MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abssinper Structured version   Visualization version   GIF version

Theorem abssinper 25877
Description: The absolute value of sine has period π. (Contributed by NM, 17-Aug-2008.)
Assertion
Ref Expression
abssinper ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴)))

Proof of Theorem abssinper
StepHypRef Expression
1 zcn 12504 . . . . . . . . . 10 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
2 halfcl 12378 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → (𝐾 / 2) ∈ ℂ)
3 2cn 12228 . . . . . . . . . . . . 13 2 ∈ ℂ
4 picn 25816 . . . . . . . . . . . . 13 π ∈ ℂ
5 mulass 11139 . . . . . . . . . . . . 13 (((𝐾 / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ π ∈ ℂ) → (((𝐾 / 2) · 2) · π) = ((𝐾 / 2) · (2 · π)))
63, 4, 5mp3an23 1453 . . . . . . . . . . . 12 ((𝐾 / 2) ∈ ℂ → (((𝐾 / 2) · 2) · π) = ((𝐾 / 2) · (2 · π)))
72, 6syl 17 . . . . . . . . . . 11 (𝐾 ∈ ℂ → (((𝐾 / 2) · 2) · π) = ((𝐾 / 2) · (2 · π)))
8 2ne0 12257 . . . . . . . . . . . . 13 2 ≠ 0
9 divcan1 11822 . . . . . . . . . . . . 13 ((𝐾 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((𝐾 / 2) · 2) = 𝐾)
103, 8, 9mp3an23 1453 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → ((𝐾 / 2) · 2) = 𝐾)
1110oveq1d 7372 . . . . . . . . . . 11 (𝐾 ∈ ℂ → (((𝐾 / 2) · 2) · π) = (𝐾 · π))
127, 11eqtr3d 2778 . . . . . . . . . 10 (𝐾 ∈ ℂ → ((𝐾 / 2) · (2 · π)) = (𝐾 · π))
131, 12syl 17 . . . . . . . . 9 (𝐾 ∈ ℤ → ((𝐾 / 2) · (2 · π)) = (𝐾 · π))
1413adantl 482 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((𝐾 / 2) · (2 · π)) = (𝐾 · π))
1514oveq2d 7373 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐴 + ((𝐾 / 2) · (2 · π))) = (𝐴 + (𝐾 · π)))
1615fveq2d 6846 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))) = (sin‘(𝐴 + (𝐾 · π))))
1716eqcomd 2742 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))))
1817adantr 481 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 / 2) ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))))
19 sinper 25838 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐾 / 2) ∈ ℤ) → (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))) = (sin‘𝐴))
2019adantlr 713 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 / 2) ∈ ℤ) → (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))) = (sin‘𝐴))
2118, 20eqtrd 2776 . . 3 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 / 2) ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘𝐴))
2221fveq2d 6846 . 2 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 / 2) ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴)))
23 peano2cn 11327 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → (𝐾 + 1) ∈ ℂ)
24 halfcl 12378 . . . . . . . . . . . 12 ((𝐾 + 1) ∈ ℂ → ((𝐾 + 1) / 2) ∈ ℂ)
2523, 24syl 17 . . . . . . . . . . 11 (𝐾 ∈ ℂ → ((𝐾 + 1) / 2) ∈ ℂ)
263, 4mulcli 11162 . . . . . . . . . . 11 (2 · π) ∈ ℂ
27 mulcl 11135 . . . . . . . . . . 11 ((((𝐾 + 1) / 2) ∈ ℂ ∧ (2 · π) ∈ ℂ) → (((𝐾 + 1) / 2) · (2 · π)) ∈ ℂ)
2825, 26, 27sylancl 586 . . . . . . . . . 10 (𝐾 ∈ ℂ → (((𝐾 + 1) / 2) · (2 · π)) ∈ ℂ)
29 subadd23 11413 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ π ∈ ℂ ∧ (((𝐾 + 1) / 2) · (2 · π)) ∈ ℂ) → ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))) = (𝐴 + ((((𝐾 + 1) / 2) · (2 · π)) − π)))
304, 29mp3an2 1449 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (((𝐾 + 1) / 2) · (2 · π)) ∈ ℂ) → ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))) = (𝐴 + ((((𝐾 + 1) / 2) · (2 · π)) − π)))
3128, 30sylan2 593 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))) = (𝐴 + ((((𝐾 + 1) / 2) · (2 · π)) − π)))
32 divcan1 11822 . . . . . . . . . . . . . . . . . . 19 (((𝐾 + 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (((𝐾 + 1) / 2) · 2) = (𝐾 + 1))
333, 8, 32mp3an23 1453 . . . . . . . . . . . . . . . . . 18 ((𝐾 + 1) ∈ ℂ → (((𝐾 + 1) / 2) · 2) = (𝐾 + 1))
3423, 33syl 17 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ℂ → (((𝐾 + 1) / 2) · 2) = (𝐾 + 1))
3534oveq1d 7372 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · 2) · π) = ((𝐾 + 1) · π))
36 ax-1cn 11109 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
37 adddir 11146 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ ∧ π ∈ ℂ) → ((𝐾 + 1) · π) = ((𝐾 · π) + (1 · π)))
3836, 4, 37mp3an23 1453 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℂ → ((𝐾 + 1) · π) = ((𝐾 · π) + (1 · π)))
3935, 38eqtrd 2776 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · 2) · π) = ((𝐾 · π) + (1 · π)))
404mulid2i 11160 . . . . . . . . . . . . . . . 16 (1 · π) = π
4140oveq2i 7368 . . . . . . . . . . . . . . 15 ((𝐾 · π) + (1 · π)) = ((𝐾 · π) + π)
4239, 41eqtr2di 2793 . . . . . . . . . . . . . 14 (𝐾 ∈ ℂ → ((𝐾 · π) + π) = ((((𝐾 + 1) / 2) · 2) · π))
43 mulass 11139 . . . . . . . . . . . . . . . 16 ((((𝐾 + 1) / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ π ∈ ℂ) → ((((𝐾 + 1) / 2) · 2) · π) = (((𝐾 + 1) / 2) · (2 · π)))
443, 4, 43mp3an23 1453 . . . . . . . . . . . . . . 15 (((𝐾 + 1) / 2) ∈ ℂ → ((((𝐾 + 1) / 2) · 2) · π) = (((𝐾 + 1) / 2) · (2 · π)))
4525, 44syl 17 . . . . . . . . . . . . . 14 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · 2) · π) = (((𝐾 + 1) / 2) · (2 · π)))
4642, 45eqtr2d 2777 . . . . . . . . . . . . 13 (𝐾 ∈ ℂ → (((𝐾 + 1) / 2) · (2 · π)) = ((𝐾 · π) + π))
4746oveq1d 7372 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · (2 · π)) − π) = (((𝐾 · π) + π) − π))
48 mulcl 11135 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℂ ∧ π ∈ ℂ) → (𝐾 · π) ∈ ℂ)
494, 48mpan2 689 . . . . . . . . . . . . 13 (𝐾 ∈ ℂ → (𝐾 · π) ∈ ℂ)
50 pncan 11407 . . . . . . . . . . . . 13 (((𝐾 · π) ∈ ℂ ∧ π ∈ ℂ) → (((𝐾 · π) + π) − π) = (𝐾 · π))
5149, 4, 50sylancl 586 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → (((𝐾 · π) + π) − π) = (𝐾 · π))
5247, 51eqtrd 2776 . . . . . . . . . . 11 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · (2 · π)) − π) = (𝐾 · π))
5352adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((((𝐾 + 1) / 2) · (2 · π)) − π) = (𝐾 · π))
5453oveq2d 7373 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐴 + ((((𝐾 + 1) / 2) · (2 · π)) − π)) = (𝐴 + (𝐾 · π)))
5531, 54eqtr2d 2777 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐴 + (𝐾 · π)) = ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))))
561, 55sylan2 593 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐴 + (𝐾 · π)) = ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))))
5756fveq2d 6846 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))))
5857adantr 481 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))))
59 subcl 11400 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ π ∈ ℂ) → (𝐴 − π) ∈ ℂ)
604, 59mpan2 689 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 − π) ∈ ℂ)
61 sinper 25838 . . . . . . . 8 (((𝐴 − π) ∈ ℂ ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))) = (sin‘(𝐴 − π)))
6260, 61sylan 580 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))) = (sin‘(𝐴 − π)))
6362adantlr 713 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))) = (sin‘(𝐴 − π)))
64 sinmpi 25844 . . . . . . 7 (𝐴 ∈ ℂ → (sin‘(𝐴 − π)) = -(sin‘𝐴))
6564ad2antrr 724 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘(𝐴 − π)) = -(sin‘𝐴))
6663, 65eqtrd 2776 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))) = -(sin‘𝐴))
6758, 66eqtrd 2776 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = -(sin‘𝐴))
6867fveq2d 6846 . . 3 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘-(sin‘𝐴)))
69 sincl 16008 . . . . 5 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
7069absnegd 15334 . . . 4 (𝐴 ∈ ℂ → (abs‘-(sin‘𝐴)) = (abs‘(sin‘𝐴)))
7170ad2antrr 724 . . 3 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (abs‘-(sin‘𝐴)) = (abs‘(sin‘𝐴)))
7268, 71eqtrd 2776 . 2 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴)))
73 zeo 12589 . . 3 (𝐾 ∈ ℤ → ((𝐾 / 2) ∈ ℤ ∨ ((𝐾 + 1) / 2) ∈ ℤ))
7473adantl 482 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((𝐾 / 2) ∈ ℤ ∨ ((𝐾 + 1) / 2) ∈ ℤ))
7522, 72, 74mpjaodan 957 1 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385  -cneg 11386   / cdiv 11812  2c2 12208  cz 12499  abscabs 15119  sincsin 15946  πcpi 15949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231
This theorem is referenced by:  sinkpi  25878  sineq0  25880  sineq0ALT  43209
  Copyright terms: Public domain W3C validator