Step | Hyp | Ref
| Expression |
1 | | tanrpcl 25566 |
. . . . . . . 8
⊢ (𝐴 ∈ (0(,)(π / 2)) →
(tan‘𝐴) ∈
ℝ+) |
2 | 1 | adantl 481 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(tan‘𝐴) ∈
ℝ+) |
3 | 2 | rpreccld 12711 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(1 / (tan‘𝐴)) ∈
ℝ+) |
4 | 3 | rpcnd 12703 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(1 / (tan‘𝐴)) ∈
ℂ) |
5 | | ax-icn 10861 |
. . . . . 6
⊢ i ∈
ℂ |
6 | 5 | a1i 11 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
i ∈ ℂ) |
7 | | basel.n |
. . . . . . 7
⊢ 𝑁 = ((2 · 𝑀) + 1) |
8 | | 2nn 11976 |
. . . . . . . . 9
⊢ 2 ∈
ℕ |
9 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
𝑀 ∈
ℕ) |
10 | | nnmulcl 11927 |
. . . . . . . . 9
⊢ ((2
∈ ℕ ∧ 𝑀
∈ ℕ) → (2 · 𝑀) ∈ ℕ) |
11 | 8, 9, 10 | sylancr 586 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(2 · 𝑀) ∈
ℕ) |
12 | 11 | peano2nnd 11920 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
((2 · 𝑀) + 1) ∈
ℕ) |
13 | 7, 12 | eqeltrid 2843 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
𝑁 ∈
ℕ) |
14 | 13 | nnnn0d 12223 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
𝑁 ∈
ℕ0) |
15 | | binom 15470 |
. . . . 5
⊢ (((1 /
(tan‘𝐴)) ∈
ℂ ∧ i ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((1 /
(tan‘𝐴)) +
i)↑𝑁) = Σ𝑚 ∈ (0...𝑁)((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) · (i↑𝑚)))) |
16 | 4, 6, 14, 15 | syl3anc 1369 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(((1 / (tan‘𝐴)) +
i)↑𝑁) = Σ𝑚 ∈ (0...𝑁)((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) · (i↑𝑚)))) |
17 | | elioore 13038 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (0(,)(π / 2)) →
𝐴 ∈
ℝ) |
18 | 17 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
𝐴 ∈
ℝ) |
19 | 18 | recoscld 15781 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(cos‘𝐴) ∈
ℝ) |
20 | 19 | recnd 10934 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(cos‘𝐴) ∈
ℂ) |
21 | 18 | resincld 15780 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(sin‘𝐴) ∈
ℝ) |
22 | 21 | recnd 10934 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(sin‘𝐴) ∈
ℂ) |
23 | | mulcl 10886 |
. . . . . . . . 9
⊢ ((i
∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i ·
(sin‘𝐴)) ∈
ℂ) |
24 | 5, 22, 23 | sylancr 586 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(i · (sin‘𝐴))
∈ ℂ) |
25 | 20, 24 | addcld 10925 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
((cos‘𝐴) + (i
· (sin‘𝐴)))
∈ ℂ) |
26 | | sincosq1sgn 25560 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (0(,)(π / 2)) →
(0 < (sin‘𝐴) ∧
0 < (cos‘𝐴))) |
27 | 26 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(0 < (sin‘𝐴) ∧
0 < (cos‘𝐴))) |
28 | 27 | simpld 494 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
0 < (sin‘𝐴)) |
29 | 28 | gt0ne0d 11469 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(sin‘𝐴) ≠
0) |
30 | 25, 22, 29, 14 | expdivd 13806 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
((((cos‘𝐴) + (i
· (sin‘𝐴))) /
(sin‘𝐴))↑𝑁) = ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) / ((sin‘𝐴)↑𝑁))) |
31 | 20, 24, 22, 29 | divdird 11719 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(((cos‘𝐴) + (i
· (sin‘𝐴))) /
(sin‘𝐴)) =
(((cos‘𝐴) /
(sin‘𝐴)) + ((i
· (sin‘𝐴)) /
(sin‘𝐴)))) |
32 | 18 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
𝐴 ∈
ℂ) |
33 | 27 | simprd 495 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
0 < (cos‘𝐴)) |
34 | 33 | gt0ne0d 11469 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(cos‘𝐴) ≠
0) |
35 | | tanval 15765 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧
(cos‘𝐴) ≠ 0)
→ (tan‘𝐴) =
((sin‘𝐴) /
(cos‘𝐴))) |
36 | 32, 34, 35 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(tan‘𝐴) =
((sin‘𝐴) /
(cos‘𝐴))) |
37 | 36 | oveq2d 7271 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(1 / (tan‘𝐴)) = (1 /
((sin‘𝐴) /
(cos‘𝐴)))) |
38 | 22, 20, 29, 34 | recdivd 11698 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(1 / ((sin‘𝐴) /
(cos‘𝐴))) =
((cos‘𝐴) /
(sin‘𝐴))) |
39 | 37, 38 | eqtr2d 2779 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
((cos‘𝐴) /
(sin‘𝐴)) = (1 /
(tan‘𝐴))) |
40 | 6, 22, 29 | divcan4d 11687 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
((i · (sin‘𝐴))
/ (sin‘𝐴)) =
i) |
41 | 39, 40 | oveq12d 7273 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(((cos‘𝐴) /
(sin‘𝐴)) + ((i
· (sin‘𝐴)) /
(sin‘𝐴))) = ((1 /
(tan‘𝐴)) +
i)) |
42 | 31, 41 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(((cos‘𝐴) + (i
· (sin‘𝐴))) /
(sin‘𝐴)) = ((1 /
(tan‘𝐴)) +
i)) |
43 | 42 | oveq1d 7270 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
((((cos‘𝐴) + (i
· (sin‘𝐴))) /
(sin‘𝐴))↑𝑁) = (((1 / (tan‘𝐴)) + i)↑𝑁)) |
44 | 13 | nnzd 12354 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
𝑁 ∈
ℤ) |
45 | | demoivre 15837 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) →
(((cos‘𝐴) + (i
· (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) |
46 | 32, 44, 45 | syl2anc 583 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(((cos‘𝐴) + (i
· (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) |
47 | 46 | oveq1d 7270 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
((((cos‘𝐴) + (i
· (sin‘𝐴)))↑𝑁) / ((sin‘𝐴)↑𝑁)) = (((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))) / ((sin‘𝐴)↑𝑁))) |
48 | 30, 43, 47 | 3eqtr3d 2786 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(((1 / (tan‘𝐴)) +
i)↑𝑁) =
(((cos‘(𝑁 ·
𝐴)) + (i ·
(sin‘(𝑁 ·
𝐴)))) / ((sin‘𝐴)↑𝑁))) |
49 | 13 | nnred 11918 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
𝑁 ∈
ℝ) |
50 | 49, 18 | remulcld 10936 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(𝑁 · 𝐴) ∈
ℝ) |
51 | 50 | recoscld 15781 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(cos‘(𝑁 ·
𝐴)) ∈
ℝ) |
52 | 51 | recnd 10934 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(cos‘(𝑁 ·
𝐴)) ∈
ℂ) |
53 | 50 | resincld 15780 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(sin‘(𝑁 ·
𝐴)) ∈
ℝ) |
54 | 53 | recnd 10934 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(sin‘(𝑁 ·
𝐴)) ∈
ℂ) |
55 | | mulcl 10886 |
. . . . . . 7
⊢ ((i
∈ ℂ ∧ (sin‘(𝑁 · 𝐴)) ∈ ℂ) → (i ·
(sin‘(𝑁 ·
𝐴))) ∈
ℂ) |
56 | 5, 54, 55 | sylancr 586 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(i · (sin‘(𝑁
· 𝐴))) ∈
ℂ) |
57 | 21, 28 | elrpd 12698 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(sin‘𝐴) ∈
ℝ+) |
58 | 57, 44 | rpexpcld 13890 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
((sin‘𝐴)↑𝑁) ∈
ℝ+) |
59 | 58 | rpcnd 12703 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
((sin‘𝐴)↑𝑁) ∈
ℂ) |
60 | 58 | rpne0d 12706 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
((sin‘𝐴)↑𝑁) ≠ 0) |
61 | 52, 56, 59, 60 | divdird 11719 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(((cos‘(𝑁 ·
𝐴)) + (i ·
(sin‘(𝑁 ·
𝐴)))) / ((sin‘𝐴)↑𝑁)) = (((cos‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁)) + ((i · (sin‘(𝑁 · 𝐴))) / ((sin‘𝐴)↑𝑁)))) |
62 | 6, 54, 59, 60 | divassd 11716 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
((i · (sin‘(𝑁
· 𝐴))) /
((sin‘𝐴)↑𝑁)) = (i ·
((sin‘(𝑁 ·
𝐴)) / ((sin‘𝐴)↑𝑁)))) |
63 | 62 | oveq2d 7271 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(((cos‘(𝑁 ·
𝐴)) / ((sin‘𝐴)↑𝑁)) + ((i · (sin‘(𝑁 · 𝐴))) / ((sin‘𝐴)↑𝑁))) = (((cos‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁)) + (i · ((sin‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁))))) |
64 | 48, 61, 63 | 3eqtrd 2782 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(((1 / (tan‘𝐴)) +
i)↑𝑁) =
(((cos‘(𝑁 ·
𝐴)) / ((sin‘𝐴)↑𝑁)) + (i · ((sin‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁))))) |
65 | 16, 64 | eqtr3d 2780 |
. . 3
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
Σ𝑚 ∈ (0...𝑁)((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) · (i↑𝑚))) = (((cos‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁)) + (i · ((sin‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁))))) |
66 | 65 | fveq2d 6760 |
. 2
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(ℑ‘Σ𝑚
∈ (0...𝑁)((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) · (i↑𝑚)))) = (ℑ‘(((cos‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁)) + (i · ((sin‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁)))))) |
67 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑚 = (𝑁 − (2 · 𝑗)) → (𝑁C𝑚) = (𝑁C(𝑁 − (2 · 𝑗)))) |
68 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑚 = (𝑁 − (2 · 𝑗)) → (𝑁 − 𝑚) = (𝑁 − (𝑁 − (2 · 𝑗)))) |
69 | 68 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑚 = (𝑁 − (2 · 𝑗)) → ((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) = ((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗))))) |
70 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑚 = (𝑁 − (2 · 𝑗)) → (i↑𝑚) = (i↑(𝑁 − (2 · 𝑗)))) |
71 | 69, 70 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑚 = (𝑁 − (2 · 𝑗)) → (((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) · (i↑𝑚)) = (((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) · (i↑(𝑁 − (2 · 𝑗))))) |
72 | 67, 71 | oveq12d 7273 |
. . . . . 6
⊢ (𝑚 = (𝑁 − (2 · 𝑗)) → ((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) · (i↑𝑚))) = ((𝑁C(𝑁 − (2 · 𝑗))) · (((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) · (i↑(𝑁 − (2 · 𝑗)))))) |
73 | 72 | fveq2d 6760 |
. . . . 5
⊢ (𝑚 = (𝑁 − (2 · 𝑗)) → (ℑ‘((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) · (i↑𝑚)))) = (ℑ‘((𝑁C(𝑁 − (2 · 𝑗))) · (((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) · (i↑(𝑁 − (2 · 𝑗))))))) |
74 | | fzfid 13621 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(0...𝑀) ∈
Fin) |
75 | | 2nn0 12180 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℕ0 |
76 | | elfznn0 13278 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0) |
77 | 76 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℕ0) |
78 | | nn0mulcl 12199 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℕ0 ∧ 𝑘 ∈ ℕ0) → (2
· 𝑘) ∈
ℕ0) |
79 | 75, 77, 78 | sylancr 586 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑘 ∈ (0...𝑀)) → (2 · 𝑘) ∈
ℕ0) |
80 | 79 | nn0red 12224 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑘 ∈ (0...𝑀)) → (2 · 𝑘) ∈
ℝ) |
81 | 11 | nnred 11918 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(2 · 𝑀) ∈
ℝ) |
82 | 81 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑘 ∈ (0...𝑀)) → (2 · 𝑀) ∈
ℝ) |
83 | 49 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑘 ∈ (0...𝑀)) → 𝑁 ∈ ℝ) |
84 | | elfzle2 13189 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0...𝑀) → 𝑘 ≤ 𝑀) |
85 | 84 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑘 ∈ (0...𝑀)) → 𝑘 ≤ 𝑀) |
86 | 77 | nn0red 12224 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℝ) |
87 | | nnre 11910 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℝ) |
88 | 87 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑘 ∈ (0...𝑀)) → 𝑀 ∈ ℝ) |
89 | | 2re 11977 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℝ |
90 | | 2pos 12006 |
. . . . . . . . . . . . . . 15
⊢ 0 <
2 |
91 | 89, 90 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
ℝ ∧ 0 < 2) |
92 | 91 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑘 ∈ (0...𝑀)) → (2 ∈ ℝ
∧ 0 < 2)) |
93 | | lemul2 11758 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (2 ∈
ℝ ∧ 0 < 2)) → (𝑘 ≤ 𝑀 ↔ (2 · 𝑘) ≤ (2 · 𝑀))) |
94 | 86, 88, 92, 93 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑘 ∈ (0...𝑀)) → (𝑘 ≤ 𝑀 ↔ (2 · 𝑘) ≤ (2 · 𝑀))) |
95 | 85, 94 | mpbid 231 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑘 ∈ (0...𝑀)) → (2 · 𝑘) ≤ (2 · 𝑀)) |
96 | 82 | lep1d 11836 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑘 ∈ (0...𝑀)) → (2 · 𝑀) ≤ ((2 · 𝑀) + 1)) |
97 | 96, 7 | breqtrrdi 5112 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑘 ∈ (0...𝑀)) → (2 · 𝑀) ≤ 𝑁) |
98 | 80, 82, 83, 95, 97 | letrd 11062 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑘 ∈ (0...𝑀)) → (2 · 𝑘) ≤ 𝑁) |
99 | | nn0uz 12549 |
. . . . . . . . . . . 12
⊢
ℕ0 = (ℤ≥‘0) |
100 | 79, 99 | eleqtrdi 2849 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑘 ∈ (0...𝑀)) → (2 · 𝑘) ∈
(ℤ≥‘0)) |
101 | 44 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑘 ∈ (0...𝑀)) → 𝑁 ∈ ℤ) |
102 | | elfz5 13177 |
. . . . . . . . . . 11
⊢ (((2
· 𝑘) ∈
(ℤ≥‘0) ∧ 𝑁 ∈ ℤ) → ((2 · 𝑘) ∈ (0...𝑁) ↔ (2 · 𝑘) ≤ 𝑁)) |
103 | 100, 101,
102 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑘 ∈ (0...𝑀)) → ((2 · 𝑘) ∈ (0...𝑁) ↔ (2 · 𝑘) ≤ 𝑁)) |
104 | 98, 103 | mpbird 256 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑘 ∈ (0...𝑀)) → (2 · 𝑘) ∈ (0...𝑁)) |
105 | | fznn0sub2 13292 |
. . . . . . . . 9
⊢ ((2
· 𝑘) ∈
(0...𝑁) → (𝑁 − (2 · 𝑘)) ∈ (0...𝑁)) |
106 | 104, 105 | syl 17 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑘 ∈ (0...𝑀)) → (𝑁 − (2 · 𝑘)) ∈ (0...𝑁)) |
107 | 106 | ex 412 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(𝑘 ∈ (0...𝑀) → (𝑁 − (2 · 𝑘)) ∈ (0...𝑁))) |
108 | 13 | nncnd 11919 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
𝑁 ∈
ℂ) |
109 | 108 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑘 ∈ (0...𝑀) ∧ 𝑚 ∈ (0...𝑀))) → 𝑁 ∈ ℂ) |
110 | | 2cn 11978 |
. . . . . . . . . . 11
⊢ 2 ∈
ℂ |
111 | | elfzelz 13185 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℤ) |
112 | 111 | zcnd 12356 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℂ) |
113 | 112 | ad2antrl 724 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑘 ∈ (0...𝑀) ∧ 𝑚 ∈ (0...𝑀))) → 𝑘 ∈ ℂ) |
114 | | mulcl 10886 |
. . . . . . . . . . 11
⊢ ((2
∈ ℂ ∧ 𝑘
∈ ℂ) → (2 · 𝑘) ∈ ℂ) |
115 | 110, 113,
114 | sylancr 586 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑘 ∈ (0...𝑀) ∧ 𝑚 ∈ (0...𝑀))) → (2 · 𝑘) ∈ ℂ) |
116 | 112 | ssriv 3921 |
. . . . . . . . . . . 12
⊢
(0...𝑀) ⊆
ℂ |
117 | | simprr 769 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑘 ∈ (0...𝑀) ∧ 𝑚 ∈ (0...𝑀))) → 𝑚 ∈ (0...𝑀)) |
118 | 116, 117 | sselid 3915 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑘 ∈ (0...𝑀) ∧ 𝑚 ∈ (0...𝑀))) → 𝑚 ∈ ℂ) |
119 | | mulcl 10886 |
. . . . . . . . . . 11
⊢ ((2
∈ ℂ ∧ 𝑚
∈ ℂ) → (2 · 𝑚) ∈ ℂ) |
120 | 110, 118,
119 | sylancr 586 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑘 ∈ (0...𝑀) ∧ 𝑚 ∈ (0...𝑀))) → (2 · 𝑚) ∈ ℂ) |
121 | 109, 115,
120 | subcanad 11305 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑘 ∈ (0...𝑀) ∧ 𝑚 ∈ (0...𝑀))) → ((𝑁 − (2 · 𝑘)) = (𝑁 − (2 · 𝑚)) ↔ (2 · 𝑘) = (2 · 𝑚))) |
122 | | 2cnne0 12113 |
. . . . . . . . . . 11
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
123 | 122 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑘 ∈ (0...𝑀) ∧ 𝑚 ∈ (0...𝑀))) → (2 ∈ ℂ ∧ 2 ≠
0)) |
124 | | mulcan 11542 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ (2 ∈
ℂ ∧ 2 ≠ 0)) → ((2 · 𝑘) = (2 · 𝑚) ↔ 𝑘 = 𝑚)) |
125 | 113, 118,
123, 124 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑘 ∈ (0...𝑀) ∧ 𝑚 ∈ (0...𝑀))) → ((2 · 𝑘) = (2 · 𝑚) ↔ 𝑘 = 𝑚)) |
126 | 121, 125 | bitrd 278 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑘 ∈ (0...𝑀) ∧ 𝑚 ∈ (0...𝑀))) → ((𝑁 − (2 · 𝑘)) = (𝑁 − (2 · 𝑚)) ↔ 𝑘 = 𝑚)) |
127 | 126 | ex 412 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
((𝑘 ∈ (0...𝑀) ∧ 𝑚 ∈ (0...𝑀)) → ((𝑁 − (2 · 𝑘)) = (𝑁 − (2 · 𝑚)) ↔ 𝑘 = 𝑚))) |
128 | 107, 127 | dom2lem 8735 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))):(0...𝑀)–1-1→(0...𝑁)) |
129 | | f1f1orn 6711 |
. . . . . 6
⊢ ((𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))):(0...𝑀)–1-1→(0...𝑁) → (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))):(0...𝑀)–1-1-onto→ran
(𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))) |
130 | 128, 129 | syl 17 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))):(0...𝑀)–1-1-onto→ran
(𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))) |
131 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → (2 · 𝑘) = (2 · 𝑗)) |
132 | 131 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑘 = 𝑗 → (𝑁 − (2 · 𝑘)) = (𝑁 − (2 · 𝑗))) |
133 | | eqid 2738 |
. . . . . . 7
⊢ (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))) = (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))) |
134 | | ovex 7288 |
. . . . . . 7
⊢ (𝑁 − (2 · 𝑗)) ∈ V |
135 | 132, 133,
134 | fvmpt 6857 |
. . . . . 6
⊢ (𝑗 ∈ (0...𝑀) → ((𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))‘𝑗) = (𝑁 − (2 · 𝑗))) |
136 | 135 | adantl 481 |
. . . . 5
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → ((𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))‘𝑗) = (𝑁 − (2 · 𝑗))) |
137 | 106 | fmpttd 6971 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))):(0...𝑀)⟶(0...𝑁)) |
138 | 137 | frnd 6592 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))) ⊆ (0...𝑁)) |
139 | 138 | sselda 3917 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))) → 𝑚 ∈ (0...𝑁)) |
140 | | bccl2 13965 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ (0...𝑁) → (𝑁C𝑚) ∈ ℕ) |
141 | 140 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ (0...𝑁)) → (𝑁C𝑚) ∈ ℕ) |
142 | 141 | nncnd 11919 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ (0...𝑁)) → (𝑁C𝑚) ∈ ℂ) |
143 | 2 | rprecred 12712 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(1 / (tan‘𝐴)) ∈
ℝ) |
144 | | fznn0sub 13217 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ (0...𝑁) → (𝑁 − 𝑚) ∈
ℕ0) |
145 | | reexpcl 13727 |
. . . . . . . . . . . 12
⊢ (((1 /
(tan‘𝐴)) ∈
ℝ ∧ (𝑁 −
𝑚) ∈
ℕ0) → ((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) ∈ ℝ) |
146 | 143, 144,
145 | syl2an 595 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ (0...𝑁)) → ((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) ∈ ℝ) |
147 | 146 | recnd 10934 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ (0...𝑁)) → ((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) ∈ ℂ) |
148 | | elfznn0 13278 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℕ0) |
149 | 148 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ (0...𝑁)) → 𝑚 ∈ ℕ0) |
150 | | expcl 13728 |
. . . . . . . . . . 11
⊢ ((i
∈ ℂ ∧ 𝑚
∈ ℕ0) → (i↑𝑚) ∈ ℂ) |
151 | 5, 149, 150 | sylancr 586 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ (0...𝑁)) → (i↑𝑚) ∈
ℂ) |
152 | 147, 151 | mulcld 10926 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ (0...𝑁)) → (((1 /
(tan‘𝐴))↑(𝑁 − 𝑚)) · (i↑𝑚)) ∈ ℂ) |
153 | 142, 152 | mulcld 10926 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ (0...𝑁)) → ((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) · (i↑𝑚))) ∈ ℂ) |
154 | 139, 153 | syldan 590 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))) → ((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) · (i↑𝑚))) ∈ ℂ) |
155 | 154 | imcld 14834 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))) → (ℑ‘((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) · (i↑𝑚)))) ∈ ℝ) |
156 | 155 | recnd 10934 |
. . . . 5
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))) → (ℑ‘((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) · (i↑𝑚)))) ∈ ℂ) |
157 | 73, 74, 130, 136, 156 | fsumf1o 15363 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
Σ𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))(ℑ‘((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) · (i↑𝑚)))) = Σ𝑗 ∈ (0...𝑀)(ℑ‘((𝑁C(𝑁 − (2 · 𝑗))) · (((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) · (i↑(𝑁 − (2 · 𝑗))))))) |
158 | | eldifi 4057 |
. . . . . . . 8
⊢ (𝑚 ∈ ((0...𝑁) ∖ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))) → 𝑚 ∈ (0...𝑁)) |
159 | 141 | nnred 11918 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ (0...𝑁)) → (𝑁C𝑚) ∈ ℝ) |
160 | 158, 159 | sylan2 592 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ ((0...𝑁) ∖ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))))) → (𝑁C𝑚) ∈ ℝ) |
161 | 158, 146 | sylan2 592 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ ((0...𝑁) ∖ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))))) → ((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) ∈ ℝ) |
162 | | eldif 3893 |
. . . . . . . . 9
⊢ (𝑚 ∈ ((0...𝑁) ∖ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))) ↔ (𝑚 ∈ (0...𝑁) ∧ ¬ 𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))))) |
163 | | elfzelz 13185 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℤ) |
164 | 163 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ (0...𝑁)) → 𝑚 ∈ ℤ) |
165 | | zeo 12336 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℤ → ((𝑚 / 2) ∈ ℤ ∨
((𝑚 + 1) / 2) ∈
ℤ)) |
166 | 164, 165 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ (0...𝑁)) → ((𝑚 / 2) ∈ ℤ ∨ ((𝑚 + 1) / 2) ∈
ℤ)) |
167 | | i2 13847 |
. . . . . . . . . . . . . . . . . 18
⊢
(i↑2) = -1 |
168 | 167 | oveq1i 7265 |
. . . . . . . . . . . . . . . . 17
⊢
((i↑2)↑(𝑚
/ 2)) = (-1↑(𝑚 /
2)) |
169 | | simprr 769 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ (𝑚 / 2) ∈ ℤ)) → (𝑚 / 2) ∈
ℤ) |
170 | 148 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ (𝑚 / 2) ∈ ℤ)) → 𝑚 ∈
ℕ0) |
171 | | nn0re 12172 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℝ) |
172 | | nn0ge0 12188 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈ ℕ0
→ 0 ≤ 𝑚) |
173 | | divge0 11774 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑚 ∈ ℝ ∧ 0 ≤
𝑚) ∧ (2 ∈ ℝ
∧ 0 < 2)) → 0 ≤ (𝑚 / 2)) |
174 | 89, 90, 173 | mpanr12 701 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 ∈ ℝ ∧ 0 ≤
𝑚) → 0 ≤ (𝑚 / 2)) |
175 | 171, 172,
174 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ ℕ0
→ 0 ≤ (𝑚 /
2)) |
176 | 170, 175 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ (𝑚 / 2) ∈ ℤ)) → 0 ≤ (𝑚 / 2)) |
177 | | elnn0z 12262 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 / 2) ∈ ℕ0
↔ ((𝑚 / 2) ∈
ℤ ∧ 0 ≤ (𝑚 /
2))) |
178 | 169, 176,
177 | sylanbrc 582 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ (𝑚 / 2) ∈ ℤ)) → (𝑚 / 2) ∈
ℕ0) |
179 | | expmul 13756 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((i
∈ ℂ ∧ 2 ∈ ℕ0 ∧ (𝑚 / 2) ∈ ℕ0) →
(i↑(2 · (𝑚 /
2))) = ((i↑2)↑(𝑚
/ 2))) |
180 | 5, 75, 178, 179 | mp3an12i 1463 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ (𝑚 / 2) ∈ ℤ)) → (i↑(2
· (𝑚 / 2))) =
((i↑2)↑(𝑚 /
2))) |
181 | 170 | nn0cnd 12225 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ (𝑚 / 2) ∈ ℤ)) → 𝑚 ∈
ℂ) |
182 | | 2ne0 12007 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 2 ≠
0 |
183 | | divcan2 11571 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑚 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 ≠ 0) → (2 · (𝑚 / 2)) = 𝑚) |
184 | 110, 182,
183 | mp3an23 1451 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℂ → (2
· (𝑚 / 2)) = 𝑚) |
185 | 181, 184 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ (𝑚 / 2) ∈ ℤ)) → (2 ·
(𝑚 / 2)) = 𝑚) |
186 | 185 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ (𝑚 / 2) ∈ ℤ)) → (i↑(2
· (𝑚 / 2))) =
(i↑𝑚)) |
187 | 180, 186 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ (𝑚 / 2) ∈ ℤ)) →
((i↑2)↑(𝑚 / 2)) =
(i↑𝑚)) |
188 | 168, 187 | eqtr3id 2793 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ (𝑚 / 2) ∈ ℤ)) → (-1↑(𝑚 / 2)) = (i↑𝑚)) |
189 | | neg1rr 12018 |
. . . . . . . . . . . . . . . . 17
⊢ -1 ∈
ℝ |
190 | | reexpcl 13727 |
. . . . . . . . . . . . . . . . 17
⊢ ((-1
∈ ℝ ∧ (𝑚 /
2) ∈ ℕ0) → (-1↑(𝑚 / 2)) ∈ ℝ) |
191 | 189, 178,
190 | sylancr 586 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ (𝑚 / 2) ∈ ℤ)) → (-1↑(𝑚 / 2)) ∈
ℝ) |
192 | 188, 191 | eqeltrrd 2840 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ (𝑚 / 2) ∈ ℤ)) → (i↑𝑚) ∈
ℝ) |
193 | 192 | expr 456 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ (0...𝑁)) → ((𝑚 / 2) ∈ ℤ → (i↑𝑚) ∈
ℝ)) |
194 | | 0zd 12261 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 0 ∈
ℤ) |
195 | | nnz 12272 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℤ) |
196 | 195 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 𝑀 ∈
ℤ) |
197 | 108 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 𝑁 ∈
ℂ) |
198 | 148 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 𝑚 ∈
ℕ0) |
199 | 198 | nn0cnd 12225 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 𝑚 ∈
ℂ) |
200 | | 1cnd 10901 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 1 ∈
ℂ) |
201 | 197, 199,
200 | pnpcan2d 11300 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑁 + 1) − (𝑚 + 1)) = (𝑁 − 𝑚)) |
202 | | 2t1e2 12066 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (2
· 1) = 2 |
203 | | df-2 11966 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 2 = (1 +
1) |
204 | 202, 203 | eqtr2i 2767 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (1 + 1) =
(2 · 1) |
205 | 204 | oveq2i 7266 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((2
· 𝑀) + (1 + 1)) =
((2 · 𝑀) + (2
· 1)) |
206 | 7 | oveq1i 7265 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑁 + 1) = (((2 · 𝑀) + 1) + 1) |
207 | 11 | nncnd 11919 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(2 · 𝑀) ∈
ℂ) |
208 | 207 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (2
· 𝑀) ∈
ℂ) |
209 | 208, 200,
200 | addassd 10928 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (((2
· 𝑀) + 1) + 1) = ((2
· 𝑀) + (1 +
1))) |
210 | 206, 209 | syl5eq 2791 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑁 + 1) = ((2 · 𝑀) + (1 + 1))) |
211 | | 2cnd 11981 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 2 ∈
ℂ) |
212 | | nncn 11911 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℂ) |
213 | 212 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 𝑀 ∈
ℂ) |
214 | 211, 213,
200 | adddid 10930 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (2
· (𝑀 + 1)) = ((2
· 𝑀) + (2 ·
1))) |
215 | 205, 210,
214 | 3eqtr4a 2805 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑁 + 1) = (2 · (𝑀 + 1))) |
216 | 215 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑁 + 1) − (𝑚 + 1)) = ((2 · (𝑀 + 1)) − (𝑚 + 1))) |
217 | 201, 216 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑁 − 𝑚) = ((2 · (𝑀 + 1)) − (𝑚 + 1))) |
218 | 217 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑁 − 𝑚) / 2) = (((2 · (𝑀 + 1)) − (𝑚 + 1)) / 2)) |
219 | 196 | peano2zd 12358 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑀 + 1) ∈
ℤ) |
220 | 219 | zcnd 12356 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑀 + 1) ∈
ℂ) |
221 | | mulcl 10886 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((2
∈ ℂ ∧ (𝑀 +
1) ∈ ℂ) → (2 · (𝑀 + 1)) ∈ ℂ) |
222 | 110, 220,
221 | sylancr 586 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (2
· (𝑀 + 1)) ∈
ℂ) |
223 | | peano2cn 11077 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 ∈ ℂ → (𝑚 + 1) ∈
ℂ) |
224 | 199, 223 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑚 + 1) ∈
ℂ) |
225 | 122 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (2 ∈
ℂ ∧ 2 ≠ 0)) |
226 | | divsubdir 11599 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((2
· (𝑀 + 1)) ∈
ℂ ∧ (𝑚 + 1)
∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((2 ·
(𝑀 + 1)) − (𝑚 + 1)) / 2) = (((2 ·
(𝑀 + 1)) / 2) −
((𝑚 + 1) /
2))) |
227 | 222, 224,
225, 226 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (((2
· (𝑀 + 1)) −
(𝑚 + 1)) / 2) = (((2
· (𝑀 + 1)) / 2)
− ((𝑚 + 1) /
2))) |
228 | 182 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 2 ≠
0) |
229 | 220, 211,
228 | divcan3d 11686 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((2
· (𝑀 + 1)) / 2) =
(𝑀 + 1)) |
230 | 229 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (((2
· (𝑀 + 1)) / 2)
− ((𝑚 + 1) / 2)) =
((𝑀 + 1) − ((𝑚 + 1) / 2))) |
231 | 218, 227,
230 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑁 − 𝑚) / 2) = ((𝑀 + 1) − ((𝑚 + 1) / 2))) |
232 | | simprr 769 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑚 + 1) / 2) ∈
ℤ) |
233 | 219, 232 | zsubcld 12360 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑀 + 1) − ((𝑚 + 1) / 2)) ∈
ℤ) |
234 | 231, 233 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑁 − 𝑚) / 2) ∈ ℤ) |
235 | 144 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑁 − 𝑚) ∈
ℕ0) |
236 | | nn0re 12172 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 − 𝑚) ∈ ℕ0 → (𝑁 − 𝑚) ∈ ℝ) |
237 | | nn0ge0 12188 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 − 𝑚) ∈ ℕ0 → 0 ≤
(𝑁 − 𝑚)) |
238 | | divge0 11774 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 − 𝑚) ∈ ℝ ∧ 0 ≤ (𝑁 − 𝑚)) ∧ (2 ∈ ℝ ∧ 0 < 2))
→ 0 ≤ ((𝑁 −
𝑚) / 2)) |
239 | 89, 90, 238 | mpanr12 701 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑁 − 𝑚) ∈ ℝ ∧ 0 ≤ (𝑁 − 𝑚)) → 0 ≤ ((𝑁 − 𝑚) / 2)) |
240 | 236, 237,
239 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 − 𝑚) ∈ ℕ0 → 0 ≤
((𝑁 − 𝑚) / 2)) |
241 | 235, 240 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 0 ≤
((𝑁 − 𝑚) / 2)) |
242 | 235 | nn0red 12224 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑁 − 𝑚) ∈ ℝ) |
243 | 49 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 𝑁 ∈
ℝ) |
244 | | peano2re 11078 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈
ℝ) |
245 | 243, 244 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑁 + 1) ∈
ℝ) |
246 | 198, 172 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 0 ≤
𝑚) |
247 | 198 | nn0red 12224 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 𝑚 ∈
ℝ) |
248 | 243, 247 | subge02d 11497 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (0 ≤
𝑚 ↔ (𝑁 − 𝑚) ≤ 𝑁)) |
249 | 246, 248 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑁 − 𝑚) ≤ 𝑁) |
250 | 243 | ltp1d 11835 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 𝑁 < (𝑁 + 1)) |
251 | 242, 243,
245, 249, 250 | lelttrd 11063 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑁 − 𝑚) < (𝑁 + 1)) |
252 | 251, 215 | breqtrd 5096 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑁 − 𝑚) < (2 · (𝑀 + 1))) |
253 | 219 | zred 12355 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑀 + 1) ∈
ℝ) |
254 | 91 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (2 ∈
ℝ ∧ 0 < 2)) |
255 | | ltdivmul 11780 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑁 − 𝑚) ∈ ℝ ∧ (𝑀 + 1) ∈ ℝ ∧ (2 ∈ ℝ
∧ 0 < 2)) → (((𝑁 − 𝑚) / 2) < (𝑀 + 1) ↔ (𝑁 − 𝑚) < (2 · (𝑀 + 1)))) |
256 | 242, 253,
254, 255 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (((𝑁 − 𝑚) / 2) < (𝑀 + 1) ↔ (𝑁 − 𝑚) < (2 · (𝑀 + 1)))) |
257 | 252, 256 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑁 − 𝑚) / 2) < (𝑀 + 1)) |
258 | | zleltp1 12301 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑁 − 𝑚) / 2) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((𝑁 − 𝑚) / 2) ≤ 𝑀 ↔ ((𝑁 − 𝑚) / 2) < (𝑀 + 1))) |
259 | 234, 196,
258 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (((𝑁 − 𝑚) / 2) ≤ 𝑀 ↔ ((𝑁 − 𝑚) / 2) < (𝑀 + 1))) |
260 | 257, 259 | mpbird 256 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑁 − 𝑚) / 2) ≤ 𝑀) |
261 | 194, 196,
234, 241, 260 | elfzd 13176 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑁 − 𝑚) / 2) ∈ (0...𝑀)) |
262 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = ((𝑁 − 𝑚) / 2) → (2 · 𝑘) = (2 · ((𝑁 − 𝑚) / 2))) |
263 | 262 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = ((𝑁 − 𝑚) / 2) → (𝑁 − (2 · 𝑘)) = (𝑁 − (2 · ((𝑁 − 𝑚) / 2)))) |
264 | | ovex 7288 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 − (2 · ((𝑁 − 𝑚) / 2))) ∈ V |
265 | 263, 133,
264 | fvmpt 6857 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 − 𝑚) / 2) ∈ (0...𝑀) → ((𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))‘((𝑁 − 𝑚) / 2)) = (𝑁 − (2 · ((𝑁 − 𝑚) / 2)))) |
266 | 261, 265 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))‘((𝑁 − 𝑚) / 2)) = (𝑁 − (2 · ((𝑁 − 𝑚) / 2)))) |
267 | 235 | nn0cnd 12225 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑁 − 𝑚) ∈ ℂ) |
268 | 267, 211,
228 | divcan2d 11683 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (2
· ((𝑁 − 𝑚) / 2)) = (𝑁 − 𝑚)) |
269 | 268 | oveq2d 7271 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑁 − (2 · ((𝑁 − 𝑚) / 2))) = (𝑁 − (𝑁 − 𝑚))) |
270 | 197, 199 | nncand 11267 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑁 − (𝑁 − 𝑚)) = 𝑚) |
271 | 266, 269,
270 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))‘((𝑁 − 𝑚) / 2)) = 𝑚) |
272 | 137 | ffnd 6585 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))) Fn (0...𝑀)) |
273 | | fnfvelrn 6940 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))) Fn (0...𝑀) ∧ ((𝑁 − 𝑚) / 2) ∈ (0...𝑀)) → ((𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))‘((𝑁 − 𝑚) / 2)) ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))) |
274 | 272, 261,
273 | syl2an2r 681 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))‘((𝑁 − 𝑚) / 2)) ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))) |
275 | 271, 274 | eqeltrrd 2840 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))) |
276 | 275 | expr 456 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ (0...𝑁)) → (((𝑚 + 1) / 2) ∈ ℤ → 𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))))) |
277 | 193, 276 | orim12d 961 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ (0...𝑁)) → (((𝑚 / 2) ∈ ℤ ∨ ((𝑚 + 1) / 2) ∈ ℤ)
→ ((i↑𝑚) ∈
ℝ ∨ 𝑚 ∈ ran
(𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))))) |
278 | 166, 277 | mpd 15 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ (0...𝑁)) → ((i↑𝑚) ∈ ℝ ∨ 𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))))) |
279 | 278 | orcomd 867 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ (0...𝑁)) → (𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))) ∨ (i↑𝑚) ∈ ℝ)) |
280 | 279 | ord 860 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ (0...𝑁)) → (¬ 𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))) → (i↑𝑚) ∈ ℝ)) |
281 | 280 | impr 454 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
(𝑚 ∈ (0...𝑁) ∧ ¬ 𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))))) → (i↑𝑚) ∈ ℝ) |
282 | 162, 281 | sylan2b 593 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ ((0...𝑁) ∖ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))))) → (i↑𝑚) ∈ ℝ) |
283 | 161, 282 | remulcld 10936 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ ((0...𝑁) ∖ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))))) → (((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) · (i↑𝑚)) ∈ ℝ) |
284 | 160, 283 | remulcld 10936 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ ((0...𝑁) ∖ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))))) → ((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) · (i↑𝑚))) ∈ ℝ) |
285 | 284 | reim0d 14864 |
. . . . 5
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑚 ∈ ((0...𝑁) ∖ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))))) → (ℑ‘((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) · (i↑𝑚)))) = 0) |
286 | | fzfid 13621 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(0...𝑁) ∈
Fin) |
287 | 138, 156,
285, 286 | fsumss 15365 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
Σ𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))(ℑ‘((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) · (i↑𝑚)))) = Σ𝑚 ∈ (0...𝑁)(ℑ‘((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) · (i↑𝑚))))) |
288 | | elfznn0 13278 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0) |
289 | 288 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℕ0) |
290 | | nn0mulcl 12199 |
. . . . . . . . . . . . . . . . 17
⊢ ((2
∈ ℕ0 ∧ 𝑗 ∈ ℕ0) → (2
· 𝑗) ∈
ℕ0) |
291 | 75, 289, 290 | sylancr 586 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (2 · 𝑗) ∈
ℕ0) |
292 | 291 | nn0zd 12353 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (2 · 𝑗) ∈
ℤ) |
293 | | bccl 13964 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ (2 · 𝑗) ∈
ℤ) → (𝑁C(2
· 𝑗)) ∈
ℕ0) |
294 | 14, 292, 293 | syl2an2r 681 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (𝑁C(2 · 𝑗)) ∈
ℕ0) |
295 | 294 | nn0red 12224 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (𝑁C(2 · 𝑗)) ∈ ℝ) |
296 | | fznn0sub 13217 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0...𝑀) → (𝑀 − 𝑗) ∈
ℕ0) |
297 | 296 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (𝑀 − 𝑗) ∈
ℕ0) |
298 | | reexpcl 13727 |
. . . . . . . . . . . . . 14
⊢ ((-1
∈ ℝ ∧ (𝑀
− 𝑗) ∈
ℕ0) → (-1↑(𝑀 − 𝑗)) ∈ ℝ) |
299 | 189, 297,
298 | sylancr 586 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (-1↑(𝑀 − 𝑗)) ∈ ℝ) |
300 | 295, 299 | remulcld 10936 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → ((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) ∈ ℝ) |
301 | | 2z 12282 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℤ |
302 | | znegcl 12285 |
. . . . . . . . . . . . . . . 16
⊢ (2 ∈
ℤ → -2 ∈ ℤ) |
303 | 301, 302 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ -2 ∈
ℤ |
304 | | rpexpcl 13729 |
. . . . . . . . . . . . . . 15
⊢
(((tan‘𝐴)
∈ ℝ+ ∧ -2 ∈ ℤ) → ((tan‘𝐴)↑-2) ∈
ℝ+) |
305 | 2, 303, 304 | sylancl 585 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
((tan‘𝐴)↑-2)
∈ ℝ+) |
306 | 305 | rpred 12701 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
((tan‘𝐴)↑-2)
∈ ℝ) |
307 | | reexpcl 13727 |
. . . . . . . . . . . . 13
⊢
((((tan‘𝐴)↑-2) ∈ ℝ ∧ 𝑗 ∈ ℕ0)
→ (((tan‘𝐴)↑-2)↑𝑗) ∈ ℝ) |
308 | 306, 288,
307 | syl2an 595 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (((tan‘𝐴)↑-2)↑𝑗) ∈
ℝ) |
309 | 300, 308 | remulcld 10936 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)) ∈ ℝ) |
310 | 309 | recnd 10934 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)) ∈ ℂ) |
311 | | mulcl 10886 |
. . . . . . . . . 10
⊢ ((i
∈ ℂ ∧ (((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)) ∈ ℂ) → (i ·
(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗))) ∈ ℂ) |
312 | 5, 310, 311 | sylancr 586 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (i · (((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗))) ∈ ℂ) |
313 | 312 | addid2d 11106 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (0 + (i ·
(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)))) = (i · (((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)))) |
314 | 294 | nn0cnd 12225 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (𝑁C(2 · 𝑗)) ∈ ℂ) |
315 | 299 | recnd 10934 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (-1↑(𝑀 − 𝑗)) ∈ ℂ) |
316 | 308 | recnd 10934 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (((tan‘𝐴)↑-2)↑𝑗) ∈
ℂ) |
317 | 314, 315,
316 | mulassd 10929 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)) = ((𝑁C(2 · 𝑗)) · ((-1↑(𝑀 − 𝑗)) · (((tan‘𝐴)↑-2)↑𝑗)))) |
318 | 317 | oveq2d 7271 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (i · (((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗))) = (i · ((𝑁C(2 · 𝑗)) · ((-1↑(𝑀 − 𝑗)) · (((tan‘𝐴)↑-2)↑𝑗))))) |
319 | 5 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → i ∈
ℂ) |
320 | 315, 316 | mulcld 10926 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → ((-1↑(𝑀 − 𝑗)) · (((tan‘𝐴)↑-2)↑𝑗)) ∈ ℂ) |
321 | 319, 314,
320 | mul12d 11114 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (i · ((𝑁C(2 · 𝑗)) · ((-1↑(𝑀 − 𝑗)) · (((tan‘𝐴)↑-2)↑𝑗)))) = ((𝑁C(2 · 𝑗)) · (i · ((-1↑(𝑀 − 𝑗)) · (((tan‘𝐴)↑-2)↑𝑗))))) |
322 | 318, 321 | eqtrd 2778 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (i · (((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗))) = ((𝑁C(2 · 𝑗)) · (i · ((-1↑(𝑀 − 𝑗)) · (((tan‘𝐴)↑-2)↑𝑗))))) |
323 | | bccmpl 13951 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (2 · 𝑗) ∈
ℤ) → (𝑁C(2
· 𝑗)) = (𝑁C(𝑁 − (2 · 𝑗)))) |
324 | 14, 292, 323 | syl2an2r 681 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (𝑁C(2 · 𝑗)) = (𝑁C(𝑁 − (2 · 𝑗)))) |
325 | 108 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → 𝑁 ∈ ℂ) |
326 | 291 | nn0cnd 12225 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (2 · 𝑗) ∈
ℂ) |
327 | 325, 326 | nncand 11267 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (𝑁 − (𝑁 − (2 · 𝑗))) = (2 · 𝑗)) |
328 | 327 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → ((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) = ((1 / (tan‘𝐴))↑(2 · 𝑗))) |
329 | 2 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (tan‘𝐴) ∈
ℝ+) |
330 | 329 | rpcnd 12703 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (tan‘𝐴) ∈
ℂ) |
331 | | expneg 13718 |
. . . . . . . . . . . . . 14
⊢
(((tan‘𝐴)
∈ ℂ ∧ (2 · 𝑗) ∈ ℕ0) →
((tan‘𝐴)↑-(2
· 𝑗)) = (1 /
((tan‘𝐴)↑(2
· 𝑗)))) |
332 | 330, 291,
331 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → ((tan‘𝐴)↑-(2 · 𝑗)) = (1 / ((tan‘𝐴)↑(2 · 𝑗)))) |
333 | 289 | nn0cnd 12225 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℂ) |
334 | | mulneg1 11341 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℂ ∧ 𝑗
∈ ℂ) → (-2 · 𝑗) = -(2 · 𝑗)) |
335 | 110, 333,
334 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (-2 · 𝑗) = -(2 · 𝑗)) |
336 | 335 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → ((tan‘𝐴)↑(-2 · 𝑗)) = ((tan‘𝐴)↑-(2 · 𝑗))) |
337 | 329 | rpne0d 12706 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (tan‘𝐴) ≠ 0) |
338 | 330, 337,
292 | exprecd 13800 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → ((1 / (tan‘𝐴))↑(2 · 𝑗)) = (1 / ((tan‘𝐴)↑(2 · 𝑗)))) |
339 | 332, 336,
338 | 3eqtr4d 2788 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → ((tan‘𝐴)↑(-2 · 𝑗)) = ((1 / (tan‘𝐴))↑(2 · 𝑗))) |
340 | 303 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → -2 ∈
ℤ) |
341 | 289 | nn0zd 12353 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℤ) |
342 | | expmulz 13757 |
. . . . . . . . . . . . 13
⊢
((((tan‘𝐴)
∈ ℂ ∧ (tan‘𝐴) ≠ 0) ∧ (-2 ∈ ℤ ∧
𝑗 ∈ ℤ)) →
((tan‘𝐴)↑(-2
· 𝑗)) =
(((tan‘𝐴)↑-2)↑𝑗)) |
343 | 330, 337,
340, 341, 342 | syl22anc 835 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → ((tan‘𝐴)↑(-2 · 𝑗)) = (((tan‘𝐴)↑-2)↑𝑗)) |
344 | 328, 339,
343 | 3eqtr2d 2784 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → ((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) = (((tan‘𝐴)↑-2)↑𝑗)) |
345 | 7 | oveq1i 7265 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 − (2 · 𝑗)) = (((2 · 𝑀) + 1) − (2 · 𝑗)) |
346 | 11 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (2 · 𝑀) ∈
ℕ) |
347 | 346 | nncnd 11919 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (2 · 𝑀) ∈
ℂ) |
348 | | 1cnd 10901 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → 1 ∈
ℂ) |
349 | 347, 348,
326 | addsubd 11283 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (((2 · 𝑀) + 1) − (2 · 𝑗)) = (((2 · 𝑀) − (2 · 𝑗)) + 1)) |
350 | | 2cnd 11981 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → 2 ∈
ℂ) |
351 | 212 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → 𝑀 ∈ ℂ) |
352 | 350, 351,
333 | subdid 11361 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (2 · (𝑀 − 𝑗)) = ((2 · 𝑀) − (2 · 𝑗))) |
353 | 352 | oveq1d 7270 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → ((2 · (𝑀 − 𝑗)) + 1) = (((2 · 𝑀) − (2 · 𝑗)) + 1)) |
354 | 349, 353 | eqtr4d 2781 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (((2 · 𝑀) + 1) − (2 · 𝑗)) = ((2 · (𝑀 − 𝑗)) + 1)) |
355 | 345, 354 | syl5eq 2791 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (𝑁 − (2 · 𝑗)) = ((2 · (𝑀 − 𝑗)) + 1)) |
356 | 355 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (i↑(𝑁 − (2 · 𝑗))) = (i↑((2 ·
(𝑀 − 𝑗)) + 1))) |
357 | | nn0mulcl 12199 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℕ0 ∧ (𝑀 − 𝑗) ∈ ℕ0) → (2
· (𝑀 − 𝑗)) ∈
ℕ0) |
358 | 75, 297, 357 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (2 · (𝑀 − 𝑗)) ∈
ℕ0) |
359 | | expp1 13717 |
. . . . . . . . . . . . . 14
⊢ ((i
∈ ℂ ∧ (2 · (𝑀 − 𝑗)) ∈ ℕ0) →
(i↑((2 · (𝑀
− 𝑗)) + 1)) =
((i↑(2 · (𝑀
− 𝑗))) ·
i)) |
360 | 5, 358, 359 | sylancr 586 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (i↑((2 ·
(𝑀 − 𝑗)) + 1)) = ((i↑(2 ·
(𝑀 − 𝑗))) ·
i)) |
361 | 75 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → 2 ∈
ℕ0) |
362 | 319, 297,
361 | expmuld 13795 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (i↑(2 ·
(𝑀 − 𝑗))) = ((i↑2)↑(𝑀 − 𝑗))) |
363 | 167 | oveq1i 7265 |
. . . . . . . . . . . . . . 15
⊢
((i↑2)↑(𝑀
− 𝑗)) =
(-1↑(𝑀 − 𝑗)) |
364 | 362, 363 | eqtrdi 2795 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (i↑(2 ·
(𝑀 − 𝑗))) = (-1↑(𝑀 − 𝑗))) |
365 | 364 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → ((i↑(2 ·
(𝑀 − 𝑗))) · i) =
((-1↑(𝑀 − 𝑗)) · i)) |
366 | 356, 360,
365 | 3eqtrd 2782 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (i↑(𝑁 − (2 · 𝑗))) = ((-1↑(𝑀 − 𝑗)) · i)) |
367 | | mulcom 10888 |
. . . . . . . . . . . . 13
⊢
(((-1↑(𝑀
− 𝑗)) ∈ ℂ
∧ i ∈ ℂ) → ((-1↑(𝑀 − 𝑗)) · i) = (i · (-1↑(𝑀 − 𝑗)))) |
368 | 315, 5, 367 | sylancl 585 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → ((-1↑(𝑀 − 𝑗)) · i) = (i · (-1↑(𝑀 − 𝑗)))) |
369 | 366, 368 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (i↑(𝑁 − (2 · 𝑗))) = (i ·
(-1↑(𝑀 − 𝑗)))) |
370 | 344, 369 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (((1 /
(tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) · (i↑(𝑁 − (2 · 𝑗)))) = ((((tan‘𝐴)↑-2)↑𝑗) · (i · (-1↑(𝑀 − 𝑗))))) |
371 | | mulcl 10886 |
. . . . . . . . . . . 12
⊢ ((i
∈ ℂ ∧ (-1↑(𝑀 − 𝑗)) ∈ ℂ) → (i ·
(-1↑(𝑀 − 𝑗))) ∈
ℂ) |
372 | 5, 315, 371 | sylancr 586 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (i ·
(-1↑(𝑀 − 𝑗))) ∈
ℂ) |
373 | 372, 316 | mulcomd 10927 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → ((i ·
(-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)) = ((((tan‘𝐴)↑-2)↑𝑗) · (i ·
(-1↑(𝑀 − 𝑗))))) |
374 | 319, 315,
316 | mulassd 10929 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → ((i ·
(-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)) = (i ·
((-1↑(𝑀 − 𝑗)) · (((tan‘𝐴)↑-2)↑𝑗)))) |
375 | 370, 373,
374 | 3eqtr2rd 2785 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (i ·
((-1↑(𝑀 − 𝑗)) · (((tan‘𝐴)↑-2)↑𝑗))) = (((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) · (i↑(𝑁 − (2 · 𝑗))))) |
376 | 324, 375 | oveq12d 7273 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → ((𝑁C(2 · 𝑗)) · (i · ((-1↑(𝑀 − 𝑗)) · (((tan‘𝐴)↑-2)↑𝑗)))) = ((𝑁C(𝑁 − (2 · 𝑗))) · (((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) · (i↑(𝑁 − (2 · 𝑗)))))) |
377 | 313, 322,
376 | 3eqtrd 2782 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (0 + (i ·
(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)))) = ((𝑁C(𝑁 − (2 · 𝑗))) · (((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) · (i↑(𝑁 − (2 · 𝑗)))))) |
378 | 377 | fveq2d 6760 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (ℑ‘(0 + (i
· (((𝑁C(2 ·
𝑗)) ·
(-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗))))) = (ℑ‘((𝑁C(𝑁 − (2 · 𝑗))) · (((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) · (i↑(𝑁 − (2 · 𝑗))))))) |
379 | | 0re 10908 |
. . . . . . 7
⊢ 0 ∈
ℝ |
380 | | crim 14754 |
. . . . . . 7
⊢ ((0
∈ ℝ ∧ (((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)) ∈ ℝ) → (ℑ‘(0 +
(i · (((𝑁C(2
· 𝑗)) ·
(-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗))))) = (((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗))) |
381 | 379, 309,
380 | sylancr 586 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (ℑ‘(0 + (i
· (((𝑁C(2 ·
𝑗)) ·
(-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗))))) = (((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗))) |
382 | 378, 381 | eqtr3d 2780 |
. . . . 5
⊢ (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧
𝑗 ∈ (0...𝑀)) → (ℑ‘((𝑁C(𝑁 − (2 · 𝑗))) · (((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) · (i↑(𝑁 − (2 · 𝑗)))))) = (((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗))) |
383 | 382 | sumeq2dv 15343 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
Σ𝑗 ∈ (0...𝑀)(ℑ‘((𝑁C(𝑁 − (2 · 𝑗))) · (((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) · (i↑(𝑁 − (2 · 𝑗)))))) = Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗))) |
384 | 157, 287,
383 | 3eqtr3d 2786 |
. . 3
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
Σ𝑚 ∈ (0...𝑁)(ℑ‘((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) · (i↑𝑚)))) = Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗))) |
385 | 286, 153 | fsumim 15449 |
. . 3
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(ℑ‘Σ𝑚
∈ (0...𝑁)((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) · (i↑𝑚)))) = Σ𝑚 ∈ (0...𝑁)(ℑ‘((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) · (i↑𝑚))))) |
386 | 305 | rpcnd 12703 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
((tan‘𝐴)↑-2)
∈ ℂ) |
387 | | oveq1 7262 |
. . . . . . 7
⊢ (𝑡 = ((tan‘𝐴)↑-2) → (𝑡↑𝑗) = (((tan‘𝐴)↑-2)↑𝑗)) |
388 | 387 | oveq2d 7271 |
. . . . . 6
⊢ (𝑡 = ((tan‘𝐴)↑-2) → (((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (𝑡↑𝑗)) = (((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗))) |
389 | 388 | sumeq2sdv 15344 |
. . . . 5
⊢ (𝑡 = ((tan‘𝐴)↑-2) → Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (𝑡↑𝑗)) = Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗))) |
390 | | basel.p |
. . . . 5
⊢ 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (𝑡↑𝑗))) |
391 | | sumex 15327 |
. . . . 5
⊢
Σ𝑗 ∈
(0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)) ∈ V |
392 | 389, 390,
391 | fvmpt 6857 |
. . . 4
⊢
(((tan‘𝐴)↑-2) ∈ ℂ → (𝑃‘((tan‘𝐴)↑-2)) = Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗))) |
393 | 386, 392 | syl 17 |
. . 3
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(𝑃‘((tan‘𝐴)↑-2)) = Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀 − 𝑗))) · (((tan‘𝐴)↑-2)↑𝑗))) |
394 | 384, 385,
393 | 3eqtr4d 2788 |
. 2
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(ℑ‘Σ𝑚
∈ (0...𝑁)((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁 − 𝑚)) · (i↑𝑚)))) = (𝑃‘((tan‘𝐴)↑-2))) |
395 | 51, 58 | rerpdivcld 12732 |
. . 3
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
((cos‘(𝑁 ·
𝐴)) / ((sin‘𝐴)↑𝑁)) ∈ ℝ) |
396 | 53, 58 | rerpdivcld 12732 |
. . 3
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
((sin‘(𝑁 ·
𝐴)) / ((sin‘𝐴)↑𝑁)) ∈ ℝ) |
397 | 395, 396 | crimd 14871 |
. 2
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(ℑ‘(((cos‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁)) + (i · ((sin‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁))))) = ((sin‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁))) |
398 | 66, 394, 397 | 3eqtr3d 2786 |
1
⊢ ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) →
(𝑃‘((tan‘𝐴)↑-2)) = ((sin‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁))) |