MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abssinper Structured version   Visualization version   GIF version

Theorem abssinper 26455
Description: The absolute value of sine has period π. (Contributed by NM, 17-Aug-2008.)
Assertion
Ref Expression
abssinper ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴)))

Proof of Theorem abssinper
StepHypRef Expression
1 zcn 12470 . . . . . . . . . 10 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
2 halfcl 12344 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → (𝐾 / 2) ∈ ℂ)
3 2cn 12197 . . . . . . . . . . . . 13 2 ∈ ℂ
4 picn 26392 . . . . . . . . . . . . 13 π ∈ ℂ
5 mulass 11091 . . . . . . . . . . . . 13 (((𝐾 / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ π ∈ ℂ) → (((𝐾 / 2) · 2) · π) = ((𝐾 / 2) · (2 · π)))
63, 4, 5mp3an23 1455 . . . . . . . . . . . 12 ((𝐾 / 2) ∈ ℂ → (((𝐾 / 2) · 2) · π) = ((𝐾 / 2) · (2 · π)))
72, 6syl 17 . . . . . . . . . . 11 (𝐾 ∈ ℂ → (((𝐾 / 2) · 2) · π) = ((𝐾 / 2) · (2 · π)))
8 2ne0 12226 . . . . . . . . . . . . 13 2 ≠ 0
9 divcan1 11782 . . . . . . . . . . . . 13 ((𝐾 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((𝐾 / 2) · 2) = 𝐾)
103, 8, 9mp3an23 1455 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → ((𝐾 / 2) · 2) = 𝐾)
1110oveq1d 7361 . . . . . . . . . . 11 (𝐾 ∈ ℂ → (((𝐾 / 2) · 2) · π) = (𝐾 · π))
127, 11eqtr3d 2768 . . . . . . . . . 10 (𝐾 ∈ ℂ → ((𝐾 / 2) · (2 · π)) = (𝐾 · π))
131, 12syl 17 . . . . . . . . 9 (𝐾 ∈ ℤ → ((𝐾 / 2) · (2 · π)) = (𝐾 · π))
1413adantl 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((𝐾 / 2) · (2 · π)) = (𝐾 · π))
1514oveq2d 7362 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐴 + ((𝐾 / 2) · (2 · π))) = (𝐴 + (𝐾 · π)))
1615fveq2d 6826 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))) = (sin‘(𝐴 + (𝐾 · π))))
1716eqcomd 2737 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))))
1817adantr 480 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 / 2) ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))))
19 sinper 26415 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐾 / 2) ∈ ℤ) → (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))) = (sin‘𝐴))
2019adantlr 715 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 / 2) ∈ ℤ) → (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))) = (sin‘𝐴))
2118, 20eqtrd 2766 . . 3 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 / 2) ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘𝐴))
2221fveq2d 6826 . 2 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 / 2) ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴)))
23 peano2cn 11282 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → (𝐾 + 1) ∈ ℂ)
24 halfcl 12344 . . . . . . . . . . . 12 ((𝐾 + 1) ∈ ℂ → ((𝐾 + 1) / 2) ∈ ℂ)
2523, 24syl 17 . . . . . . . . . . 11 (𝐾 ∈ ℂ → ((𝐾 + 1) / 2) ∈ ℂ)
263, 4mulcli 11116 . . . . . . . . . . 11 (2 · π) ∈ ℂ
27 mulcl 11087 . . . . . . . . . . 11 ((((𝐾 + 1) / 2) ∈ ℂ ∧ (2 · π) ∈ ℂ) → (((𝐾 + 1) / 2) · (2 · π)) ∈ ℂ)
2825, 26, 27sylancl 586 . . . . . . . . . 10 (𝐾 ∈ ℂ → (((𝐾 + 1) / 2) · (2 · π)) ∈ ℂ)
29 subadd23 11369 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ π ∈ ℂ ∧ (((𝐾 + 1) / 2) · (2 · π)) ∈ ℂ) → ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))) = (𝐴 + ((((𝐾 + 1) / 2) · (2 · π)) − π)))
304, 29mp3an2 1451 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (((𝐾 + 1) / 2) · (2 · π)) ∈ ℂ) → ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))) = (𝐴 + ((((𝐾 + 1) / 2) · (2 · π)) − π)))
3128, 30sylan2 593 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))) = (𝐴 + ((((𝐾 + 1) / 2) · (2 · π)) − π)))
32 divcan1 11782 . . . . . . . . . . . . . . . . . . 19 (((𝐾 + 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (((𝐾 + 1) / 2) · 2) = (𝐾 + 1))
333, 8, 32mp3an23 1455 . . . . . . . . . . . . . . . . . 18 ((𝐾 + 1) ∈ ℂ → (((𝐾 + 1) / 2) · 2) = (𝐾 + 1))
3423, 33syl 17 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ℂ → (((𝐾 + 1) / 2) · 2) = (𝐾 + 1))
3534oveq1d 7361 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · 2) · π) = ((𝐾 + 1) · π))
36 ax-1cn 11061 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
37 adddir 11100 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ ∧ π ∈ ℂ) → ((𝐾 + 1) · π) = ((𝐾 · π) + (1 · π)))
3836, 4, 37mp3an23 1455 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℂ → ((𝐾 + 1) · π) = ((𝐾 · π) + (1 · π)))
3935, 38eqtrd 2766 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · 2) · π) = ((𝐾 · π) + (1 · π)))
404mullidi 11114 . . . . . . . . . . . . . . . 16 (1 · π) = π
4140oveq2i 7357 . . . . . . . . . . . . . . 15 ((𝐾 · π) + (1 · π)) = ((𝐾 · π) + π)
4239, 41eqtr2di 2783 . . . . . . . . . . . . . 14 (𝐾 ∈ ℂ → ((𝐾 · π) + π) = ((((𝐾 + 1) / 2) · 2) · π))
43 mulass 11091 . . . . . . . . . . . . . . . 16 ((((𝐾 + 1) / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ π ∈ ℂ) → ((((𝐾 + 1) / 2) · 2) · π) = (((𝐾 + 1) / 2) · (2 · π)))
443, 4, 43mp3an23 1455 . . . . . . . . . . . . . . 15 (((𝐾 + 1) / 2) ∈ ℂ → ((((𝐾 + 1) / 2) · 2) · π) = (((𝐾 + 1) / 2) · (2 · π)))
4525, 44syl 17 . . . . . . . . . . . . . 14 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · 2) · π) = (((𝐾 + 1) / 2) · (2 · π)))
4642, 45eqtr2d 2767 . . . . . . . . . . . . 13 (𝐾 ∈ ℂ → (((𝐾 + 1) / 2) · (2 · π)) = ((𝐾 · π) + π))
4746oveq1d 7361 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · (2 · π)) − π) = (((𝐾 · π) + π) − π))
48 mulcl 11087 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℂ ∧ π ∈ ℂ) → (𝐾 · π) ∈ ℂ)
494, 48mpan2 691 . . . . . . . . . . . . 13 (𝐾 ∈ ℂ → (𝐾 · π) ∈ ℂ)
50 pncan 11363 . . . . . . . . . . . . 13 (((𝐾 · π) ∈ ℂ ∧ π ∈ ℂ) → (((𝐾 · π) + π) − π) = (𝐾 · π))
5149, 4, 50sylancl 586 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → (((𝐾 · π) + π) − π) = (𝐾 · π))
5247, 51eqtrd 2766 . . . . . . . . . . 11 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · (2 · π)) − π) = (𝐾 · π))
5352adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((((𝐾 + 1) / 2) · (2 · π)) − π) = (𝐾 · π))
5453oveq2d 7362 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐴 + ((((𝐾 + 1) / 2) · (2 · π)) − π)) = (𝐴 + (𝐾 · π)))
5531, 54eqtr2d 2767 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐴 + (𝐾 · π)) = ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))))
561, 55sylan2 593 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐴 + (𝐾 · π)) = ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))))
5756fveq2d 6826 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))))
5857adantr 480 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))))
59 subcl 11356 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ π ∈ ℂ) → (𝐴 − π) ∈ ℂ)
604, 59mpan2 691 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 − π) ∈ ℂ)
61 sinper 26415 . . . . . . . 8 (((𝐴 − π) ∈ ℂ ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))) = (sin‘(𝐴 − π)))
6260, 61sylan 580 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))) = (sin‘(𝐴 − π)))
6362adantlr 715 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))) = (sin‘(𝐴 − π)))
64 sinmpi 26421 . . . . . . 7 (𝐴 ∈ ℂ → (sin‘(𝐴 − π)) = -(sin‘𝐴))
6564ad2antrr 726 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘(𝐴 − π)) = -(sin‘𝐴))
6663, 65eqtrd 2766 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))) = -(sin‘𝐴))
6758, 66eqtrd 2766 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = -(sin‘𝐴))
6867fveq2d 6826 . . 3 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘-(sin‘𝐴)))
69 sincl 16032 . . . . 5 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
7069absnegd 15356 . . . 4 (𝐴 ∈ ℂ → (abs‘-(sin‘𝐴)) = (abs‘(sin‘𝐴)))
7170ad2antrr 726 . . 3 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (abs‘-(sin‘𝐴)) = (abs‘(sin‘𝐴)))
7268, 71eqtrd 2766 . 2 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴)))
73 zeo 12556 . . 3 (𝐾 ∈ ℤ → ((𝐾 / 2) ∈ ℤ ∨ ((𝐾 + 1) / 2) ∈ ℤ))
7473adantl 481 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((𝐾 / 2) ∈ ℤ ∨ ((𝐾 + 1) / 2) ∈ ℤ))
7522, 72, 74mpjaodan 960 1 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  cfv 6481  (class class class)co 7346  cc 11001  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008  cmin 11341  -cneg 11342   / cdiv 11771  2c2 12177  cz 12465  abscabs 15138  sincsin 15967  πcpi 15970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ioo 13246  df-ioc 13247  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-seq 13906  df-exp 13966  df-fac 14178  df-bc 14207  df-hash 14235  df-shft 14971  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-rlim 15393  df-sum 15591  df-ef 15971  df-sin 15973  df-cos 15974  df-pi 15976  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-rest 17323  df-topn 17324  df-0g 17342  df-gsum 17343  df-topgen 17344  df-pt 17345  df-prds 17348  df-xrs 17403  df-qtop 17408  df-imas 17409  df-xps 17411  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-mulg 18978  df-cntz 19227  df-cmn 19692  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-fbas 21286  df-fg 21287  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cld 22932  df-ntr 22933  df-cls 22934  df-nei 23011  df-lp 23049  df-perf 23050  df-cn 23140  df-cnp 23141  df-haus 23228  df-tx 23475  df-hmeo 23668  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853  df-xms 24233  df-ms 24234  df-tms 24235  df-cncf 24796  df-limc 25792  df-dv 25793
This theorem is referenced by:  sinkpi  26456  sineq0  26458  sineq0ALT  44968
  Copyright terms: Public domain W3C validator