MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abssinper Structured version   Visualization version   GIF version

Theorem abssinper 25677
Description: The absolute value of sine has period π. (Contributed by NM, 17-Aug-2008.)
Assertion
Ref Expression
abssinper ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴)))

Proof of Theorem abssinper
StepHypRef Expression
1 zcn 12324 . . . . . . . . . 10 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
2 halfcl 12198 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → (𝐾 / 2) ∈ ℂ)
3 2cn 12048 . . . . . . . . . . . . 13 2 ∈ ℂ
4 picn 25616 . . . . . . . . . . . . 13 π ∈ ℂ
5 mulass 10959 . . . . . . . . . . . . 13 (((𝐾 / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ π ∈ ℂ) → (((𝐾 / 2) · 2) · π) = ((𝐾 / 2) · (2 · π)))
63, 4, 5mp3an23 1452 . . . . . . . . . . . 12 ((𝐾 / 2) ∈ ℂ → (((𝐾 / 2) · 2) · π) = ((𝐾 / 2) · (2 · π)))
72, 6syl 17 . . . . . . . . . . 11 (𝐾 ∈ ℂ → (((𝐾 / 2) · 2) · π) = ((𝐾 / 2) · (2 · π)))
8 2ne0 12077 . . . . . . . . . . . . 13 2 ≠ 0
9 divcan1 11642 . . . . . . . . . . . . 13 ((𝐾 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((𝐾 / 2) · 2) = 𝐾)
103, 8, 9mp3an23 1452 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → ((𝐾 / 2) · 2) = 𝐾)
1110oveq1d 7290 . . . . . . . . . . 11 (𝐾 ∈ ℂ → (((𝐾 / 2) · 2) · π) = (𝐾 · π))
127, 11eqtr3d 2780 . . . . . . . . . 10 (𝐾 ∈ ℂ → ((𝐾 / 2) · (2 · π)) = (𝐾 · π))
131, 12syl 17 . . . . . . . . 9 (𝐾 ∈ ℤ → ((𝐾 / 2) · (2 · π)) = (𝐾 · π))
1413adantl 482 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((𝐾 / 2) · (2 · π)) = (𝐾 · π))
1514oveq2d 7291 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐴 + ((𝐾 / 2) · (2 · π))) = (𝐴 + (𝐾 · π)))
1615fveq2d 6778 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))) = (sin‘(𝐴 + (𝐾 · π))))
1716eqcomd 2744 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))))
1817adantr 481 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 / 2) ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))))
19 sinper 25638 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐾 / 2) ∈ ℤ) → (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))) = (sin‘𝐴))
2019adantlr 712 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 / 2) ∈ ℤ) → (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))) = (sin‘𝐴))
2118, 20eqtrd 2778 . . 3 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 / 2) ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘𝐴))
2221fveq2d 6778 . 2 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 / 2) ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴)))
23 peano2cn 11147 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → (𝐾 + 1) ∈ ℂ)
24 halfcl 12198 . . . . . . . . . . . 12 ((𝐾 + 1) ∈ ℂ → ((𝐾 + 1) / 2) ∈ ℂ)
2523, 24syl 17 . . . . . . . . . . 11 (𝐾 ∈ ℂ → ((𝐾 + 1) / 2) ∈ ℂ)
263, 4mulcli 10982 . . . . . . . . . . 11 (2 · π) ∈ ℂ
27 mulcl 10955 . . . . . . . . . . 11 ((((𝐾 + 1) / 2) ∈ ℂ ∧ (2 · π) ∈ ℂ) → (((𝐾 + 1) / 2) · (2 · π)) ∈ ℂ)
2825, 26, 27sylancl 586 . . . . . . . . . 10 (𝐾 ∈ ℂ → (((𝐾 + 1) / 2) · (2 · π)) ∈ ℂ)
29 subadd23 11233 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ π ∈ ℂ ∧ (((𝐾 + 1) / 2) · (2 · π)) ∈ ℂ) → ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))) = (𝐴 + ((((𝐾 + 1) / 2) · (2 · π)) − π)))
304, 29mp3an2 1448 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (((𝐾 + 1) / 2) · (2 · π)) ∈ ℂ) → ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))) = (𝐴 + ((((𝐾 + 1) / 2) · (2 · π)) − π)))
3128, 30sylan2 593 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))) = (𝐴 + ((((𝐾 + 1) / 2) · (2 · π)) − π)))
32 divcan1 11642 . . . . . . . . . . . . . . . . . . 19 (((𝐾 + 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (((𝐾 + 1) / 2) · 2) = (𝐾 + 1))
333, 8, 32mp3an23 1452 . . . . . . . . . . . . . . . . . 18 ((𝐾 + 1) ∈ ℂ → (((𝐾 + 1) / 2) · 2) = (𝐾 + 1))
3423, 33syl 17 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ℂ → (((𝐾 + 1) / 2) · 2) = (𝐾 + 1))
3534oveq1d 7290 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · 2) · π) = ((𝐾 + 1) · π))
36 ax-1cn 10929 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
37 adddir 10966 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ ∧ π ∈ ℂ) → ((𝐾 + 1) · π) = ((𝐾 · π) + (1 · π)))
3836, 4, 37mp3an23 1452 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℂ → ((𝐾 + 1) · π) = ((𝐾 · π) + (1 · π)))
3935, 38eqtrd 2778 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · 2) · π) = ((𝐾 · π) + (1 · π)))
404mulid2i 10980 . . . . . . . . . . . . . . . 16 (1 · π) = π
4140oveq2i 7286 . . . . . . . . . . . . . . 15 ((𝐾 · π) + (1 · π)) = ((𝐾 · π) + π)
4239, 41eqtr2di 2795 . . . . . . . . . . . . . 14 (𝐾 ∈ ℂ → ((𝐾 · π) + π) = ((((𝐾 + 1) / 2) · 2) · π))
43 mulass 10959 . . . . . . . . . . . . . . . 16 ((((𝐾 + 1) / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ π ∈ ℂ) → ((((𝐾 + 1) / 2) · 2) · π) = (((𝐾 + 1) / 2) · (2 · π)))
443, 4, 43mp3an23 1452 . . . . . . . . . . . . . . 15 (((𝐾 + 1) / 2) ∈ ℂ → ((((𝐾 + 1) / 2) · 2) · π) = (((𝐾 + 1) / 2) · (2 · π)))
4525, 44syl 17 . . . . . . . . . . . . . 14 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · 2) · π) = (((𝐾 + 1) / 2) · (2 · π)))
4642, 45eqtr2d 2779 . . . . . . . . . . . . 13 (𝐾 ∈ ℂ → (((𝐾 + 1) / 2) · (2 · π)) = ((𝐾 · π) + π))
4746oveq1d 7290 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · (2 · π)) − π) = (((𝐾 · π) + π) − π))
48 mulcl 10955 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℂ ∧ π ∈ ℂ) → (𝐾 · π) ∈ ℂ)
494, 48mpan2 688 . . . . . . . . . . . . 13 (𝐾 ∈ ℂ → (𝐾 · π) ∈ ℂ)
50 pncan 11227 . . . . . . . . . . . . 13 (((𝐾 · π) ∈ ℂ ∧ π ∈ ℂ) → (((𝐾 · π) + π) − π) = (𝐾 · π))
5149, 4, 50sylancl 586 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → (((𝐾 · π) + π) − π) = (𝐾 · π))
5247, 51eqtrd 2778 . . . . . . . . . . 11 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · (2 · π)) − π) = (𝐾 · π))
5352adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((((𝐾 + 1) / 2) · (2 · π)) − π) = (𝐾 · π))
5453oveq2d 7291 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐴 + ((((𝐾 + 1) / 2) · (2 · π)) − π)) = (𝐴 + (𝐾 · π)))
5531, 54eqtr2d 2779 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐴 + (𝐾 · π)) = ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))))
561, 55sylan2 593 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐴 + (𝐾 · π)) = ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))))
5756fveq2d 6778 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))))
5857adantr 481 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))))
59 subcl 11220 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ π ∈ ℂ) → (𝐴 − π) ∈ ℂ)
604, 59mpan2 688 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 − π) ∈ ℂ)
61 sinper 25638 . . . . . . . 8 (((𝐴 − π) ∈ ℂ ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))) = (sin‘(𝐴 − π)))
6260, 61sylan 580 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))) = (sin‘(𝐴 − π)))
6362adantlr 712 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))) = (sin‘(𝐴 − π)))
64 sinmpi 25644 . . . . . . 7 (𝐴 ∈ ℂ → (sin‘(𝐴 − π)) = -(sin‘𝐴))
6564ad2antrr 723 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘(𝐴 − π)) = -(sin‘𝐴))
6663, 65eqtrd 2778 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))) = -(sin‘𝐴))
6758, 66eqtrd 2778 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = -(sin‘𝐴))
6867fveq2d 6778 . . 3 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘-(sin‘𝐴)))
69 sincl 15835 . . . . 5 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
7069absnegd 15161 . . . 4 (𝐴 ∈ ℂ → (abs‘-(sin‘𝐴)) = (abs‘(sin‘𝐴)))
7170ad2antrr 723 . . 3 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (abs‘-(sin‘𝐴)) = (abs‘(sin‘𝐴)))
7268, 71eqtrd 2778 . 2 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴)))
73 zeo 12406 . . 3 (𝐾 ∈ ℤ → ((𝐾 / 2) ∈ ℤ ∨ ((𝐾 + 1) / 2) ∈ ℤ))
7473adantl 482 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((𝐾 / 2) ∈ ℤ ∨ ((𝐾 + 1) / 2) ∈ ℤ))
7522, 72, 74mpjaodan 956 1 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  cz 12319  abscabs 14945  sincsin 15773  πcpi 15776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031
This theorem is referenced by:  sinkpi  25678  sineq0  25680  sineq0ALT  42557
  Copyright terms: Public domain W3C validator