| Step | Hyp | Ref
| Expression |
| 1 | | bpolydiflem.1 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 2 | 1 | nnnn0d 12587 |
. . . 4
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 3 | | bpolydiflem.2 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 4 | | peano2cn 11433 |
. . . . 5
⊢ (𝑋 ∈ ℂ → (𝑋 + 1) ∈
ℂ) |
| 5 | 3, 4 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑋 + 1) ∈ ℂ) |
| 6 | | bpolyval 16085 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝑋 + 1) ∈
ℂ) → (𝑁 BernPoly
(𝑋 + 1)) = (((𝑋 + 1)↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))))) |
| 7 | 2, 5, 6 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑁 BernPoly (𝑋 + 1)) = (((𝑋 + 1)↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))))) |
| 8 | | bpolyval 16085 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑋 ∈ ℂ)
→ (𝑁 BernPoly 𝑋) = ((𝑋↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))))) |
| 9 | 2, 3, 8 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑁 BernPoly 𝑋) = ((𝑋↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))))) |
| 10 | 7, 9 | oveq12d 7449 |
. 2
⊢ (𝜑 → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = ((((𝑋 + 1)↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1)))) − ((𝑋↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1)))))) |
| 11 | 5, 2 | expcld 14186 |
. . 3
⊢ (𝜑 → ((𝑋 + 1)↑𝑁) ∈ ℂ) |
| 12 | | fzfid 14014 |
. . . 4
⊢ (𝜑 → (0...(𝑁 − 1)) ∈ Fin) |
| 13 | | elfzelz 13564 |
. . . . . . 7
⊢ (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℤ) |
| 14 | | bccl 14361 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ (𝑁C𝑘) ∈
ℕ0) |
| 15 | 2, 13, 14 | syl2an 596 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑁C𝑘) ∈
ℕ0) |
| 16 | 15 | nn0cnd 12589 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑁C𝑘) ∈ ℂ) |
| 17 | | elfznn0 13660 |
. . . . . . 7
⊢ (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0) |
| 18 | | bpolycl 16088 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
∧ (𝑋 + 1) ∈
ℂ) → (𝑘 BernPoly
(𝑋 + 1)) ∈
ℂ) |
| 19 | 17, 5, 18 | syl2anr 597 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 BernPoly (𝑋 + 1)) ∈ ℂ) |
| 20 | | fzssp1 13607 |
. . . . . . . . . . 11
⊢
(0...(𝑁 − 1))
⊆ (0...((𝑁 − 1)
+ 1)) |
| 21 | 1 | nncnd 12282 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 22 | | ax-1cn 11213 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ |
| 23 | | npcan 11517 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 −
1) + 1) = 𝑁) |
| 24 | 21, 22, 23 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
| 25 | 24 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (𝜑 → (0...((𝑁 − 1) + 1)) = (0...𝑁)) |
| 26 | 20, 25 | sseqtrid 4026 |
. . . . . . . . . 10
⊢ (𝜑 → (0...(𝑁 − 1)) ⊆ (0...𝑁)) |
| 27 | 26 | sselda 3983 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ (0...𝑁)) |
| 28 | | fznn0sub 13596 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...𝑁) → (𝑁 − 𝑘) ∈
ℕ0) |
| 29 | 27, 28 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑁 − 𝑘) ∈
ℕ0) |
| 30 | | nn0p1nn 12565 |
. . . . . . . 8
⊢ ((𝑁 − 𝑘) ∈ ℕ0 → ((𝑁 − 𝑘) + 1) ∈ ℕ) |
| 31 | 29, 30 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁 − 𝑘) + 1) ∈ ℕ) |
| 32 | 31 | nncnd 12282 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁 − 𝑘) + 1) ∈ ℂ) |
| 33 | 31 | nnne0d 12316 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁 − 𝑘) + 1) ≠ 0) |
| 34 | 19, 32, 33 | divcld 12043 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1)) ∈ ℂ) |
| 35 | 16, 34 | mulcld 11281 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))) ∈ ℂ) |
| 36 | 12, 35 | fsumcl 15769 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))) ∈ ℂ) |
| 37 | 3, 2 | expcld 14186 |
. . 3
⊢ (𝜑 → (𝑋↑𝑁) ∈ ℂ) |
| 38 | | bpolycl 16088 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
∧ 𝑋 ∈ ℂ)
→ (𝑘 BernPoly 𝑋) ∈
ℂ) |
| 39 | 17, 3, 38 | syl2anr 597 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 BernPoly 𝑋) ∈ ℂ) |
| 40 | 39, 32, 33 | divcld 12043 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1)) ∈ ℂ) |
| 41 | 16, 40 | mulcld 11281 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))) ∈ ℂ) |
| 42 | 12, 41 | fsumcl 15769 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))) ∈ ℂ) |
| 43 | 11, 36, 37, 42 | sub4d 11669 |
. 2
⊢ (𝜑 → ((((𝑋 + 1)↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1)))) − ((𝑋↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))))) = ((((𝑋 + 1)↑𝑁) − (𝑋↑𝑁)) − (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1)))))) |
| 44 | 26 | sselda 3983 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑁 − 1))) → 𝑚 ∈ (0...𝑁)) |
| 45 | | bccl2 14362 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ (0...𝑁) → (𝑁C𝑚) ∈ ℕ) |
| 46 | 45 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → (𝑁C𝑚) ∈ ℕ) |
| 47 | 46 | nncnd 12282 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → (𝑁C𝑚) ∈ ℂ) |
| 48 | | elfznn0 13660 |
. . . . . . . . . 10
⊢ (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℕ0) |
| 49 | | expcl 14120 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ ℂ ∧ 𝑚 ∈ ℕ0)
→ (𝑋↑𝑚) ∈
ℂ) |
| 50 | 3, 48, 49 | syl2an 596 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → (𝑋↑𝑚) ∈ ℂ) |
| 51 | 47, 50 | mulcld 11281 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → ((𝑁C𝑚) · (𝑋↑𝑚)) ∈ ℂ) |
| 52 | 44, 51 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑁 − 1))) → ((𝑁C𝑚) · (𝑋↑𝑚)) ∈ ℂ) |
| 53 | 12, 52 | fsumcl 15769 |
. . . . . 6
⊢ (𝜑 → Σ𝑚 ∈ (0...(𝑁 − 1))((𝑁C𝑚) · (𝑋↑𝑚)) ∈ ℂ) |
| 54 | | addcom 11447 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑋 + 1) =
(1 + 𝑋)) |
| 55 | 3, 22, 54 | sylancl 586 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 + 1) = (1 + 𝑋)) |
| 56 | 55 | oveq1d 7446 |
. . . . . . . 8
⊢ (𝜑 → ((𝑋 + 1)↑𝑁) = ((1 + 𝑋)↑𝑁)) |
| 57 | | binom1p 15867 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((1 + 𝑋)↑𝑁) = Σ𝑚 ∈ (0...𝑁)((𝑁C𝑚) · (𝑋↑𝑚))) |
| 58 | 3, 2, 57 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ((1 + 𝑋)↑𝑁) = Σ𝑚 ∈ (0...𝑁)((𝑁C𝑚) · (𝑋↑𝑚))) |
| 59 | 56, 58 | eqtrd 2777 |
. . . . . . 7
⊢ (𝜑 → ((𝑋 + 1)↑𝑁) = Σ𝑚 ∈ (0...𝑁)((𝑁C𝑚) · (𝑋↑𝑚))) |
| 60 | | nn0uz 12920 |
. . . . . . . . 9
⊢
ℕ0 = (ℤ≥‘0) |
| 61 | 2, 60 | eleqtrdi 2851 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
| 62 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑚 = 𝑁 → (𝑁C𝑚) = (𝑁C𝑁)) |
| 63 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑚 = 𝑁 → (𝑋↑𝑚) = (𝑋↑𝑁)) |
| 64 | 62, 63 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝑚 = 𝑁 → ((𝑁C𝑚) · (𝑋↑𝑚)) = ((𝑁C𝑁) · (𝑋↑𝑁))) |
| 65 | 61, 51, 64 | fsumm1 15787 |
. . . . . . 7
⊢ (𝜑 → Σ𝑚 ∈ (0...𝑁)((𝑁C𝑚) · (𝑋↑𝑚)) = (Σ𝑚 ∈ (0...(𝑁 − 1))((𝑁C𝑚) · (𝑋↑𝑚)) + ((𝑁C𝑁) · (𝑋↑𝑁)))) |
| 66 | | bcnn 14351 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ (𝑁C𝑁) = 1) |
| 67 | 2, 66 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁C𝑁) = 1) |
| 68 | 67 | oveq1d 7446 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁C𝑁) · (𝑋↑𝑁)) = (1 · (𝑋↑𝑁))) |
| 69 | 37 | mullidd 11279 |
. . . . . . . . 9
⊢ (𝜑 → (1 · (𝑋↑𝑁)) = (𝑋↑𝑁)) |
| 70 | 68, 69 | eqtrd 2777 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁C𝑁) · (𝑋↑𝑁)) = (𝑋↑𝑁)) |
| 71 | 70 | oveq2d 7447 |
. . . . . . 7
⊢ (𝜑 → (Σ𝑚 ∈ (0...(𝑁 − 1))((𝑁C𝑚) · (𝑋↑𝑚)) + ((𝑁C𝑁) · (𝑋↑𝑁))) = (Σ𝑚 ∈ (0...(𝑁 − 1))((𝑁C𝑚) · (𝑋↑𝑚)) + (𝑋↑𝑁))) |
| 72 | 59, 65, 71 | 3eqtrd 2781 |
. . . . . 6
⊢ (𝜑 → ((𝑋 + 1)↑𝑁) = (Σ𝑚 ∈ (0...(𝑁 − 1))((𝑁C𝑚) · (𝑋↑𝑚)) + (𝑋↑𝑁))) |
| 73 | 53, 37, 72 | mvrraddd 11675 |
. . . . 5
⊢ (𝜑 → (((𝑋 + 1)↑𝑁) − (𝑋↑𝑁)) = Σ𝑚 ∈ (0...(𝑁 − 1))((𝑁C𝑚) · (𝑋↑𝑚))) |
| 74 | | nnm1nn0 12567 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |
| 75 | 1, 74 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑁 − 1) ∈
ℕ0) |
| 76 | 75, 60 | eleqtrdi 2851 |
. . . . . 6
⊢ (𝜑 → (𝑁 − 1) ∈
(ℤ≥‘0)) |
| 77 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑚 = (𝑁 − 1) → (𝑁C𝑚) = (𝑁C(𝑁 − 1))) |
| 78 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑚 = (𝑁 − 1) → (𝑋↑𝑚) = (𝑋↑(𝑁 − 1))) |
| 79 | 77, 78 | oveq12d 7449 |
. . . . . 6
⊢ (𝑚 = (𝑁 − 1) → ((𝑁C𝑚) · (𝑋↑𝑚)) = ((𝑁C(𝑁 − 1)) · (𝑋↑(𝑁 − 1)))) |
| 80 | 76, 52, 79 | fsumm1 15787 |
. . . . 5
⊢ (𝜑 → Σ𝑚 ∈ (0...(𝑁 − 1))((𝑁C𝑚) · (𝑋↑𝑚)) = (Σ𝑚 ∈ (0...((𝑁 − 1) − 1))((𝑁C𝑚) · (𝑋↑𝑚)) + ((𝑁C(𝑁 − 1)) · (𝑋↑(𝑁 − 1))))) |
| 81 | | 1cnd 11256 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℂ) |
| 82 | 21, 81, 81 | subsub4d 11651 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁 − 1) − 1) = (𝑁 − (1 + 1))) |
| 83 | | df-2 12329 |
. . . . . . . . . 10
⊢ 2 = (1 +
1) |
| 84 | 83 | oveq2i 7442 |
. . . . . . . . 9
⊢ (𝑁 − 2) = (𝑁 − (1 + 1)) |
| 85 | 82, 84 | eqtr4di 2795 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁 − 1) − 1) = (𝑁 − 2)) |
| 86 | 85 | oveq2d 7447 |
. . . . . . 7
⊢ (𝜑 → (0...((𝑁 − 1) − 1)) = (0...(𝑁 − 2))) |
| 87 | 86 | sumeq1d 15736 |
. . . . . 6
⊢ (𝜑 → Σ𝑚 ∈ (0...((𝑁 − 1) − 1))((𝑁C𝑚) · (𝑋↑𝑚)) = Σ𝑚 ∈ (0...(𝑁 − 2))((𝑁C𝑚) · (𝑋↑𝑚))) |
| 88 | | bcnm1 14366 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ (𝑁C(𝑁 − 1)) = 𝑁) |
| 89 | 2, 88 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑁C(𝑁 − 1)) = 𝑁) |
| 90 | 89 | oveq1d 7446 |
. . . . . 6
⊢ (𝜑 → ((𝑁C(𝑁 − 1)) · (𝑋↑(𝑁 − 1))) = (𝑁 · (𝑋↑(𝑁 − 1)))) |
| 91 | 87, 90 | oveq12d 7449 |
. . . . 5
⊢ (𝜑 → (Σ𝑚 ∈ (0...((𝑁 − 1) − 1))((𝑁C𝑚) · (𝑋↑𝑚)) + ((𝑁C(𝑁 − 1)) · (𝑋↑(𝑁 − 1)))) = (Σ𝑚 ∈ (0...(𝑁 − 2))((𝑁C𝑚) · (𝑋↑𝑚)) + (𝑁 · (𝑋↑(𝑁 − 1))))) |
| 92 | 73, 80, 91 | 3eqtrd 2781 |
. . . 4
⊢ (𝜑 → (((𝑋 + 1)↑𝑁) − (𝑋↑𝑁)) = (Σ𝑚 ∈ (0...(𝑁 − 2))((𝑁C𝑚) · (𝑋↑𝑚)) + (𝑁 · (𝑋↑(𝑁 − 1))))) |
| 93 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑘 = 0 → (𝑁C𝑘) = (𝑁C0)) |
| 94 | | oveq1 7438 |
. . . . . . . . . 10
⊢ (𝑘 = 0 → (𝑘 BernPoly (𝑋 + 1)) = (0 BernPoly (𝑋 + 1))) |
| 95 | | oveq2 7439 |
. . . . . . . . . . 11
⊢ (𝑘 = 0 → (𝑁 − 𝑘) = (𝑁 − 0)) |
| 96 | 95 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (𝑘 = 0 → ((𝑁 − 𝑘) + 1) = ((𝑁 − 0) + 1)) |
| 97 | 94, 96 | oveq12d 7449 |
. . . . . . . . 9
⊢ (𝑘 = 0 → ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1)) = ((0 BernPoly (𝑋 + 1)) / ((𝑁 − 0) + 1))) |
| 98 | 93, 97 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝑘 = 0 → ((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))) = ((𝑁C0) · ((0 BernPoly (𝑋 + 1)) / ((𝑁 − 0) + 1)))) |
| 99 | 76, 35, 98 | fsum1p 15789 |
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))) = (((𝑁C0) · ((0 BernPoly (𝑋 + 1)) / ((𝑁 − 0) + 1))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))))) |
| 100 | | bpoly0 16086 |
. . . . . . . . . . 11
⊢ ((𝑋 + 1) ∈ ℂ → (0
BernPoly (𝑋 + 1)) =
1) |
| 101 | 5, 100 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (0 BernPoly (𝑋 + 1)) = 1) |
| 102 | 101 | oveq1d 7446 |
. . . . . . . . 9
⊢ (𝜑 → ((0 BernPoly (𝑋 + 1)) / ((𝑁 − 0) + 1)) = (1 / ((𝑁 − 0) + 1))) |
| 103 | 102 | oveq2d 7447 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁C0) · ((0 BernPoly (𝑋 + 1)) / ((𝑁 − 0) + 1))) = ((𝑁C0) · (1 / ((𝑁 − 0) + 1)))) |
| 104 | 103 | oveq1d 7446 |
. . . . . . 7
⊢ (𝜑 → (((𝑁C0) · ((0 BernPoly (𝑋 + 1)) / ((𝑁 − 0) + 1))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1)))) = (((𝑁C0) · (1 / ((𝑁 − 0) + 1))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))))) |
| 105 | 99, 104 | eqtrd 2777 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))) = (((𝑁C0) · (1 / ((𝑁 − 0) + 1))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))))) |
| 106 | | oveq1 7438 |
. . . . . . . . . 10
⊢ (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋)) |
| 107 | 106, 96 | oveq12d 7449 |
. . . . . . . . 9
⊢ (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / ((𝑁 − 0) + 1))) |
| 108 | 93, 107 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝑘 = 0 → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))) = ((𝑁C0) · ((0 BernPoly 𝑋) / ((𝑁 − 0) + 1)))) |
| 109 | 76, 41, 108 | fsum1p 15789 |
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))) = (((𝑁C0) · ((0 BernPoly 𝑋) / ((𝑁 − 0) + 1))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))))) |
| 110 | | bpoly0 16086 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ → (0
BernPoly 𝑋) =
1) |
| 111 | 3, 110 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (0 BernPoly 𝑋) = 1) |
| 112 | 111 | oveq1d 7446 |
. . . . . . . . 9
⊢ (𝜑 → ((0 BernPoly 𝑋) / ((𝑁 − 0) + 1)) = (1 / ((𝑁 − 0) + 1))) |
| 113 | 112 | oveq2d 7447 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁C0) · ((0 BernPoly 𝑋) / ((𝑁 − 0) + 1))) = ((𝑁C0) · (1 / ((𝑁 − 0) + 1)))) |
| 114 | 113 | oveq1d 7446 |
. . . . . . 7
⊢ (𝜑 → (((𝑁C0) · ((0 BernPoly 𝑋) / ((𝑁 − 0) + 1))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1)))) = (((𝑁C0) · (1 / ((𝑁 − 0) + 1))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))))) |
| 115 | 109, 114 | eqtrd 2777 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))) = (((𝑁C0) · (1 / ((𝑁 − 0) + 1))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))))) |
| 116 | 105, 115 | oveq12d 7449 |
. . . . 5
⊢ (𝜑 → (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1)))) = ((((𝑁C0) · (1 / ((𝑁 − 0) + 1))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1)))) − (((𝑁C0) · (1 / ((𝑁 − 0) + 1))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1)))))) |
| 117 | | 0z 12624 |
. . . . . . . . 9
⊢ 0 ∈
ℤ |
| 118 | | bccl 14361 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 0 ∈ ℤ) → (𝑁C0) ∈
ℕ0) |
| 119 | 2, 117, 118 | sylancl 586 |
. . . . . . . 8
⊢ (𝜑 → (𝑁C0) ∈
ℕ0) |
| 120 | 119 | nn0cnd 12589 |
. . . . . . 7
⊢ (𝜑 → (𝑁C0) ∈ ℂ) |
| 121 | 21 | subid1d 11609 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 − 0) = 𝑁) |
| 122 | 121, 1 | eqeltrd 2841 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 − 0) ∈ ℕ) |
| 123 | 122 | peano2nnd 12283 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁 − 0) + 1) ∈
ℕ) |
| 124 | 123 | nnrecred 12317 |
. . . . . . . 8
⊢ (𝜑 → (1 / ((𝑁 − 0) + 1)) ∈
ℝ) |
| 125 | 124 | recnd 11289 |
. . . . . . 7
⊢ (𝜑 → (1 / ((𝑁 − 0) + 1)) ∈
ℂ) |
| 126 | 120, 125 | mulcld 11281 |
. . . . . 6
⊢ (𝜑 → ((𝑁C0) · (1 / ((𝑁 − 0) + 1))) ∈
ℂ) |
| 127 | | fzfid 14014 |
. . . . . . 7
⊢ (𝜑 → ((0 + 1)...(𝑁 − 1)) ∈
Fin) |
| 128 | | fzp1ss 13615 |
. . . . . . . . . 10
⊢ (0 ∈
ℤ → ((0 + 1)...(𝑁 − 1)) ⊆ (0...(𝑁 − 1))) |
| 129 | 117, 128 | ax-mp 5 |
. . . . . . . . 9
⊢ ((0 +
1)...(𝑁 − 1)) ⊆
(0...(𝑁 −
1)) |
| 130 | 129 | sseli 3979 |
. . . . . . . 8
⊢ (𝑘 ∈ ((0 + 1)...(𝑁 − 1)) → 𝑘 ∈ (0...(𝑁 − 1))) |
| 131 | 130, 35 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((0 + 1)...(𝑁 − 1))) → ((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))) ∈ ℂ) |
| 132 | 127, 131 | fsumcl 15769 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))) ∈ ℂ) |
| 133 | 130, 41 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((0 + 1)...(𝑁 − 1))) → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))) ∈ ℂ) |
| 134 | 127, 133 | fsumcl 15769 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))) ∈ ℂ) |
| 135 | 126, 132,
134 | pnpcand 11657 |
. . . . 5
⊢ (𝜑 → ((((𝑁C0) · (1 / ((𝑁 − 0) + 1))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1)))) − (((𝑁C0) · (1 / ((𝑁 − 0) + 1))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))))) = (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))) − Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))))) |
| 136 | | 1zzd 12648 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℤ) |
| 137 | | 0zd 12625 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℤ) |
| 138 | 1 | nnzd 12640 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 139 | | 2z 12649 |
. . . . . . . . 9
⊢ 2 ∈
ℤ |
| 140 | | zsubcl 12659 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 2 ∈
ℤ) → (𝑁 −
2) ∈ ℤ) |
| 141 | 138, 139,
140 | sylancl 586 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 − 2) ∈ ℤ) |
| 142 | | fzssp1 13607 |
. . . . . . . . . . 11
⊢
(0...(𝑁 − 2))
⊆ (0...((𝑁 − 2)
+ 1)) |
| 143 | | 2cnd 12344 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 2 ∈
ℂ) |
| 144 | 21, 143, 81 | subsubd 11648 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁 − (2 − 1)) = ((𝑁 − 2) +
1)) |
| 145 | | 2m1e1 12392 |
. . . . . . . . . . . . . 14
⊢ (2
− 1) = 1 |
| 146 | 145 | oveq2i 7442 |
. . . . . . . . . . . . 13
⊢ (𝑁 − (2 − 1)) = (𝑁 − 1) |
| 147 | 144, 146 | eqtr3di 2792 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑁 − 2) + 1) = (𝑁 − 1)) |
| 148 | 147 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (𝜑 → (0...((𝑁 − 2) + 1)) = (0...(𝑁 − 1))) |
| 149 | 142, 148 | sseqtrid 4026 |
. . . . . . . . . 10
⊢ (𝜑 → (0...(𝑁 − 2)) ⊆ (0...(𝑁 − 1))) |
| 150 | 149 | sselda 3983 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑁 − 2))) → 𝑚 ∈ (0...(𝑁 − 1))) |
| 151 | 150, 52 | syldan 591 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (0...(𝑁 − 2))) → ((𝑁C𝑚) · (𝑋↑𝑚)) ∈ ℂ) |
| 152 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑚 = (𝑘 − 1) → (𝑁C𝑚) = (𝑁C(𝑘 − 1))) |
| 153 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑚 = (𝑘 − 1) → (𝑋↑𝑚) = (𝑋↑(𝑘 − 1))) |
| 154 | 152, 153 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝑚 = (𝑘 − 1) → ((𝑁C𝑚) · (𝑋↑𝑚)) = ((𝑁C(𝑘 − 1)) · (𝑋↑(𝑘 − 1)))) |
| 155 | 136, 137,
141, 151, 154 | fsumshft 15816 |
. . . . . . 7
⊢ (𝜑 → Σ𝑚 ∈ (0...(𝑁 − 2))((𝑁C𝑚) · (𝑋↑𝑚)) = Σ𝑘 ∈ ((0 + 1)...((𝑁 − 2) + 1))((𝑁C(𝑘 − 1)) · (𝑋↑(𝑘 − 1)))) |
| 156 | 147 | oveq2d 7447 |
. . . . . . . 8
⊢ (𝜑 → ((0 + 1)...((𝑁 − 2) + 1)) = ((0 +
1)...(𝑁 −
1))) |
| 157 | 156 | sumeq1d 15736 |
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ ((0 + 1)...((𝑁 − 2) + 1))((𝑁C(𝑘 − 1)) · (𝑋↑(𝑘 − 1))) = Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C(𝑘 − 1)) · (𝑋↑(𝑘 − 1)))) |
| 158 | 155, 157 | eqtrd 2777 |
. . . . . 6
⊢ (𝜑 → Σ𝑚 ∈ (0...(𝑁 − 2))((𝑁C𝑚) · (𝑋↑𝑚)) = Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C(𝑘 − 1)) · (𝑋↑(𝑘 − 1)))) |
| 159 | | 0p1e1 12388 |
. . . . . . . . . 10
⊢ (0 + 1) =
1 |
| 160 | 159 | oveq1i 7441 |
. . . . . . . . 9
⊢ ((0 +
1)...(𝑁 − 1)) =
(1...(𝑁 −
1)) |
| 161 | 160 | eleq2i 2833 |
. . . . . . . 8
⊢ (𝑘 ∈ ((0 + 1)...(𝑁 − 1)) ↔ 𝑘 ∈ (1...(𝑁 − 1))) |
| 162 | | fzssp1 13607 |
. . . . . . . . . . . . . 14
⊢
(1...(𝑁 − 1))
⊆ (1...((𝑁 − 1)
+ 1)) |
| 163 | 24 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1...((𝑁 − 1) + 1)) = (1...𝑁)) |
| 164 | 162, 163 | sseqtrid 4026 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
| 165 | 164 | sselda 3983 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → 𝑘 ∈ (1...𝑁)) |
| 166 | | bcm1k 14354 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (1...𝑁) → (𝑁C𝑘) = ((𝑁C(𝑘 − 1)) · ((𝑁 − (𝑘 − 1)) / 𝑘))) |
| 167 | 165, 166 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (𝑁C𝑘) = ((𝑁C(𝑘 − 1)) · ((𝑁 − (𝑘 − 1)) / 𝑘))) |
| 168 | 1 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℕ) |
| 169 | 168 | nncnd 12282 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℂ) |
| 170 | | elfznn 13593 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (1...(𝑁 − 1)) → 𝑘 ∈ ℕ) |
| 171 | 170 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → 𝑘 ∈ ℕ) |
| 172 | 171 | nncnd 12282 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → 𝑘 ∈ ℂ) |
| 173 | | 1cnd 11256 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → 1 ∈
ℂ) |
| 174 | 169, 172,
173 | subsubd 11648 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (𝑁 − (𝑘 − 1)) = ((𝑁 − 𝑘) + 1)) |
| 175 | 174 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ((𝑁 − (𝑘 − 1)) / 𝑘) = (((𝑁 − 𝑘) + 1) / 𝑘)) |
| 176 | 175 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ((𝑁C(𝑘 − 1)) · ((𝑁 − (𝑘 − 1)) / 𝑘)) = ((𝑁C(𝑘 − 1)) · (((𝑁 − 𝑘) + 1) / 𝑘))) |
| 177 | 167, 176 | eqtrd 2777 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (𝑁C𝑘) = ((𝑁C(𝑘 − 1)) · (((𝑁 − 𝑘) + 1) / 𝑘))) |
| 178 | | bpolydiflem.3 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) |
| 179 | 178 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) / ((𝑁 − 𝑘) + 1)) = ((𝑘 · (𝑋↑(𝑘 − 1))) / ((𝑁 − 𝑘) + 1))) |
| 180 | 161, 130 | sylbir 235 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (1...(𝑁 − 1)) → 𝑘 ∈ (0...(𝑁 − 1))) |
| 181 | 180, 19 | sylan2 593 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (𝑘 BernPoly (𝑋 + 1)) ∈ ℂ) |
| 182 | 180, 39 | sylan2 593 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (𝑘 BernPoly 𝑋) ∈ ℂ) |
| 183 | 180, 32 | sylan2 593 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ((𝑁 − 𝑘) + 1) ∈ ℂ) |
| 184 | 180, 33 | sylan2 593 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ((𝑁 − 𝑘) + 1) ≠ 0) |
| 185 | 181, 182,
183, 184 | divsubdird 12082 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) / ((𝑁 − 𝑘) + 1)) = (((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1)) − ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1)))) |
| 186 | 3 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → 𝑋 ∈ ℂ) |
| 187 | | nnm1nn0 12567 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → (𝑘 − 1) ∈
ℕ0) |
| 188 | 171, 187 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (𝑘 − 1) ∈
ℕ0) |
| 189 | 186, 188 | expcld 14186 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (𝑋↑(𝑘 − 1)) ∈ ℂ) |
| 190 | 172, 189,
183, 184 | div23d 12080 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ((𝑘 · (𝑋↑(𝑘 − 1))) / ((𝑁 − 𝑘) + 1)) = ((𝑘 / ((𝑁 − 𝑘) + 1)) · (𝑋↑(𝑘 − 1)))) |
| 191 | 179, 185,
190 | 3eqtr3d 2785 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1)) − ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))) = ((𝑘 / ((𝑁 − 𝑘) + 1)) · (𝑋↑(𝑘 − 1)))) |
| 192 | 177, 191 | oveq12d 7449 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ((𝑁C𝑘) · (((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1)) − ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1)))) = (((𝑁C(𝑘 − 1)) · (((𝑁 − 𝑘) + 1) / 𝑘)) · ((𝑘 / ((𝑁 − 𝑘) + 1)) · (𝑋↑(𝑘 − 1))))) |
| 193 | 180, 16 | sylan2 593 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (𝑁C𝑘) ∈ ℂ) |
| 194 | 181, 183,
184 | divcld 12043 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1)) ∈ ℂ) |
| 195 | 182, 183,
184 | divcld 12043 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1)) ∈ ℂ) |
| 196 | 193, 194,
195 | subdid 11719 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ((𝑁C𝑘) · (((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1)) − ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1)))) = (((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))) − ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))))) |
| 197 | 168 | nnnn0d 12587 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → 𝑁 ∈
ℕ0) |
| 198 | 188 | nn0zd 12639 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (𝑘 − 1) ∈ ℤ) |
| 199 | | bccl 14361 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑘 − 1) ∈
ℤ) → (𝑁C(𝑘 − 1)) ∈
ℕ0) |
| 200 | 197, 198,
199 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (𝑁C(𝑘 − 1)) ∈
ℕ0) |
| 201 | 200 | nn0cnd 12589 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (𝑁C(𝑘 − 1)) ∈ ℂ) |
| 202 | 171 | nnne0d 12316 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → 𝑘 ≠ 0) |
| 203 | 183, 172,
202 | divcld 12043 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (((𝑁 − 𝑘) + 1) / 𝑘) ∈ ℂ) |
| 204 | 172, 183,
184 | divcld 12043 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (𝑘 / ((𝑁 − 𝑘) + 1)) ∈ ℂ) |
| 205 | 204, 189 | mulcld 11281 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ((𝑘 / ((𝑁 − 𝑘) + 1)) · (𝑋↑(𝑘 − 1))) ∈
ℂ) |
| 206 | 201, 203,
205 | mulassd 11284 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (((𝑁C(𝑘 − 1)) · (((𝑁 − 𝑘) + 1) / 𝑘)) · ((𝑘 / ((𝑁 − 𝑘) + 1)) · (𝑋↑(𝑘 − 1)))) = ((𝑁C(𝑘 − 1)) · ((((𝑁 − 𝑘) + 1) / 𝑘) · ((𝑘 / ((𝑁 − 𝑘) + 1)) · (𝑋↑(𝑘 − 1)))))) |
| 207 | 183, 172,
184, 202 | divcan6d 12062 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ((((𝑁 − 𝑘) + 1) / 𝑘) · (𝑘 / ((𝑁 − 𝑘) + 1))) = 1) |
| 208 | 207 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (((((𝑁 − 𝑘) + 1) / 𝑘) · (𝑘 / ((𝑁 − 𝑘) + 1))) · (𝑋↑(𝑘 − 1))) = (1 · (𝑋↑(𝑘 − 1)))) |
| 209 | 203, 204,
189 | mulassd 11284 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (((((𝑁 − 𝑘) + 1) / 𝑘) · (𝑘 / ((𝑁 − 𝑘) + 1))) · (𝑋↑(𝑘 − 1))) = ((((𝑁 − 𝑘) + 1) / 𝑘) · ((𝑘 / ((𝑁 − 𝑘) + 1)) · (𝑋↑(𝑘 − 1))))) |
| 210 | 189 | mullidd 11279 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (1 · (𝑋↑(𝑘 − 1))) = (𝑋↑(𝑘 − 1))) |
| 211 | 208, 209,
210 | 3eqtr3d 2785 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ((((𝑁 − 𝑘) + 1) / 𝑘) · ((𝑘 / ((𝑁 − 𝑘) + 1)) · (𝑋↑(𝑘 − 1)))) = (𝑋↑(𝑘 − 1))) |
| 212 | 211 | oveq2d 7447 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ((𝑁C(𝑘 − 1)) · ((((𝑁 − 𝑘) + 1) / 𝑘) · ((𝑘 / ((𝑁 − 𝑘) + 1)) · (𝑋↑(𝑘 − 1))))) = ((𝑁C(𝑘 − 1)) · (𝑋↑(𝑘 − 1)))) |
| 213 | 206, 212 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (((𝑁C(𝑘 − 1)) · (((𝑁 − 𝑘) + 1) / 𝑘)) · ((𝑘 / ((𝑁 − 𝑘) + 1)) · (𝑋↑(𝑘 − 1)))) = ((𝑁C(𝑘 − 1)) · (𝑋↑(𝑘 − 1)))) |
| 214 | 192, 196,
213 | 3eqtr3d 2785 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → (((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))) − ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1)))) = ((𝑁C(𝑘 − 1)) · (𝑋↑(𝑘 − 1)))) |
| 215 | 161, 214 | sylan2b 594 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((0 + 1)...(𝑁 − 1))) → (((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))) − ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1)))) = ((𝑁C(𝑘 − 1)) · (𝑋↑(𝑘 − 1)))) |
| 216 | 215 | sumeq2dv 15738 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))(((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))) − ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1)))) = Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C(𝑘 − 1)) · (𝑋↑(𝑘 − 1)))) |
| 217 | 127, 131,
133 | fsumsub 15824 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))(((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))) − ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1)))) = (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))) − Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))))) |
| 218 | 158, 216,
217 | 3eqtr2rd 2784 |
. . . . 5
⊢ (𝜑 → (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))) − Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1)))) = Σ𝑚 ∈ (0...(𝑁 − 2))((𝑁C𝑚) · (𝑋↑𝑚))) |
| 219 | 116, 135,
218 | 3eqtrd 2781 |
. . . 4
⊢ (𝜑 → (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1)))) = Σ𝑚 ∈ (0...(𝑁 − 2))((𝑁C𝑚) · (𝑋↑𝑚))) |
| 220 | 92, 219 | oveq12d 7449 |
. . 3
⊢ (𝜑 → ((((𝑋 + 1)↑𝑁) − (𝑋↑𝑁)) − (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))))) = ((Σ𝑚 ∈ (0...(𝑁 − 2))((𝑁C𝑚) · (𝑋↑𝑚)) + (𝑁 · (𝑋↑(𝑁 − 1)))) − Σ𝑚 ∈ (0...(𝑁 − 2))((𝑁C𝑚) · (𝑋↑𝑚)))) |
| 221 | | fzfid 14014 |
. . . . 5
⊢ (𝜑 → (0...(𝑁 − 2)) ∈ Fin) |
| 222 | 221, 151 | fsumcl 15769 |
. . . 4
⊢ (𝜑 → Σ𝑚 ∈ (0...(𝑁 − 2))((𝑁C𝑚) · (𝑋↑𝑚)) ∈ ℂ) |
| 223 | 3, 75 | expcld 14186 |
. . . . 5
⊢ (𝜑 → (𝑋↑(𝑁 − 1)) ∈
ℂ) |
| 224 | 21, 223 | mulcld 11281 |
. . . 4
⊢ (𝜑 → (𝑁 · (𝑋↑(𝑁 − 1))) ∈
ℂ) |
| 225 | 222, 224 | pncan2d 11622 |
. . 3
⊢ (𝜑 → ((Σ𝑚 ∈ (0...(𝑁 − 2))((𝑁C𝑚) · (𝑋↑𝑚)) + (𝑁 · (𝑋↑(𝑁 − 1)))) − Σ𝑚 ∈ (0...(𝑁 − 2))((𝑁C𝑚) · (𝑋↑𝑚))) = (𝑁 · (𝑋↑(𝑁 − 1)))) |
| 226 | 220, 225 | eqtrd 2777 |
. 2
⊢ (𝜑 → ((((𝑋 + 1)↑𝑁) − (𝑋↑𝑁)) − (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁 − 𝑘) + 1))) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))))) = (𝑁 · (𝑋↑(𝑁 − 1)))) |
| 227 | 10, 43, 226 | 3eqtrd 2781 |
1
⊢ (𝜑 → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1)))) |