrp2d 12466 . . . . . . . 8 (𝑦 ∈ ℕ → 1 < ((2 · 𝑦) + 1))
7766, 71, 76ltled 10788 . . . . . . 7 (𝑦 ∈ ℕ → 1 ≤ ((2 · 𝑦) + 1))
78 2z 12015 . . . . . . . . . . 11 2 ∈ ℤ
7978a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℕ → 2 ∈ ℤ)
80 nnz 12005 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
8179, 80zmulcld 12094 . . . . . . . . 9 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ ℤ)
8281peano2zd 12091 . . . . . . . 8 (𝑦 ∈ ℕ → ((2 · 𝑦) + 1) ∈ ℤ)
83 eluz 12258 . . . . . . . 8 ((1 ∈ ℤ ∧ ((2 · 𝑦) + 1) ∈ ℤ) → (((2 · 𝑦) + 1) ∈ (ℤ‘1) ↔ 1 ≤ ((2 · 𝑦) + 1)))
8421, 82, 83sylancr 589 . . . . . . 7 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) ∈ (ℤ‘1) ↔ 1 ≤ ((2 · 𝑦) + 1)))
8577, 84mpbird 259 . . . . . 6 (𝑦 ∈ ℕ → ((2 · 𝑦) + 1) ∈ (ℤ‘1))
86 elfzelz 12909 . . . . . . . . . 10 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → 𝑛 ∈ ℤ)
8786zcnd 12089 . . . . . . . . 9 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → 𝑛 ∈ ℂ)
8828a1i 11 . . . . . . . . 9 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → π ∈ ℂ)
8987, 88mulcld 10661 . . . . . . . 8 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → (𝑛 · π) ∈ ℂ)
9089coscld 15484 . . . . . . 7 (𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1)) → (cos‘(𝑛 · π)) ∈ ℂ)
9190adantl 484 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))) → (cos‘(𝑛 · π)) ∈ ℂ)
92 fvoveq1 7179 . . . . . 6 (𝑛 = (((2 · 𝑦) + 1) + 1) → (cos‘(𝑛 · π)) = (cos‘((((2 · 𝑦) + 1) + 1) · π)))
9385, 91, 92fsump1 15111 . . . . 5 (𝑦 ∈ ℕ → Σ𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))))
9493adantr 483 . . . 4 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → Σ𝑛 ∈ (1...(((2 · 𝑦) + 1) + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))))
95 1lt2 11809 . . . . . . . . . . . 12 1 < 2
9695a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 1 < 2)
97 2t1e2 11801 . . . . . . . . . . . 12 (2 · 1) = 2
98 nnge1 11666 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 1 ≤ 𝑦)
9966, 69, 73lemul2d 12476 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (1 ≤ 𝑦 ↔ (2 · 1) ≤ (2 · 𝑦)))
10098, 99mpbid 234 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (2 · 1) ≤ (2 · 𝑦))
10197, 100eqbrtrrid 5102 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 2 ≤ (2 · 𝑦))
10266, 68, 70, 96, 101ltletrd 10800 . . . . . . . . . 10 (𝑦 ∈ ℕ → 1 < (2 · 𝑦))
10366, 70, 102ltled 10788 . . . . . . . . 9 (𝑦 ∈ ℕ → 1 ≤ (2 · 𝑦))
104 eluz 12258 . . . . . . . . . 10 ((1 ∈ ℤ ∧ (2 · 𝑦) ∈ ℤ) → ((2 · 𝑦) ∈ (ℤ‘1) ↔ 1 ≤ (2 · 𝑦)))
10521, 81, 104sylancr 589 . . . . . . . . 9 (𝑦 ∈ ℕ → ((2 · 𝑦) ∈ (ℤ‘1) ↔ 1 ≤ (2 · 𝑦)))
106103, 105mpbird 259 . . . . . . . 8 (𝑦 ∈ ℕ → (2 · 𝑦) ∈ (ℤ‘1))
107 elfzelz 12909 . . . . . . . . . . . 12 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → 𝑛 ∈ ℤ)
108107zcnd 12089 . . . . . . . . . . 11 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → 𝑛 ∈ ℂ)
10928a1i 11 . . . . . . . . . . 11 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → π ∈ ℂ)
110108, 109mulcld 10661 . . . . . . . . . 10 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → (𝑛 · π) ∈ ℂ)
111110coscld 15484 . . . . . . . . 9 (𝑛 ∈ (1...((2 · 𝑦) + 1)) → (cos‘(𝑛 · π)) ∈ ℂ)
112111adantl 484 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑛 ∈ (1...((2 · 𝑦) + 1))) → (cos‘(𝑛 · π)) ∈ ℂ)
113 fvoveq1 7179 . . . . . . . 8 (𝑛 = ((2 · 𝑦) + 1) → (cos‘(𝑛 · π)) = (cos‘(((2 · 𝑦) + 1) · π)))
114106, 112, 113fsump1 15111 . . . . . . 7 (𝑦 ∈ ℕ → Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) = (Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))))
11533, 97eqtr4i 2847 . . . . . . . . . . . 12 (1 + 1) = (2 · 1)
116115a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (1 + 1) = (2 · 1))
117116oveq2d 7172 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((2 · 𝑦) + (1 + 1)) = ((2 · 𝑦) + (2 · 1)))
118117, 61, 593eqtr4d 2866 . . . . . . . . 9 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) + 1) = (2 · (𝑦 + 1)))
119118fvoveq1d 7178 . . . . . . . 8 (𝑦 ∈ ℕ → (cos‘((((2 · 𝑦) + 1) + 1) · π)) = (cos‘((2 · (𝑦 + 1)) · π)))
12057, 58addcld 10660 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℂ)
12128a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → π ∈ ℂ)
12256, 120, 121mulassd 10664 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) · π) = (2 · ((𝑦 + 1) · π)))
123122oveq1d 7171 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) · π) / (2 · π)) = ((2 · ((𝑦 + 1) · π)) / (2 · π)))
124120, 121mulcld 10661 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((𝑦 + 1) · π) ∈ ℂ)
125 0re 10643 . . . . . . . . . . . . . 14 0 ∈ ℝ
126 pipos 25046 . . . . . . . . . . . . . 14 0 < π
127125, 126gtneii 10752 . . . . . . . . . . . . 13 π ≠ 0
128127a1i 11 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → π ≠ 0)
12973rpne0d 12437 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 2 ≠ 0)
130124, 121, 56, 128, 129divcan5d 11442 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ((2 · ((𝑦 + 1) · π)) / (2 · π)) = (((𝑦 + 1) · π) / π))
131120, 121, 128divcan4d 11422 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((𝑦 + 1) · π) / π) = (𝑦 + 1))
132123, 130, 1313eqtrd 2860 . . . . . . . . . 10 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) · π) / (2 · π)) = (𝑦 + 1))
13380peano2zd 12091 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℤ)
134132, 133eqeltrd 2913 . . . . . . . . 9 (𝑦 ∈ ℕ → (((2 · (𝑦 + 1)) · π) / (2 · π)) ∈ ℤ)
135 peano2cn 10812 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (𝑦 + 1) ∈ ℂ)
13657, 135syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℂ)
13756, 136mulcld 10661 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (2 · (𝑦 + 1)) ∈ ℂ)
138137, 121mulcld 10661 . . . . . . . . . 10 (𝑦 ∈ ℕ → ((2 · (𝑦 + 1)) · π) ∈ ℂ)
139 coseq1 25110 . . . . . . . . . 10 (((2 · (𝑦 + 1)) · π) ∈ ℂ → ((cos‘((2 · (𝑦 + 1)) · π)) = 1 ↔ (((2 · (𝑦 + 1)) · π) / (2 · π)) ∈ ℤ))
140138, 139syl 17 . . . . . . . . 9 (𝑦 ∈ ℕ → ((cos‘((2 · (𝑦 + 1)) · π)) = 1 ↔ (((2 · (𝑦 + 1)) · π) / (2 · π)) ∈ ℤ))
141134, 140mpbird 259 . . . . . . . 8 (𝑦 ∈ ℕ → (cos‘((2 · (𝑦 + 1)) · π)) = 1)
142119, 141eqtrd 2856 . . . . . . 7 (𝑦 ∈ ℕ → (cos‘((((2 · 𝑦) + 1) + 1) · π)) = 1)
143114, 142oveq12d 7174 . . . . . 6 (𝑦 ∈ ℕ → (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))) = ((Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) + 1))
144143adantr 483 . . . . 5 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))) = ((Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) + 1))
145 simpr 487 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0)
14660, 58, 121adddird 10666 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) · π) = (((2 · 𝑦) · π) + (1 · π)))
14760, 121mulcld 10661 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · 𝑦) · π) ∈ ℂ)
14841, 121eqeltrid 2917 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (1 · π) ∈ ℂ)
149147, 148addcomd 10842 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((2 · 𝑦) · π) + (1 · π)) = ((1 · π) + ((2 · 𝑦) · π)))
15041a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (1 · π) = π)
15156, 57mulcomd 10662 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (2 · 𝑦) = (𝑦 · 2))
152151oveq1d 7171 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((2 · 𝑦) · π) = ((𝑦 · 2) · π))
15357, 56, 121mulassd 10664 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((𝑦 · 2) · π) = (𝑦 · (2 · π)))
154152, 153eqtrd 2856 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → ((2 · 𝑦) · π) = (𝑦 · (2 · π)))
155150, 154oveq12d 7174 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → ((1 · π) + ((2 · 𝑦) · π)) = (π + (𝑦 · (2 · π))))
156146, 149, 1553eqtrd 2860 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (((2 · 𝑦) + 1) · π) = (π + (𝑦 · (2 · π))))
157156fveq2d 6674 . . . . . . . . . 10 (𝑦 ∈ ℕ → (cos‘(((2 · 𝑦) + 1) · π)) = (cos‘(π + (𝑦 · (2 · π)))))
158 cosper 25068 . . . . . . . . . . 11 ((π ∈ ℂ ∧ 𝑦 ∈ ℤ) → (cos‘(π + (𝑦 · (2 · π)))) = (cos‘π))
15928, 80, 158sylancr 589 . . . . . . . . . 10 (𝑦 ∈ ℕ → (cos‘(π + (𝑦 · (2 · π)))) = (cos‘π))
16046a1i 11 . . . . . . . . . 10 (𝑦 ∈ ℕ → (cos‘π) = -1)
161157, 159, 1603eqtrd 2860 . . . . . . . . 9 (𝑦 ∈ ℕ → (cos‘(((2 · 𝑦) + 1) · π)) = -1)
162161adantr 483 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → (cos‘(((2 · 𝑦) + 1) · π)) = -1)
163145, 162oveq12d 7174 . . . . . . 7 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → (Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) = (0 + -1))
164163oveq1d 7171 . . . . . 6 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → ((Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) + 1) = ((0 + -1) + 1))
16550addid2i 10828 . . . . . . . 8 (0 + -1) = -1
166165oveq1i 7166 . . . . . . 7 ((0 + -1) + 1) = (-1 + 1)
167166, 52eqtri 2844 . . . . . 6 ((0 + -1) + 1) = 0
168164, 167syl6eq 2872 . . . . 5 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → ((Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) + (cos‘(((2 · 𝑦) + 1) · π))) + 1) = 0)
169144, 168eqtrd 2856 . . . 4 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → (Σ𝑛 ∈ (1...((2 · 𝑦) + 1))(cos‘(𝑛 · π)) + (cos‘((((2 · 𝑦) + 1) + 1) · π))) = 0)
17065, 94, 1693eqtrd 2860 . . 3 ((𝑦 ∈ ℕ ∧ Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0) → Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = 0)
171170ex 415 . 2 (𝑦 ∈ ℕ → (Σ𝑛 ∈ (1...(2 · 𝑦))(cos‘(𝑛 · π)) = 0 → Σ𝑛 ∈ (1...(2 · (𝑦 + 1)))(cos‘(𝑛 · π)) = 0))
1724, 8, 12, 16, 54, 171nnind 11656 1 (𝐾 ∈ ℕ → Σ𝑛 ∈ (1...(2 · 𝐾))(cos‘(𝑛 · π)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wtru 1538  wcel 2114  wne 3016   class class class wbr 5066  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  -cneg 10871   / cdiv 11297  cn 11638  2c2 11693  cz 11982  cuz 12244  +crp 12390  ...cfz 12893  Σcsu 15042  cosccos 15418  πcpi 15420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465
This theorem is referenced by:  dirkertrigeqlem3  42434
  Copyright terms: Public domain W3C validator