MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem3 Structured version   Visualization version   GIF version

Theorem basellem3 25030
Description: Lemma for basel 25037. Using the binomial theorem and de Moivre's formula, we have the identity e↑i𝑁𝑥 / (sin𝑥)↑𝑛 = Σ𝑚 ∈ (0...𝑁)(𝑁C𝑚)(i↑𝑚)(cot𝑥)↑(𝑁𝑚), so taking imaginary parts yields sin(𝑁𝑥) / (sin𝑥)↑𝑁 = Σ𝑗 ∈ (0...𝑀)(𝑁C2𝑗)(-1)↑(𝑀𝑗) (cot𝑥)↑(-2𝑗) = 𝑃((cot𝑥)↑2), where 𝑁 = 2𝑀 + 1. (Contributed by Mario Carneiro, 30-Jul-2014.)
Hypotheses
Ref Expression
basel.n 𝑁 = ((2 · 𝑀) + 1)
basel.p 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
Assertion
Ref Expression
basellem3 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (𝑃‘((tan‘𝐴)↑-2)) = ((sin‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁)))
Distinct variable groups:   𝑡,𝑗,𝐴   𝑗,𝑀,𝑡   𝑗,𝑁,𝑡
Allowed substitution hints:   𝑃(𝑡,𝑗)

Proof of Theorem basellem3
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tanrpcl 24477 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (tan‘𝐴) ∈ ℝ+)
21adantl 467 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (tan‘𝐴) ∈ ℝ+)
32rpreccld 12085 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (1 / (tan‘𝐴)) ∈ ℝ+)
43rpcnd 12077 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (1 / (tan‘𝐴)) ∈ ℂ)
5 ax-icn 10197 . . . . . 6 i ∈ ℂ
65a1i 11 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → i ∈ ℂ)
7 basel.n . . . . . . 7 𝑁 = ((2 · 𝑀) + 1)
8 2nn 11387 . . . . . . . . 9 2 ∈ ℕ
9 simpl 468 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → 𝑀 ∈ ℕ)
10 nnmulcl 11245 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
118, 9, 10sylancr 575 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (2 · 𝑀) ∈ ℕ)
1211peano2nnd 11239 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → ((2 · 𝑀) + 1) ∈ ℕ)
137, 12syl5eqel 2854 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → 𝑁 ∈ ℕ)
1413nnnn0d 11553 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → 𝑁 ∈ ℕ0)
15 binom 14769 . . . . 5 (((1 / (tan‘𝐴)) ∈ ℂ ∧ i ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((1 / (tan‘𝐴)) + i)↑𝑁) = Σ𝑚 ∈ (0...𝑁)((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁𝑚)) · (i↑𝑚))))
164, 6, 14, 15syl3anc 1476 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (((1 / (tan‘𝐴)) + i)↑𝑁) = Σ𝑚 ∈ (0...𝑁)((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁𝑚)) · (i↑𝑚))))
17 elioore 12410 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 ∈ ℝ)
1817adantl 467 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → 𝐴 ∈ ℝ)
1918recoscld 15080 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (cos‘𝐴) ∈ ℝ)
2019recnd 10270 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (cos‘𝐴) ∈ ℂ)
2118resincld 15079 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (sin‘𝐴) ∈ ℝ)
2221recnd 10270 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (sin‘𝐴) ∈ ℂ)
23 mulcl 10222 . . . . . . . . 9 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ)
245, 22, 23sylancr 575 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (i · (sin‘𝐴)) ∈ ℂ)
2520, 24addcld 10261 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → ((cos‘𝐴) + (i · (sin‘𝐴))) ∈ ℂ)
26 sincosq1sgn 24471 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))
2726adantl 467 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))
2827simpld 482 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → 0 < (sin‘𝐴))
2928gt0ne0d 10794 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (sin‘𝐴) ≠ 0)
3025, 22, 29, 14expdivd 13229 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → ((((cos‘𝐴) + (i · (sin‘𝐴))) / (sin‘𝐴))↑𝑁) = ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) / ((sin‘𝐴)↑𝑁)))
3120, 24, 22, 29divdird 11041 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (((cos‘𝐴) + (i · (sin‘𝐴))) / (sin‘𝐴)) = (((cos‘𝐴) / (sin‘𝐴)) + ((i · (sin‘𝐴)) / (sin‘𝐴))))
3218recnd 10270 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → 𝐴 ∈ ℂ)
3327simprd 483 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → 0 < (cos‘𝐴))
3433gt0ne0d 10794 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (cos‘𝐴) ≠ 0)
35 tanval 15064 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
3632, 34, 35syl2anc 573 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
3736oveq2d 6809 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (1 / (tan‘𝐴)) = (1 / ((sin‘𝐴) / (cos‘𝐴))))
3822, 20, 29, 34recdivd 11020 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (1 / ((sin‘𝐴) / (cos‘𝐴))) = ((cos‘𝐴) / (sin‘𝐴)))
3937, 38eqtr2d 2806 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → ((cos‘𝐴) / (sin‘𝐴)) = (1 / (tan‘𝐴)))
406, 22, 29divcan4d 11009 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → ((i · (sin‘𝐴)) / (sin‘𝐴)) = i)
4139, 40oveq12d 6811 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (((cos‘𝐴) / (sin‘𝐴)) + ((i · (sin‘𝐴)) / (sin‘𝐴))) = ((1 / (tan‘𝐴)) + i))
4231, 41eqtrd 2805 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (((cos‘𝐴) + (i · (sin‘𝐴))) / (sin‘𝐴)) = ((1 / (tan‘𝐴)) + i))
4342oveq1d 6808 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → ((((cos‘𝐴) + (i · (sin‘𝐴))) / (sin‘𝐴))↑𝑁) = (((1 / (tan‘𝐴)) + i)↑𝑁))
4413nnzd 11683 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → 𝑁 ∈ ℤ)
45 demoivre 15136 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))))
4632, 44, 45syl2anc 573 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))))
4746oveq1d 6808 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) / ((sin‘𝐴)↑𝑁)) = (((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))) / ((sin‘𝐴)↑𝑁)))
4830, 43, 473eqtr3d 2813 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (((1 / (tan‘𝐴)) + i)↑𝑁) = (((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))) / ((sin‘𝐴)↑𝑁)))
4913nnred 11237 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → 𝑁 ∈ ℝ)
5049, 18remulcld 10272 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (𝑁 · 𝐴) ∈ ℝ)
5150recoscld 15080 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (cos‘(𝑁 · 𝐴)) ∈ ℝ)
5251recnd 10270 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (cos‘(𝑁 · 𝐴)) ∈ ℂ)
5350resincld 15079 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (sin‘(𝑁 · 𝐴)) ∈ ℝ)
5453recnd 10270 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (sin‘(𝑁 · 𝐴)) ∈ ℂ)
55 mulcl 10222 . . . . . . 7 ((i ∈ ℂ ∧ (sin‘(𝑁 · 𝐴)) ∈ ℂ) → (i · (sin‘(𝑁 · 𝐴))) ∈ ℂ)
565, 54, 55sylancr 575 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (i · (sin‘(𝑁 · 𝐴))) ∈ ℂ)
5721, 28elrpd 12072 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (sin‘𝐴) ∈ ℝ+)
5857, 44rpexpcld 13239 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → ((sin‘𝐴)↑𝑁) ∈ ℝ+)
5958rpcnd 12077 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → ((sin‘𝐴)↑𝑁) ∈ ℂ)
6058rpne0d 12080 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → ((sin‘𝐴)↑𝑁) ≠ 0)
6152, 56, 59, 60divdird 11041 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))) / ((sin‘𝐴)↑𝑁)) = (((cos‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁)) + ((i · (sin‘(𝑁 · 𝐴))) / ((sin‘𝐴)↑𝑁))))
626, 54, 59, 60divassd 11038 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → ((i · (sin‘(𝑁 · 𝐴))) / ((sin‘𝐴)↑𝑁)) = (i · ((sin‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁))))
6362oveq2d 6809 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (((cos‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁)) + ((i · (sin‘(𝑁 · 𝐴))) / ((sin‘𝐴)↑𝑁))) = (((cos‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁)) + (i · ((sin‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁)))))
6448, 61, 633eqtrd 2809 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (((1 / (tan‘𝐴)) + i)↑𝑁) = (((cos‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁)) + (i · ((sin‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁)))))
6516, 64eqtr3d 2807 . . 3 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → Σ𝑚 ∈ (0...𝑁)((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁𝑚)) · (i↑𝑚))) = (((cos‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁)) + (i · ((sin‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁)))))
6665fveq2d 6336 . 2 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (ℑ‘Σ𝑚 ∈ (0...𝑁)((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁𝑚)) · (i↑𝑚)))) = (ℑ‘(((cos‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁)) + (i · ((sin‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁))))))
67 oveq2 6801 . . . . . . 7 (𝑚 = (𝑁 − (2 · 𝑗)) → (𝑁C𝑚) = (𝑁C(𝑁 − (2 · 𝑗))))
68 oveq2 6801 . . . . . . . . 9 (𝑚 = (𝑁 − (2 · 𝑗)) → (𝑁𝑚) = (𝑁 − (𝑁 − (2 · 𝑗))))
6968oveq2d 6809 . . . . . . . 8 (𝑚 = (𝑁 − (2 · 𝑗)) → ((1 / (tan‘𝐴))↑(𝑁𝑚)) = ((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))))
70 oveq2 6801 . . . . . . . 8 (𝑚 = (𝑁 − (2 · 𝑗)) → (i↑𝑚) = (i↑(𝑁 − (2 · 𝑗))))
7169, 70oveq12d 6811 . . . . . . 7 (𝑚 = (𝑁 − (2 · 𝑗)) → (((1 / (tan‘𝐴))↑(𝑁𝑚)) · (i↑𝑚)) = (((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) · (i↑(𝑁 − (2 · 𝑗)))))
7267, 71oveq12d 6811 . . . . . 6 (𝑚 = (𝑁 − (2 · 𝑗)) → ((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁𝑚)) · (i↑𝑚))) = ((𝑁C(𝑁 − (2 · 𝑗))) · (((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) · (i↑(𝑁 − (2 · 𝑗))))))
7372fveq2d 6336 . . . . 5 (𝑚 = (𝑁 − (2 · 𝑗)) → (ℑ‘((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁𝑚)) · (i↑𝑚)))) = (ℑ‘((𝑁C(𝑁 − (2 · 𝑗))) · (((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) · (i↑(𝑁 − (2 · 𝑗)))))))
74 fzfid 12980 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (0...𝑀) ∈ Fin)
75 2nn0 11511 . . . . . . . . . . . . 13 2 ∈ ℕ0
76 elfznn0 12640 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0)
7776adantl 467 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℕ0)
78 nn0mulcl 11531 . . . . . . . . . . . . 13 ((2 ∈ ℕ0𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
7975, 77, 78sylancr 575 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑘 ∈ (0...𝑀)) → (2 · 𝑘) ∈ ℕ0)
8079nn0red 11554 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑘 ∈ (0...𝑀)) → (2 · 𝑘) ∈ ℝ)
8111nnred 11237 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (2 · 𝑀) ∈ ℝ)
8281adantr 466 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑘 ∈ (0...𝑀)) → (2 · 𝑀) ∈ ℝ)
8349adantr 466 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑘 ∈ (0...𝑀)) → 𝑁 ∈ ℝ)
84 elfzle2 12552 . . . . . . . . . . . . 13 (𝑘 ∈ (0...𝑀) → 𝑘𝑀)
8584adantl 467 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘𝑀)
8677nn0red 11554 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℝ)
87 nnre 11229 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
8887ad2antrr 705 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑘 ∈ (0...𝑀)) → 𝑀 ∈ ℝ)
89 2re 11292 . . . . . . . . . . . . . . 15 2 ∈ ℝ
90 2pos 11314 . . . . . . . . . . . . . . 15 0 < 2
9189, 90pm3.2i 447 . . . . . . . . . . . . . 14 (2 ∈ ℝ ∧ 0 < 2)
9291a1i 11 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑘 ∈ (0...𝑀)) → (2 ∈ ℝ ∧ 0 < 2))
93 lemul2 11078 . . . . . . . . . . . . 13 ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑘𝑀 ↔ (2 · 𝑘) ≤ (2 · 𝑀)))
9486, 88, 92, 93syl3anc 1476 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑘 ∈ (0...𝑀)) → (𝑘𝑀 ↔ (2 · 𝑘) ≤ (2 · 𝑀)))
9585, 94mpbid 222 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑘 ∈ (0...𝑀)) → (2 · 𝑘) ≤ (2 · 𝑀))
9682lep1d 11157 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑘 ∈ (0...𝑀)) → (2 · 𝑀) ≤ ((2 · 𝑀) + 1))
9796, 7syl6breqr 4828 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑘 ∈ (0...𝑀)) → (2 · 𝑀) ≤ 𝑁)
9880, 82, 83, 95, 97letrd 10396 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑘 ∈ (0...𝑀)) → (2 · 𝑘) ≤ 𝑁)
99 nn0uz 11924 . . . . . . . . . . . 12 0 = (ℤ‘0)
10079, 99syl6eleq 2860 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑘 ∈ (0...𝑀)) → (2 · 𝑘) ∈ (ℤ‘0))
10144adantr 466 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑘 ∈ (0...𝑀)) → 𝑁 ∈ ℤ)
102 elfz5 12541 . . . . . . . . . . 11 (((2 · 𝑘) ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → ((2 · 𝑘) ∈ (0...𝑁) ↔ (2 · 𝑘) ≤ 𝑁))
103100, 101, 102syl2anc 573 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑘 ∈ (0...𝑀)) → ((2 · 𝑘) ∈ (0...𝑁) ↔ (2 · 𝑘) ≤ 𝑁))
10498, 103mpbird 247 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑘 ∈ (0...𝑀)) → (2 · 𝑘) ∈ (0...𝑁))
105 fznn0sub2 12654 . . . . . . . . 9 ((2 · 𝑘) ∈ (0...𝑁) → (𝑁 − (2 · 𝑘)) ∈ (0...𝑁))
106104, 105syl 17 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑘 ∈ (0...𝑀)) → (𝑁 − (2 · 𝑘)) ∈ (0...𝑁))
107106ex 397 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (𝑘 ∈ (0...𝑀) → (𝑁 − (2 · 𝑘)) ∈ (0...𝑁)))
10813nncnd 11238 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → 𝑁 ∈ ℂ)
109108adantr 466 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑘 ∈ (0...𝑀) ∧ 𝑚 ∈ (0...𝑀))) → 𝑁 ∈ ℂ)
110 2cn 11293 . . . . . . . . . . 11 2 ∈ ℂ
111 elfzelz 12549 . . . . . . . . . . . . 13 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℤ)
112111zcnd 11685 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℂ)
113112ad2antrl 707 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑘 ∈ (0...𝑀) ∧ 𝑚 ∈ (0...𝑀))) → 𝑘 ∈ ℂ)
114 mulcl 10222 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · 𝑘) ∈ ℂ)
115110, 113, 114sylancr 575 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑘 ∈ (0...𝑀) ∧ 𝑚 ∈ (0...𝑀))) → (2 · 𝑘) ∈ ℂ)
116112ssriv 3756 . . . . . . . . . . . 12 (0...𝑀) ⊆ ℂ
117 simprr 756 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑘 ∈ (0...𝑀) ∧ 𝑚 ∈ (0...𝑀))) → 𝑚 ∈ (0...𝑀))
118116, 117sseldi 3750 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑘 ∈ (0...𝑀) ∧ 𝑚 ∈ (0...𝑀))) → 𝑚 ∈ ℂ)
119 mulcl 10222 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (2 · 𝑚) ∈ ℂ)
120110, 118, 119sylancr 575 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑘 ∈ (0...𝑀) ∧ 𝑚 ∈ (0...𝑀))) → (2 · 𝑚) ∈ ℂ)
121109, 115, 120subcanad 10637 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑘 ∈ (0...𝑀) ∧ 𝑚 ∈ (0...𝑀))) → ((𝑁 − (2 · 𝑘)) = (𝑁 − (2 · 𝑚)) ↔ (2 · 𝑘) = (2 · 𝑚)))
122 2cnne0 11444 . . . . . . . . . . 11 (2 ∈ ℂ ∧ 2 ≠ 0)
123122a1i 11 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑘 ∈ (0...𝑀) ∧ 𝑚 ∈ (0...𝑀))) → (2 ∈ ℂ ∧ 2 ≠ 0))
124 mulcan 10866 . . . . . . . . . 10 ((𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2 · 𝑘) = (2 · 𝑚) ↔ 𝑘 = 𝑚))
125113, 118, 123, 124syl3anc 1476 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑘 ∈ (0...𝑀) ∧ 𝑚 ∈ (0...𝑀))) → ((2 · 𝑘) = (2 · 𝑚) ↔ 𝑘 = 𝑚))
126121, 125bitrd 268 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑘 ∈ (0...𝑀) ∧ 𝑚 ∈ (0...𝑀))) → ((𝑁 − (2 · 𝑘)) = (𝑁 − (2 · 𝑚)) ↔ 𝑘 = 𝑚))
127126ex 397 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → ((𝑘 ∈ (0...𝑀) ∧ 𝑚 ∈ (0...𝑀)) → ((𝑁 − (2 · 𝑘)) = (𝑁 − (2 · 𝑚)) ↔ 𝑘 = 𝑚)))
128107, 127dom2lem 8149 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))):(0...𝑀)–1-1→(0...𝑁))
129 f1f1orn 6289 . . . . . 6 ((𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))):(0...𝑀)–1-1→(0...𝑁) → (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))):(0...𝑀)–1-1-onto→ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))))
130128, 129syl 17 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))):(0...𝑀)–1-1-onto→ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))))
131 oveq2 6801 . . . . . . . 8 (𝑘 = 𝑗 → (2 · 𝑘) = (2 · 𝑗))
132131oveq2d 6809 . . . . . . 7 (𝑘 = 𝑗 → (𝑁 − (2 · 𝑘)) = (𝑁 − (2 · 𝑗)))
133 eqid 2771 . . . . . . 7 (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))) = (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))
134 ovex 6823 . . . . . . 7 (𝑁 − (2 · 𝑗)) ∈ V
135132, 133, 134fvmpt 6424 . . . . . 6 (𝑗 ∈ (0...𝑀) → ((𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))‘𝑗) = (𝑁 − (2 · 𝑗)))
136135adantl 467 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))‘𝑗) = (𝑁 − (2 · 𝑗)))
137 f1f 6241 . . . . . . . . . . 11 ((𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))):(0...𝑀)–1-1→(0...𝑁) → (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))):(0...𝑀)⟶(0...𝑁))
138128, 137syl 17 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))):(0...𝑀)⟶(0...𝑁))
139 frn 6193 . . . . . . . . . 10 ((𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))):(0...𝑀)⟶(0...𝑁) → ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))) ⊆ (0...𝑁))
140138, 139syl 17 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))) ⊆ (0...𝑁))
141140sselda 3752 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))) → 𝑚 ∈ (0...𝑁))
142 bccl2 13314 . . . . . . . . . . 11 (𝑚 ∈ (0...𝑁) → (𝑁C𝑚) ∈ ℕ)
143142adantl 467 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ (0...𝑁)) → (𝑁C𝑚) ∈ ℕ)
144143nncnd 11238 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ (0...𝑁)) → (𝑁C𝑚) ∈ ℂ)
1452rprecred 12086 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (1 / (tan‘𝐴)) ∈ ℝ)
146 fznn0sub 12580 . . . . . . . . . . . 12 (𝑚 ∈ (0...𝑁) → (𝑁𝑚) ∈ ℕ0)
147 reexpcl 13084 . . . . . . . . . . . 12 (((1 / (tan‘𝐴)) ∈ ℝ ∧ (𝑁𝑚) ∈ ℕ0) → ((1 / (tan‘𝐴))↑(𝑁𝑚)) ∈ ℝ)
148145, 146, 147syl2an 583 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ (0...𝑁)) → ((1 / (tan‘𝐴))↑(𝑁𝑚)) ∈ ℝ)
149148recnd 10270 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ (0...𝑁)) → ((1 / (tan‘𝐴))↑(𝑁𝑚)) ∈ ℂ)
150 elfznn0 12640 . . . . . . . . . . . 12 (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℕ0)
151150adantl 467 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ (0...𝑁)) → 𝑚 ∈ ℕ0)
152 expcl 13085 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (i↑𝑚) ∈ ℂ)
1535, 151, 152sylancr 575 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ (0...𝑁)) → (i↑𝑚) ∈ ℂ)
154149, 153mulcld 10262 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ (0...𝑁)) → (((1 / (tan‘𝐴))↑(𝑁𝑚)) · (i↑𝑚)) ∈ ℂ)
155144, 154mulcld 10262 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ (0...𝑁)) → ((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁𝑚)) · (i↑𝑚))) ∈ ℂ)
156141, 155syldan 579 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))) → ((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁𝑚)) · (i↑𝑚))) ∈ ℂ)
157156imcld 14143 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))) → (ℑ‘((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁𝑚)) · (i↑𝑚)))) ∈ ℝ)
158157recnd 10270 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))) → (ℑ‘((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁𝑚)) · (i↑𝑚)))) ∈ ℂ)
15973, 74, 130, 136, 158fsumf1o 14662 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → Σ𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))(ℑ‘((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁𝑚)) · (i↑𝑚)))) = Σ𝑗 ∈ (0...𝑀)(ℑ‘((𝑁C(𝑁 − (2 · 𝑗))) · (((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) · (i↑(𝑁 − (2 · 𝑗)))))))
160 eldifi 3883 . . . . . . . 8 (𝑚 ∈ ((0...𝑁) ∖ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))) → 𝑚 ∈ (0...𝑁))
161143nnred 11237 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ (0...𝑁)) → (𝑁C𝑚) ∈ ℝ)
162160, 161sylan2 580 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ ((0...𝑁) ∖ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))))) → (𝑁C𝑚) ∈ ℝ)
163160, 148sylan2 580 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ ((0...𝑁) ∖ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))))) → ((1 / (tan‘𝐴))↑(𝑁𝑚)) ∈ ℝ)
164 eldif 3733 . . . . . . . . 9 (𝑚 ∈ ((0...𝑁) ∖ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))) ↔ (𝑚 ∈ (0...𝑁) ∧ ¬ 𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))))
165 elfzelz 12549 . . . . . . . . . . . . . . 15 (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℤ)
166165adantl 467 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ (0...𝑁)) → 𝑚 ∈ ℤ)
167 zeo 11665 . . . . . . . . . . . . . 14 (𝑚 ∈ ℤ → ((𝑚 / 2) ∈ ℤ ∨ ((𝑚 + 1) / 2) ∈ ℤ))
168166, 167syl 17 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ (0...𝑁)) → ((𝑚 / 2) ∈ ℤ ∨ ((𝑚 + 1) / 2) ∈ ℤ))
169 i2 13172 . . . . . . . . . . . . . . . . . 18 (i↑2) = -1
170169oveq1i 6803 . . . . . . . . . . . . . . . . 17 ((i↑2)↑(𝑚 / 2)) = (-1↑(𝑚 / 2))
171 simprr 756 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ (𝑚 / 2) ∈ ℤ)) → (𝑚 / 2) ∈ ℤ)
172150ad2antrl 707 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ (𝑚 / 2) ∈ ℤ)) → 𝑚 ∈ ℕ0)
173 nn0re 11503 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
174 nn0ge0 11520 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ℕ0 → 0 ≤ 𝑚)
175 divge0 11094 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ (𝑚 / 2))
17689, 90, 175mpanr12 685 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) → 0 ≤ (𝑚 / 2))
177173, 174, 176syl2anc 573 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ℕ0 → 0 ≤ (𝑚 / 2))
178172, 177syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ (𝑚 / 2) ∈ ℤ)) → 0 ≤ (𝑚 / 2))
179 elnn0z 11592 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 / 2) ∈ ℕ0 ↔ ((𝑚 / 2) ∈ ℤ ∧ 0 ≤ (𝑚 / 2)))
180171, 178, 179sylanbrc 572 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ (𝑚 / 2) ∈ ℤ)) → (𝑚 / 2) ∈ ℕ0)
181 expmul 13112 . . . . . . . . . . . . . . . . . . . 20 ((i ∈ ℂ ∧ 2 ∈ ℕ0 ∧ (𝑚 / 2) ∈ ℕ0) → (i↑(2 · (𝑚 / 2))) = ((i↑2)↑(𝑚 / 2)))
1825, 75, 181mp3an12 1562 . . . . . . . . . . . . . . . . . . 19 ((𝑚 / 2) ∈ ℕ0 → (i↑(2 · (𝑚 / 2))) = ((i↑2)↑(𝑚 / 2)))
183180, 182syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ (𝑚 / 2) ∈ ℤ)) → (i↑(2 · (𝑚 / 2))) = ((i↑2)↑(𝑚 / 2)))
184172nn0cnd 11555 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ (𝑚 / 2) ∈ ℤ)) → 𝑚 ∈ ℂ)
185 2ne0 11315 . . . . . . . . . . . . . . . . . . . . 21 2 ≠ 0
186 divcan2 10895 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝑚 / 2)) = 𝑚)
187110, 185, 186mp3an23 1564 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℂ → (2 · (𝑚 / 2)) = 𝑚)
188184, 187syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ (𝑚 / 2) ∈ ℤ)) → (2 · (𝑚 / 2)) = 𝑚)
189188oveq2d 6809 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ (𝑚 / 2) ∈ ℤ)) → (i↑(2 · (𝑚 / 2))) = (i↑𝑚))
190183, 189eqtr3d 2807 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ (𝑚 / 2) ∈ ℤ)) → ((i↑2)↑(𝑚 / 2)) = (i↑𝑚))
191170, 190syl5eqr 2819 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ (𝑚 / 2) ∈ ℤ)) → (-1↑(𝑚 / 2)) = (i↑𝑚))
192 neg1rr 11327 . . . . . . . . . . . . . . . . 17 -1 ∈ ℝ
193 reexpcl 13084 . . . . . . . . . . . . . . . . 17 ((-1 ∈ ℝ ∧ (𝑚 / 2) ∈ ℕ0) → (-1↑(𝑚 / 2)) ∈ ℝ)
194192, 180, 193sylancr 575 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ (𝑚 / 2) ∈ ℤ)) → (-1↑(𝑚 / 2)) ∈ ℝ)
195191, 194eqeltrrd 2851 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ (𝑚 / 2) ∈ ℤ)) → (i↑𝑚) ∈ ℝ)
196195expr 444 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ (0...𝑁)) → ((𝑚 / 2) ∈ ℤ → (i↑𝑚) ∈ ℝ))
197146ad2antrl 707 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑁𝑚) ∈ ℕ0)
198 nn0re 11503 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁𝑚) ∈ ℕ0 → (𝑁𝑚) ∈ ℝ)
199 nn0ge0 11520 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁𝑚) ∈ ℕ0 → 0 ≤ (𝑁𝑚))
200 divge0 11094 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁𝑚) ∈ ℝ ∧ 0 ≤ (𝑁𝑚)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ ((𝑁𝑚) / 2))
20189, 90, 200mpanr12 685 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁𝑚) ∈ ℝ ∧ 0 ≤ (𝑁𝑚)) → 0 ≤ ((𝑁𝑚) / 2))
202198, 199, 201syl2anc 573 . . . . . . . . . . . . . . . . . . . 20 ((𝑁𝑚) ∈ ℕ0 → 0 ≤ ((𝑁𝑚) / 2))
203197, 202syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 0 ≤ ((𝑁𝑚) / 2))
204197nn0red 11554 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑁𝑚) ∈ ℝ)
20549adantr 466 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 𝑁 ∈ ℝ)
206 peano2re 10411 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
207205, 206syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑁 + 1) ∈ ℝ)
208150ad2antrl 707 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 𝑚 ∈ ℕ0)
209208, 174syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 0 ≤ 𝑚)
210208nn0red 11554 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 𝑚 ∈ ℝ)
211205, 210subge02d 10821 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (0 ≤ 𝑚 ↔ (𝑁𝑚) ≤ 𝑁))
212209, 211mpbid 222 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑁𝑚) ≤ 𝑁)
213205ltp1d 11156 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 𝑁 < (𝑁 + 1))
214204, 205, 207, 212, 213lelttrd 10397 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑁𝑚) < (𝑁 + 1))
215 2t1e2 11378 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 · 1) = 2
216 df-2 11281 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 = (1 + 1)
217215, 216eqtr2i 2794 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 + 1) = (2 · 1)
218217oveq2i 6804 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 · 𝑀) + (1 + 1)) = ((2 · 𝑀) + (2 · 1))
2197oveq1i 6803 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 + 1) = (((2 · 𝑀) + 1) + 1)
22011nncnd 11238 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (2 · 𝑀) ∈ ℂ)
221220adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (2 · 𝑀) ∈ ℂ)
222 1cnd 10258 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 1 ∈ ℂ)
223221, 222, 222addassd 10264 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (((2 · 𝑀) + 1) + 1) = ((2 · 𝑀) + (1 + 1)))
224219, 223syl5eq 2817 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑁 + 1) = ((2 · 𝑀) + (1 + 1)))
225 2cnd 11295 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 2 ∈ ℂ)
226 nncn 11230 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
227226ad2antrr 705 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 𝑀 ∈ ℂ)
228225, 227, 222adddid 10266 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (2 · (𝑀 + 1)) = ((2 · 𝑀) + (2 · 1)))
229218, 224, 2283eqtr4a 2831 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑁 + 1) = (2 · (𝑀 + 1)))
230214, 229breqtrd 4812 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑁𝑚) < (2 · (𝑀 + 1)))
231 nnz 11601 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
232231ad2antrr 705 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 𝑀 ∈ ℤ)
233232peano2zd 11687 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑀 + 1) ∈ ℤ)
234233zred 11684 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑀 + 1) ∈ ℝ)
23591a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (2 ∈ ℝ ∧ 0 < 2))
236 ltdivmul 11100 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁𝑚) ∈ ℝ ∧ (𝑀 + 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑁𝑚) / 2) < (𝑀 + 1) ↔ (𝑁𝑚) < (2 · (𝑀 + 1))))
237204, 234, 235, 236syl3anc 1476 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (((𝑁𝑚) / 2) < (𝑀 + 1) ↔ (𝑁𝑚) < (2 · (𝑀 + 1))))
238230, 237mpbird 247 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑁𝑚) / 2) < (𝑀 + 1))
239108adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 𝑁 ∈ ℂ)
240208nn0cnd 11555 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 𝑚 ∈ ℂ)
241239, 240, 222pnpcan2d 10632 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑁 + 1) − (𝑚 + 1)) = (𝑁𝑚))
242229oveq1d 6808 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑁 + 1) − (𝑚 + 1)) = ((2 · (𝑀 + 1)) − (𝑚 + 1)))
243241, 242eqtr3d 2807 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑁𝑚) = ((2 · (𝑀 + 1)) − (𝑚 + 1)))
244243oveq1d 6808 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑁𝑚) / 2) = (((2 · (𝑀 + 1)) − (𝑚 + 1)) / 2))
245233zcnd 11685 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑀 + 1) ∈ ℂ)
246 mulcl 10222 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((2 ∈ ℂ ∧ (𝑀 + 1) ∈ ℂ) → (2 · (𝑀 + 1)) ∈ ℂ)
247110, 245, 246sylancr 575 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (2 · (𝑀 + 1)) ∈ ℂ)
248 peano2cn 10410 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ ℂ → (𝑚 + 1) ∈ ℂ)
249240, 248syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑚 + 1) ∈ ℂ)
250122a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (2 ∈ ℂ ∧ 2 ≠ 0))
251 divsubdir 10923 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2 · (𝑀 + 1)) ∈ ℂ ∧ (𝑚 + 1) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((2 · (𝑀 + 1)) − (𝑚 + 1)) / 2) = (((2 · (𝑀 + 1)) / 2) − ((𝑚 + 1) / 2)))
252247, 249, 250, 251syl3anc 1476 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (((2 · (𝑀 + 1)) − (𝑚 + 1)) / 2) = (((2 · (𝑀 + 1)) / 2) − ((𝑚 + 1) / 2)))
253185a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 2 ≠ 0)
254245, 225, 253divcan3d 11008 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((2 · (𝑀 + 1)) / 2) = (𝑀 + 1))
255254oveq1d 6808 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (((2 · (𝑀 + 1)) / 2) − ((𝑚 + 1) / 2)) = ((𝑀 + 1) − ((𝑚 + 1) / 2)))
256244, 252, 2553eqtrd 2809 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑁𝑚) / 2) = ((𝑀 + 1) − ((𝑚 + 1) / 2)))
257 simprr 756 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑚 + 1) / 2) ∈ ℤ)
258233, 257zsubcld 11689 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑀 + 1) − ((𝑚 + 1) / 2)) ∈ ℤ)
259256, 258eqeltrd 2850 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑁𝑚) / 2) ∈ ℤ)
260 zleltp1 11630 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁𝑚) / 2) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((𝑁𝑚) / 2) ≤ 𝑀 ↔ ((𝑁𝑚) / 2) < (𝑀 + 1)))
261259, 232, 260syl2anc 573 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (((𝑁𝑚) / 2) ≤ 𝑀 ↔ ((𝑁𝑚) / 2) < (𝑀 + 1)))
262238, 261mpbird 247 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑁𝑚) / 2) ≤ 𝑀)
263 0zd 11591 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 0 ∈ ℤ)
264 elfz 12539 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁𝑚) / 2) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((𝑁𝑚) / 2) ∈ (0...𝑀) ↔ (0 ≤ ((𝑁𝑚) / 2) ∧ ((𝑁𝑚) / 2) ≤ 𝑀)))
265259, 263, 232, 264syl3anc 1476 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (((𝑁𝑚) / 2) ∈ (0...𝑀) ↔ (0 ≤ ((𝑁𝑚) / 2) ∧ ((𝑁𝑚) / 2) ≤ 𝑀)))
266203, 262, 265mpbir2and 692 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑁𝑚) / 2) ∈ (0...𝑀))
267 oveq2 6801 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = ((𝑁𝑚) / 2) → (2 · 𝑘) = (2 · ((𝑁𝑚) / 2)))
268267oveq2d 6809 . . . . . . . . . . . . . . . . . . 19 (𝑘 = ((𝑁𝑚) / 2) → (𝑁 − (2 · 𝑘)) = (𝑁 − (2 · ((𝑁𝑚) / 2))))
269 ovex 6823 . . . . . . . . . . . . . . . . . . 19 (𝑁 − (2 · ((𝑁𝑚) / 2))) ∈ V
270268, 133, 269fvmpt 6424 . . . . . . . . . . . . . . . . . 18 (((𝑁𝑚) / 2) ∈ (0...𝑀) → ((𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))‘((𝑁𝑚) / 2)) = (𝑁 − (2 · ((𝑁𝑚) / 2))))
271266, 270syl 17 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))‘((𝑁𝑚) / 2)) = (𝑁 − (2 · ((𝑁𝑚) / 2))))
272197nn0cnd 11555 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑁𝑚) ∈ ℂ)
273272, 225, 253divcan2d 11005 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (2 · ((𝑁𝑚) / 2)) = (𝑁𝑚))
274273oveq2d 6809 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑁 − (2 · ((𝑁𝑚) / 2))) = (𝑁 − (𝑁𝑚)))
275239, 240nncand 10599 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑁 − (𝑁𝑚)) = 𝑚)
276271, 274, 2753eqtrd 2809 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))‘((𝑁𝑚) / 2)) = 𝑚)
277 ffn 6185 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))):(0...𝑀)⟶(0...𝑁) → (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))) Fn (0...𝑀))
278138, 277syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))) Fn (0...𝑀))
279278adantr 466 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))) Fn (0...𝑀))
280 fnfvelrn 6499 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))) Fn (0...𝑀) ∧ ((𝑁𝑚) / 2) ∈ (0...𝑀)) → ((𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))‘((𝑁𝑚) / 2)) ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))))
281279, 266, 280syl2anc 573 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → ((𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))‘((𝑁𝑚) / 2)) ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))))
282276, 281eqeltrrd 2851 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((𝑚 + 1) / 2) ∈ ℤ)) → 𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))))
283282expr 444 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ (0...𝑁)) → (((𝑚 + 1) / 2) ∈ ℤ → 𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))))
284196, 283orim12d 949 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ (0...𝑁)) → (((𝑚 / 2) ∈ ℤ ∨ ((𝑚 + 1) / 2) ∈ ℤ) → ((i↑𝑚) ∈ ℝ ∨ 𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))))))
285168, 284mpd 15 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ (0...𝑁)) → ((i↑𝑚) ∈ ℝ ∨ 𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))))
286285orcomd 860 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ (0...𝑁)) → (𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))) ∨ (i↑𝑚) ∈ ℝ))
287286ord 853 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ (0...𝑁)) → (¬ 𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))) → (i↑𝑚) ∈ ℝ))
288287impr 442 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ (𝑚 ∈ (0...𝑁) ∧ ¬ 𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))))) → (i↑𝑚) ∈ ℝ)
289164, 288sylan2b 581 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ ((0...𝑁) ∖ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))))) → (i↑𝑚) ∈ ℝ)
290163, 289remulcld 10272 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ ((0...𝑁) ∖ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))))) → (((1 / (tan‘𝐴))↑(𝑁𝑚)) · (i↑𝑚)) ∈ ℝ)
291162, 290remulcld 10272 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ ((0...𝑁) ∖ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))))) → ((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁𝑚)) · (i↑𝑚))) ∈ ℝ)
292291reim0d 14173 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑚 ∈ ((0...𝑁) ∖ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘))))) → (ℑ‘((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁𝑚)) · (i↑𝑚)))) = 0)
293 fzfid 12980 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (0...𝑁) ∈ Fin)
294140, 158, 292, 293fsumss 14664 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → Σ𝑚 ∈ ran (𝑘 ∈ (0...𝑀) ↦ (𝑁 − (2 · 𝑘)))(ℑ‘((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁𝑚)) · (i↑𝑚)))) = Σ𝑚 ∈ (0...𝑁)(ℑ‘((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁𝑚)) · (i↑𝑚)))))
29514adantr 466 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → 𝑁 ∈ ℕ0)
296 elfznn0 12640 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0)
297296adantl 467 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℕ0)
298 nn0mulcl 11531 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℕ0𝑗 ∈ ℕ0) → (2 · 𝑗) ∈ ℕ0)
29975, 297, 298sylancr 575 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (2 · 𝑗) ∈ ℕ0)
300299nn0zd 11682 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (2 · 𝑗) ∈ ℤ)
301 bccl 13313 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ (2 · 𝑗) ∈ ℤ) → (𝑁C(2 · 𝑗)) ∈ ℕ0)
302295, 300, 301syl2anc 573 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (𝑁C(2 · 𝑗)) ∈ ℕ0)
303302nn0red 11554 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (𝑁C(2 · 𝑗)) ∈ ℝ)
304 fznn0sub 12580 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...𝑀) → (𝑀𝑗) ∈ ℕ0)
305304adantl 467 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (𝑀𝑗) ∈ ℕ0)
306 reexpcl 13084 . . . . . . . . . . . . . 14 ((-1 ∈ ℝ ∧ (𝑀𝑗) ∈ ℕ0) → (-1↑(𝑀𝑗)) ∈ ℝ)
307192, 305, 306sylancr 575 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (-1↑(𝑀𝑗)) ∈ ℝ)
308303, 307remulcld 10272 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) ∈ ℝ)
309 2z 11611 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
310 znegcl 11614 . . . . . . . . . . . . . . . 16 (2 ∈ ℤ → -2 ∈ ℤ)
311309, 310ax-mp 5 . . . . . . . . . . . . . . 15 -2 ∈ ℤ
312 rpexpcl 13086 . . . . . . . . . . . . . . 15 (((tan‘𝐴) ∈ ℝ+ ∧ -2 ∈ ℤ) → ((tan‘𝐴)↑-2) ∈ ℝ+)
3132, 311, 312sylancl 574 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → ((tan‘𝐴)↑-2) ∈ ℝ+)
314313rpred 12075 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → ((tan‘𝐴)↑-2) ∈ ℝ)
315 reexpcl 13084 . . . . . . . . . . . . 13 ((((tan‘𝐴)↑-2) ∈ ℝ ∧ 𝑗 ∈ ℕ0) → (((tan‘𝐴)↑-2)↑𝑗) ∈ ℝ)
316314, 296, 315syl2an 583 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (((tan‘𝐴)↑-2)↑𝑗) ∈ ℝ)
317308, 316remulcld 10272 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)) ∈ ℝ)
318317recnd 10270 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)) ∈ ℂ)
319 mulcl 10222 . . . . . . . . . 10 ((i ∈ ℂ ∧ (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)) ∈ ℂ) → (i · (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗))) ∈ ℂ)
3205, 318, 319sylancr 575 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (i · (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗))) ∈ ℂ)
321320addid2d 10439 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (0 + (i · (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)))) = (i · (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗))))
322302nn0cnd 11555 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (𝑁C(2 · 𝑗)) ∈ ℂ)
323307recnd 10270 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (-1↑(𝑀𝑗)) ∈ ℂ)
324316recnd 10270 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (((tan‘𝐴)↑-2)↑𝑗) ∈ ℂ)
325322, 323, 324mulassd 10265 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)) = ((𝑁C(2 · 𝑗)) · ((-1↑(𝑀𝑗)) · (((tan‘𝐴)↑-2)↑𝑗))))
326325oveq2d 6809 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (i · (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗))) = (i · ((𝑁C(2 · 𝑗)) · ((-1↑(𝑀𝑗)) · (((tan‘𝐴)↑-2)↑𝑗)))))
3275a1i 11 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → i ∈ ℂ)
328323, 324mulcld 10262 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → ((-1↑(𝑀𝑗)) · (((tan‘𝐴)↑-2)↑𝑗)) ∈ ℂ)
329327, 322, 328mul12d 10447 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (i · ((𝑁C(2 · 𝑗)) · ((-1↑(𝑀𝑗)) · (((tan‘𝐴)↑-2)↑𝑗)))) = ((𝑁C(2 · 𝑗)) · (i · ((-1↑(𝑀𝑗)) · (((tan‘𝐴)↑-2)↑𝑗)))))
330326, 329eqtrd 2805 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (i · (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗))) = ((𝑁C(2 · 𝑗)) · (i · ((-1↑(𝑀𝑗)) · (((tan‘𝐴)↑-2)↑𝑗)))))
331 bccmpl 13300 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (2 · 𝑗) ∈ ℤ) → (𝑁C(2 · 𝑗)) = (𝑁C(𝑁 − (2 · 𝑗))))
332295, 300, 331syl2anc 573 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (𝑁C(2 · 𝑗)) = (𝑁C(𝑁 − (2 · 𝑗))))
333108adantr 466 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → 𝑁 ∈ ℂ)
334299nn0cnd 11555 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (2 · 𝑗) ∈ ℂ)
335333, 334nncand 10599 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (𝑁 − (𝑁 − (2 · 𝑗))) = (2 · 𝑗))
336335oveq2d 6809 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → ((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) = ((1 / (tan‘𝐴))↑(2 · 𝑗)))
3372adantr 466 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (tan‘𝐴) ∈ ℝ+)
338337rpcnd 12077 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (tan‘𝐴) ∈ ℂ)
339 expneg 13075 . . . . . . . . . . . . . 14 (((tan‘𝐴) ∈ ℂ ∧ (2 · 𝑗) ∈ ℕ0) → ((tan‘𝐴)↑-(2 · 𝑗)) = (1 / ((tan‘𝐴)↑(2 · 𝑗))))
340338, 299, 339syl2anc 573 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → ((tan‘𝐴)↑-(2 · 𝑗)) = (1 / ((tan‘𝐴)↑(2 · 𝑗))))
341297nn0cnd 11555 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℂ)
342 mulneg1 10668 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (-2 · 𝑗) = -(2 · 𝑗))
343110, 341, 342sylancr 575 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (-2 · 𝑗) = -(2 · 𝑗))
344343oveq2d 6809 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → ((tan‘𝐴)↑(-2 · 𝑗)) = ((tan‘𝐴)↑-(2 · 𝑗)))
345337rpne0d 12080 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (tan‘𝐴) ≠ 0)
346338, 345, 300exprecd 13223 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → ((1 / (tan‘𝐴))↑(2 · 𝑗)) = (1 / ((tan‘𝐴)↑(2 · 𝑗))))
347340, 344, 3463eqtr4d 2815 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → ((tan‘𝐴)↑(-2 · 𝑗)) = ((1 / (tan‘𝐴))↑(2 · 𝑗)))
348311a1i 11 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → -2 ∈ ℤ)
349297nn0zd 11682 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℤ)
350 expmulz 13113 . . . . . . . . . . . . 13 ((((tan‘𝐴) ∈ ℂ ∧ (tan‘𝐴) ≠ 0) ∧ (-2 ∈ ℤ ∧ 𝑗 ∈ ℤ)) → ((tan‘𝐴)↑(-2 · 𝑗)) = (((tan‘𝐴)↑-2)↑𝑗))
351338, 345, 348, 349, 350syl22anc 1477 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → ((tan‘𝐴)↑(-2 · 𝑗)) = (((tan‘𝐴)↑-2)↑𝑗))
352336, 347, 3513eqtr2d 2811 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → ((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) = (((tan‘𝐴)↑-2)↑𝑗))
3537oveq1i 6803 . . . . . . . . . . . . . . 15 (𝑁 − (2 · 𝑗)) = (((2 · 𝑀) + 1) − (2 · 𝑗))
35411adantr 466 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (2 · 𝑀) ∈ ℕ)
355354nncnd 11238 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (2 · 𝑀) ∈ ℂ)
356 1cnd 10258 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → 1 ∈ ℂ)
357355, 356, 334addsubd 10615 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (((2 · 𝑀) + 1) − (2 · 𝑗)) = (((2 · 𝑀) − (2 · 𝑗)) + 1))
358 2cnd 11295 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → 2 ∈ ℂ)
359226ad2antrr 705 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → 𝑀 ∈ ℂ)
360358, 359, 341subdid 10688 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (2 · (𝑀𝑗)) = ((2 · 𝑀) − (2 · 𝑗)))
361360oveq1d 6808 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → ((2 · (𝑀𝑗)) + 1) = (((2 · 𝑀) − (2 · 𝑗)) + 1))
362357, 361eqtr4d 2808 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (((2 · 𝑀) + 1) − (2 · 𝑗)) = ((2 · (𝑀𝑗)) + 1))
363353, 362syl5eq 2817 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (𝑁 − (2 · 𝑗)) = ((2 · (𝑀𝑗)) + 1))
364363oveq2d 6809 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (i↑(𝑁 − (2 · 𝑗))) = (i↑((2 · (𝑀𝑗)) + 1)))
365 nn0mulcl 11531 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ0 ∧ (𝑀𝑗) ∈ ℕ0) → (2 · (𝑀𝑗)) ∈ ℕ0)
36675, 305, 365sylancr 575 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (2 · (𝑀𝑗)) ∈ ℕ0)
367 expp1 13074 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ (2 · (𝑀𝑗)) ∈ ℕ0) → (i↑((2 · (𝑀𝑗)) + 1)) = ((i↑(2 · (𝑀𝑗))) · i))
3685, 366, 367sylancr 575 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (i↑((2 · (𝑀𝑗)) + 1)) = ((i↑(2 · (𝑀𝑗))) · i))
36975a1i 11 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → 2 ∈ ℕ0)
370327, 305, 369expmuld 13218 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (i↑(2 · (𝑀𝑗))) = ((i↑2)↑(𝑀𝑗)))
371169oveq1i 6803 . . . . . . . . . . . . . . 15 ((i↑2)↑(𝑀𝑗)) = (-1↑(𝑀𝑗))
372370, 371syl6eq 2821 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (i↑(2 · (𝑀𝑗))) = (-1↑(𝑀𝑗)))
373372oveq1d 6808 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → ((i↑(2 · (𝑀𝑗))) · i) = ((-1↑(𝑀𝑗)) · i))
374364, 368, 3733eqtrd 2809 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (i↑(𝑁 − (2 · 𝑗))) = ((-1↑(𝑀𝑗)) · i))
375 mulcom 10224 . . . . . . . . . . . . 13 (((-1↑(𝑀𝑗)) ∈ ℂ ∧ i ∈ ℂ) → ((-1↑(𝑀𝑗)) · i) = (i · (-1↑(𝑀𝑗))))
376323, 5, 375sylancl 574 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → ((-1↑(𝑀𝑗)) · i) = (i · (-1↑(𝑀𝑗))))
377374, 376eqtrd 2805 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (i↑(𝑁 − (2 · 𝑗))) = (i · (-1↑(𝑀𝑗))))
378352, 377oveq12d 6811 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) · (i↑(𝑁 − (2 · 𝑗)))) = ((((tan‘𝐴)↑-2)↑𝑗) · (i · (-1↑(𝑀𝑗)))))
379 mulcl 10222 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (-1↑(𝑀𝑗)) ∈ ℂ) → (i · (-1↑(𝑀𝑗))) ∈ ℂ)
3805, 323, 379sylancr 575 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (i · (-1↑(𝑀𝑗))) ∈ ℂ)
381380, 324mulcomd 10263 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → ((i · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)) = ((((tan‘𝐴)↑-2)↑𝑗) · (i · (-1↑(𝑀𝑗)))))
382327, 323, 324mulassd 10265 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → ((i · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)) = (i · ((-1↑(𝑀𝑗)) · (((tan‘𝐴)↑-2)↑𝑗))))
383378, 381, 3823eqtr2rd 2812 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (i · ((-1↑(𝑀𝑗)) · (((tan‘𝐴)↑-2)↑𝑗))) = (((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) · (i↑(𝑁 − (2 · 𝑗)))))
384332, 383oveq12d 6811 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑁C(2 · 𝑗)) · (i · ((-1↑(𝑀𝑗)) · (((tan‘𝐴)↑-2)↑𝑗)))) = ((𝑁C(𝑁 − (2 · 𝑗))) · (((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) · (i↑(𝑁 − (2 · 𝑗))))))
385321, 330, 3843eqtrd 2809 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (0 + (i · (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)))) = ((𝑁C(𝑁 − (2 · 𝑗))) · (((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) · (i↑(𝑁 − (2 · 𝑗))))))
386385fveq2d 6336 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (ℑ‘(0 + (i · (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗))))) = (ℑ‘((𝑁C(𝑁 − (2 · 𝑗))) · (((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) · (i↑(𝑁 − (2 · 𝑗)))))))
387 0re 10242 . . . . . . 7 0 ∈ ℝ
388 crim 14063 . . . . . . 7 ((0 ∈ ℝ ∧ (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)) ∈ ℝ) → (ℑ‘(0 + (i · (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗))))) = (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)))
389387, 317, 388sylancr 575 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (ℑ‘(0 + (i · (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗))))) = (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)))
390386, 389eqtr3d 2807 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) ∧ 𝑗 ∈ (0...𝑀)) → (ℑ‘((𝑁C(𝑁 − (2 · 𝑗))) · (((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) · (i↑(𝑁 − (2 · 𝑗)))))) = (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)))
391390sumeq2dv 14641 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → Σ𝑗 ∈ (0...𝑀)(ℑ‘((𝑁C(𝑁 − (2 · 𝑗))) · (((1 / (tan‘𝐴))↑(𝑁 − (𝑁 − (2 · 𝑗)))) · (i↑(𝑁 − (2 · 𝑗)))))) = Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)))
392159, 294, 3913eqtr3d 2813 . . 3 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → Σ𝑚 ∈ (0...𝑁)(ℑ‘((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁𝑚)) · (i↑𝑚)))) = Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)))
393293, 155fsumim 14748 . . 3 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (ℑ‘Σ𝑚 ∈ (0...𝑁)((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁𝑚)) · (i↑𝑚)))) = Σ𝑚 ∈ (0...𝑁)(ℑ‘((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁𝑚)) · (i↑𝑚)))))
394313rpcnd 12077 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → ((tan‘𝐴)↑-2) ∈ ℂ)
395 oveq1 6800 . . . . . . 7 (𝑡 = ((tan‘𝐴)↑-2) → (𝑡𝑗) = (((tan‘𝐴)↑-2)↑𝑗))
396395oveq2d 6809 . . . . . 6 (𝑡 = ((tan‘𝐴)↑-2) → (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)) = (((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)))
397396sumeq2sdv 14643 . . . . 5 (𝑡 = ((tan‘𝐴)↑-2) → Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)) = Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)))
398 basel.p . . . . 5 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
399 sumex 14626 . . . . 5 Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)) ∈ V
400397, 398, 399fvmpt 6424 . . . 4 (((tan‘𝐴)↑-2) ∈ ℂ → (𝑃‘((tan‘𝐴)↑-2)) = Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)))
401394, 400syl 17 . . 3 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (𝑃‘((tan‘𝐴)↑-2)) = Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (((tan‘𝐴)↑-2)↑𝑗)))
402392, 393, 4013eqtr4d 2815 . 2 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (ℑ‘Σ𝑚 ∈ (0...𝑁)((𝑁C𝑚) · (((1 / (tan‘𝐴))↑(𝑁𝑚)) · (i↑𝑚)))) = (𝑃‘((tan‘𝐴)↑-2)))
40351, 58rerpdivcld 12106 . . 3 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → ((cos‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁)) ∈ ℝ)
40453, 58rerpdivcld 12106 . . 3 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → ((sin‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁)) ∈ ℝ)
405403, 404crimd 14180 . 2 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (ℑ‘(((cos‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁)) + (i · ((sin‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁))))) = ((sin‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁)))
40666, 402, 4053eqtr3d 2813 1 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ (0(,)(π / 2))) → (𝑃‘((tan‘𝐴)↑-2)) = ((sin‘(𝑁 · 𝐴)) / ((sin‘𝐴)↑𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 836   = wceq 1631  wcel 2145  wne 2943  cdif 3720  wss 3723   class class class wbr 4786  cmpt 4863  ran crn 5250   Fn wfn 6026  wf 6027  1-1wf1 6028  1-1-ontowf1o 6030  cfv 6031  (class class class)co 6793  cc 10136  cr 10137  0cc0 10138  1c1 10139  ici 10140   + caddc 10141   · cmul 10143   < clt 10276  cle 10277  cmin 10468  -cneg 10469   / cdiv 10886  cn 11222  2c2 11272  0cn0 11494  cz 11579  cuz 11888  +crp 12035  (,)cioo 12380  ...cfz 12533  cexp 13067  Ccbc 13293  cim 14046  Σcsu 14624  sincsin 15000  cosccos 15001  tanctan 15002  πcpi 15003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-sin 15006  df-cos 15007  df-tan 15008  df-pi 15009  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851
This theorem is referenced by:  basellem4  25031
  Copyright terms: Public domain W3C validator