MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  advlogexp Structured version   Visualization version   GIF version

Theorem advlogexp 25246
Description: The antiderivative of a power of the logarithm. (Set 𝐴 = 1 and multiply by (-1)↑𝑁 · 𝑁! to get the antiderivative of log(𝑥)↑𝑁 itself.) (Contributed by Mario Carneiro, 22-May-2016.)
Assertion
Ref Expression
advlogexp ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))))) = (𝑥 ∈ ℝ+ ↦ (((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁))))
Distinct variable groups:   𝑥,𝑘,𝐴   𝑘,𝑁,𝑥

Proof of Theorem advlogexp
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13336 . . . . . 6 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (0...𝑁) ∈ Fin)
2 rpcn 12387 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
32adantl 485 . . . . . 6 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
4 rpdivcl 12402 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → (𝐴 / 𝑥) ∈ ℝ+)
54adantlr 714 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (𝐴 / 𝑥) ∈ ℝ+)
65relogcld 25214 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (log‘(𝐴 / 𝑥)) ∈ ℝ)
7 elfznn0 12995 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
8 reexpcl 13442 . . . . . . . . 9 (((log‘(𝐴 / 𝑥)) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((log‘(𝐴 / 𝑥))↑𝑘) ∈ ℝ)
96, 7, 8syl2an 598 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘(𝐴 / 𝑥))↑𝑘) ∈ ℝ)
107adantl 485 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
1110faccld 13640 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ)
129, 11nndivred 11679 . . . . . . 7 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘)) ∈ ℝ)
1312recnd 10658 . . . . . 6 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘)) ∈ ℂ)
141, 3, 13fsummulc2 15131 . . . . 5 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (𝑥 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))) = Σ𝑘 ∈ (0...𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))))
15 simplr 768 . . . . . . 7 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → 𝑁 ∈ ℕ0)
16 nn0uz 12268 . . . . . . 7 0 = (ℤ‘0)
1715, 16eleqtrdi 2900 . . . . . 6 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → 𝑁 ∈ (ℤ‘0))
183adantr 484 . . . . . . 7 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → 𝑥 ∈ ℂ)
1918, 13mulcld 10650 . . . . . 6 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))) ∈ ℂ)
20 oveq2 7143 . . . . . . . 8 (𝑘 = 0 → ((log‘(𝐴 / 𝑥))↑𝑘) = ((log‘(𝐴 / 𝑥))↑0))
21 fveq2 6645 . . . . . . . . 9 (𝑘 = 0 → (!‘𝑘) = (!‘0))
22 fac0 13632 . . . . . . . . 9 (!‘0) = 1
2321, 22eqtrdi 2849 . . . . . . . 8 (𝑘 = 0 → (!‘𝑘) = 1)
2420, 23oveq12d 7153 . . . . . . 7 (𝑘 = 0 → (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘)) = (((log‘(𝐴 / 𝑥))↑0) / 1))
2524oveq2d 7151 . . . . . 6 (𝑘 = 0 → (𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))) = (𝑥 · (((log‘(𝐴 / 𝑥))↑0) / 1)))
2617, 19, 25fsum1p 15100 . . . . 5 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ (0...𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))) = ((𝑥 · (((log‘(𝐴 / 𝑥))↑0) / 1)) + Σ𝑘 ∈ ((0 + 1)...𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘)))))
276recnd 10658 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (log‘(𝐴 / 𝑥)) ∈ ℂ)
2827exp0d 13500 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → ((log‘(𝐴 / 𝑥))↑0) = 1)
2928oveq1d 7150 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (((log‘(𝐴 / 𝑥))↑0) / 1) = (1 / 1))
30 1div1e1 11319 . . . . . . . . 9 (1 / 1) = 1
3129, 30eqtrdi 2849 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (((log‘(𝐴 / 𝑥))↑0) / 1) = 1)
3231oveq2d 7151 . . . . . . 7 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (𝑥 · (((log‘(𝐴 / 𝑥))↑0) / 1)) = (𝑥 · 1))
333mulid1d 10647 . . . . . . 7 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (𝑥 · 1) = 𝑥)
3432, 33eqtrd 2833 . . . . . 6 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (𝑥 · (((log‘(𝐴 / 𝑥))↑0) / 1)) = 𝑥)
35 1zzd 12001 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℤ)
36 nn0z 11993 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3736ad2antlr 726 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → 𝑁 ∈ ℤ)
38 fz1ssfz0 12998 . . . . . . . . . 10 (1...𝑁) ⊆ (0...𝑁)
3938sseli 3911 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ (0...𝑁))
4039, 19sylan2 595 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...𝑁)) → (𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))) ∈ ℂ)
41 oveq2 7143 . . . . . . . . . 10 (𝑘 = (𝑗 + 1) → ((log‘(𝐴 / 𝑥))↑𝑘) = ((log‘(𝐴 / 𝑥))↑(𝑗 + 1)))
42 fveq2 6645 . . . . . . . . . 10 (𝑘 = (𝑗 + 1) → (!‘𝑘) = (!‘(𝑗 + 1)))
4341, 42oveq12d 7153 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘)) = (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))))
4443oveq2d 7151 . . . . . . . 8 (𝑘 = (𝑗 + 1) → (𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))) = (𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))))
4535, 35, 37, 40, 44fsumshftm 15128 . . . . . . 7 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))) = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))))
46 0p1e1 11747 . . . . . . . . . 10 (0 + 1) = 1
4746oveq1i 7145 . . . . . . . . 9 ((0 + 1)...𝑁) = (1...𝑁)
4847sumeq1i 15047 . . . . . . . 8 Σ𝑘 ∈ ((0 + 1)...𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))) = Σ𝑘 ∈ (1...𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘)))
4948a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ ((0 + 1)...𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))) = Σ𝑘 ∈ (1...𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))))
50 1m1e0 11697 . . . . . . . . . 10 (1 − 1) = 0
5150oveq1i 7145 . . . . . . . . 9 ((1 − 1)..^𝑁) = (0..^𝑁)
52 fzoval 13034 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((1 − 1)..^𝑁) = ((1 − 1)...(𝑁 − 1)))
5337, 52syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → ((1 − 1)..^𝑁) = ((1 − 1)...(𝑁 − 1)))
5451, 53syl5eqr 2847 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (0..^𝑁) = ((1 − 1)...(𝑁 − 1)))
5554sumeq1d 15050 . . . . . . 7 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → Σ𝑗 ∈ (0..^𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))) = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))))
5645, 49, 553eqtr4d 2843 . . . . . 6 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ ((0 + 1)...𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))) = Σ𝑗 ∈ (0..^𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))))
5734, 56oveq12d 7153 . . . . 5 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → ((𝑥 · (((log‘(𝐴 / 𝑥))↑0) / 1)) + Σ𝑘 ∈ ((0 + 1)...𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘)))) = (𝑥 + Σ𝑗 ∈ (0..^𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))))))
5814, 26, 573eqtrd 2837 . . . 4 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (𝑥 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))) = (𝑥 + Σ𝑗 ∈ (0..^𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))))))
5958mpteq2dva 5125 . . 3 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (𝑥 ∈ ℝ+ ↦ (𝑥 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘)))) = (𝑥 ∈ ℝ+ ↦ (𝑥 + Σ𝑗 ∈ (0..^𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))))))
6059oveq2d 7151 . 2 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))))) = (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 + Σ𝑗 ∈ (0..^𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))))))))
61 reelprrecn 10618 . . . 4 ℝ ∈ {ℝ, ℂ}
6261a1i 11 . . 3 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → ℝ ∈ {ℝ, ℂ})
63 1cnd 10625 . . 3 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
64 recn 10616 . . . . 5 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
6564adantl 485 . . . 4 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
66 1cnd 10625 . . . 4 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
6762dvmptid 24560 . . . 4 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
68 rpssre 12384 . . . . 5 + ⊆ ℝ
6968a1i 11 . . . 4 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → ℝ+ ⊆ ℝ)
70 eqid 2798 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
7170tgioo2 23408 . . . 4 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
72 ioorp 12803 . . . . . 6 (0(,)+∞) = ℝ+
73 iooretop 23371 . . . . . 6 (0(,)+∞) ∈ (topGen‘ran (,))
7472, 73eqeltrri 2887 . . . . 5 + ∈ (topGen‘ran (,))
7574a1i 11 . . . 4 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → ℝ+ ∈ (topGen‘ran (,)))
7662, 65, 66, 67, 69, 71, 70, 75dvmptres 24566 . . 3 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (ℝ D (𝑥 ∈ ℝ+𝑥)) = (𝑥 ∈ ℝ+ ↦ 1))
77 fzofi 13337 . . . . 5 (0..^𝑁) ∈ Fin
7877a1i 11 . . . 4 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (0..^𝑁) ∈ Fin)
793adantr 484 . . . . 5 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑥 ∈ ℂ)
80 elfzonn0 13077 . . . . . . . . 9 (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ ℕ0)
81 peano2nn0 11925 . . . . . . . . 9 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
8280, 81syl 17 . . . . . . . 8 (𝑗 ∈ (0..^𝑁) → (𝑗 + 1) ∈ ℕ0)
83 reexpcl 13442 . . . . . . . 8 (((log‘(𝐴 / 𝑥)) ∈ ℝ ∧ (𝑗 + 1) ∈ ℕ0) → ((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) ∈ ℝ)
846, 82, 83syl2an 598 . . . . . . 7 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → ((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) ∈ ℝ)
8582adantl 485 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 + 1) ∈ ℕ0)
8685faccld 13640 . . . . . . 7 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → (!‘(𝑗 + 1)) ∈ ℕ)
8784, 86nndivred 11679 . . . . . 6 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) ∈ ℝ)
8887recnd 10658 . . . . 5 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) ∈ ℂ)
8979, 88mulcld 10650 . . . 4 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))) ∈ ℂ)
9078, 89fsumcl 15082 . . 3 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → Σ𝑗 ∈ (0..^𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))) ∈ ℂ)
916, 15reexpcld 13523 . . . . . 6 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → ((log‘(𝐴 / 𝑥))↑𝑁) ∈ ℝ)
92 faccl 13639 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
9392ad2antlr 726 . . . . . 6 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (!‘𝑁) ∈ ℕ)
9491, 93nndivred 11679 . . . . 5 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) ∈ ℝ)
9594recnd 10658 . . . 4 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) ∈ ℂ)
96 ax-1cn 10584 . . . 4 1 ∈ ℂ
97 subcl 10874 . . . 4 (((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) ∈ ℂ ∧ 1 ∈ ℂ) → ((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) − 1) ∈ ℂ)
9895, 96, 97sylancl 589 . . 3 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → ((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) − 1) ∈ ℂ)
9977a1i 11 . . . . 5 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (0..^𝑁) ∈ Fin)
10089an32s 651 . . . . . 6 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → (𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))) ∈ ℂ)
1011003impa 1107 . . . . 5 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑥 ∈ ℝ+) → (𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))) ∈ ℂ)
102 reexpcl 13442 . . . . . . . . . . 11 (((log‘(𝐴 / 𝑥)) ∈ ℝ ∧ 𝑗 ∈ ℕ0) → ((log‘(𝐴 / 𝑥))↑𝑗) ∈ ℝ)
1036, 80, 102syl2an 598 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → ((log‘(𝐴 / 𝑥))↑𝑗) ∈ ℝ)
10480adantl 485 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ ℕ0)
105104faccld 13640 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → (!‘𝑗) ∈ ℕ)
106103, 105nndivred 11679 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) ∈ ℝ)
107106recnd 10658 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) ∈ ℂ)
10888, 107subcld 10986 . . . . . . 7 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → ((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) − (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗))) ∈ ℂ)
109108an32s 651 . . . . . 6 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → ((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) − (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗))) ∈ ℂ)
1101093impa 1107 . . . . 5 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑥 ∈ ℝ+) → ((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) − (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗))) ∈ ℂ)
11161a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → ℝ ∈ {ℝ, ℂ})
1122adantl 485 . . . . . . 7 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
113 1cnd 10625 . . . . . . 7 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
11476adantr 484 . . . . . . 7 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑥 ∈ ℝ+𝑥)) = (𝑥 ∈ ℝ+ ↦ 1))
11588an32s 651 . . . . . . 7 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) ∈ ℂ)
116 negex 10873 . . . . . . . 8 -((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) ∈ V
117116a1i 11 . . . . . . 7 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → -((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) ∈ V)
118 cnelprrecn 10619 . . . . . . . . . 10 ℂ ∈ {ℝ, ℂ}
119118a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → ℂ ∈ {ℝ, ℂ})
12027adantlr 714 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → (log‘(𝐴 / 𝑥)) ∈ ℂ)
121 negex 10873 . . . . . . . . . 10 -(1 / 𝑥) ∈ V
122121a1i 11 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → -(1 / 𝑥) ∈ V)
123 id 22 . . . . . . . . . . 11 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
12480adantl 485 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ ℕ0)
125124, 81syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 + 1) ∈ ℕ0)
126 expcl 13443 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ (𝑗 + 1) ∈ ℕ0) → (𝑦↑(𝑗 + 1)) ∈ ℂ)
127123, 125, 126syl2anr 599 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (𝑦↑(𝑗 + 1)) ∈ ℂ)
128125faccld 13640 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (!‘(𝑗 + 1)) ∈ ℕ)
129128nncnd 11641 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (!‘(𝑗 + 1)) ∈ ℂ)
130129adantr 484 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (!‘(𝑗 + 1)) ∈ ℂ)
131128nnne0d 11675 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (!‘(𝑗 + 1)) ≠ 0)
132131adantr 484 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (!‘(𝑗 + 1)) ≠ 0)
133127, 130, 132divcld 11405 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → ((𝑦↑(𝑗 + 1)) / (!‘(𝑗 + 1))) ∈ ℂ)
134 expcl 13443 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝑦𝑗) ∈ ℂ)
135123, 124, 134syl2anr 599 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (𝑦𝑗) ∈ ℂ)
136124faccld 13640 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (!‘𝑗) ∈ ℕ)
137136nncnd 11641 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (!‘𝑗) ∈ ℂ)
138137adantr 484 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (!‘𝑗) ∈ ℂ)
139124adantr 484 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → 𝑗 ∈ ℕ0)
140139faccld 13640 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (!‘𝑗) ∈ ℕ)
141140nnne0d 11675 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (!‘𝑗) ≠ 0)
142135, 138, 141divcld 11405 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → ((𝑦𝑗) / (!‘𝑗)) ∈ ℂ)
143 simplll 774 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ+)
144 simpr 488 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
145143, 144relogdivd 25217 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → (log‘(𝐴 / 𝑥)) = ((log‘𝐴) − (log‘𝑥)))
146145mpteq2dva 5125 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑥 ∈ ℝ+ ↦ (log‘(𝐴 / 𝑥))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝐴) − (log‘𝑥))))
147146oveq2d 7151 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘(𝐴 / 𝑥)))) = (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝐴) − (log‘𝑥)))))
148 relogcl 25167 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
149148ad2antrr 725 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (log‘𝐴) ∈ ℝ)
150149recnd 10658 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (log‘𝐴) ∈ ℂ)
151150adantr 484 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → (log‘𝐴) ∈ ℂ)
152 0cnd 10623 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℂ)
153150adantr 484 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ) → (log‘𝐴) ∈ ℂ)
154 0cnd 10623 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ) → 0 ∈ ℂ)
155111, 150dvmptc 24561 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑥 ∈ ℝ ↦ (log‘𝐴))) = (𝑥 ∈ ℝ ↦ 0))
15668a1i 11 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → ℝ+ ⊆ ℝ)
15774a1i 11 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → ℝ+ ∈ (topGen‘ran (,)))
158111, 153, 154, 155, 156, 71, 70, 157dvmptres 24566 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝐴))) = (𝑥 ∈ ℝ+ ↦ 0))
159144relogcld 25214 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
160159recnd 10658 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
161144rpreccld 12429 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
162 dvrelog 25228 . . . . . . . . . . . . 13 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
163 relogf1o 25158 . . . . . . . . . . . . . . . . 17 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
164 f1of 6590 . . . . . . . . . . . . . . . . 17 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
165163, 164mp1i 13 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (log ↾ ℝ+):ℝ+⟶ℝ)
166165feqmptd 6708 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)))
167 fvres 6664 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥))
168167mpteq2ia 5121 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
169166, 168eqtrdi 2849 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
170169oveq2d 7151 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))))
171162, 170syl5reqr 2848 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
172111, 151, 152, 158, 160, 161, 171dvmptsub 24570 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝐴) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (0 − (1 / 𝑥))))
173147, 172eqtrd 2833 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘(𝐴 / 𝑥)))) = (𝑥 ∈ ℝ+ ↦ (0 − (1 / 𝑥))))
174 df-neg 10862 . . . . . . . . . . 11 -(1 / 𝑥) = (0 − (1 / 𝑥))
175174mpteq2i 5122 . . . . . . . . . 10 (𝑥 ∈ ℝ+ ↦ -(1 / 𝑥)) = (𝑥 ∈ ℝ+ ↦ (0 − (1 / 𝑥)))
176173, 175eqtr4di 2851 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘(𝐴 / 𝑥)))) = (𝑥 ∈ ℝ+ ↦ -(1 / 𝑥)))
177 ovexd 7170 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → ((𝑗 + 1) · (𝑦↑((𝑗 + 1) − 1))) ∈ V)
178 nn0p1nn 11924 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ)
179124, 178syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 + 1) ∈ ℕ)
180 dvexp 24556 . . . . . . . . . . . 12 ((𝑗 + 1) ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑(𝑗 + 1)))) = (𝑦 ∈ ℂ ↦ ((𝑗 + 1) · (𝑦↑((𝑗 + 1) − 1)))))
181179, 180syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑(𝑗 + 1)))) = (𝑦 ∈ ℂ ↦ ((𝑗 + 1) · (𝑦↑((𝑗 + 1) − 1)))))
182119, 127, 177, 181, 129, 131dvmptdivc 24568 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦↑(𝑗 + 1)) / (!‘(𝑗 + 1))))) = (𝑦 ∈ ℂ ↦ (((𝑗 + 1) · (𝑦↑((𝑗 + 1) − 1))) / (!‘(𝑗 + 1)))))
183124nn0cnd 11945 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ ℂ)
184183adantr 484 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → 𝑗 ∈ ℂ)
185 pncan 10881 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 + 1) − 1) = 𝑗)
186184, 96, 185sylancl 589 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → ((𝑗 + 1) − 1) = 𝑗)
187186oveq2d 7151 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (𝑦↑((𝑗 + 1) − 1)) = (𝑦𝑗))
188187oveq2d 7151 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → ((𝑗 + 1) · (𝑦↑((𝑗 + 1) − 1))) = ((𝑗 + 1) · (𝑦𝑗)))
189 facp1 13634 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ0 → (!‘(𝑗 + 1)) = ((!‘𝑗) · (𝑗 + 1)))
190139, 189syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (!‘(𝑗 + 1)) = ((!‘𝑗) · (𝑗 + 1)))
191 peano2cn 10801 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℂ → (𝑗 + 1) ∈ ℂ)
192184, 191syl 17 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (𝑗 + 1) ∈ ℂ)
193138, 192mulcomd 10651 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → ((!‘𝑗) · (𝑗 + 1)) = ((𝑗 + 1) · (!‘𝑗)))
194190, 193eqtrd 2833 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (!‘(𝑗 + 1)) = ((𝑗 + 1) · (!‘𝑗)))
195188, 194oveq12d 7153 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (((𝑗 + 1) · (𝑦↑((𝑗 + 1) − 1))) / (!‘(𝑗 + 1))) = (((𝑗 + 1) · (𝑦𝑗)) / ((𝑗 + 1) · (!‘𝑗))))
196179nnne0d 11675 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 + 1) ≠ 0)
197196adantr 484 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (𝑗 + 1) ≠ 0)
198135, 138, 192, 141, 197divcan5d 11431 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (((𝑗 + 1) · (𝑦𝑗)) / ((𝑗 + 1) · (!‘𝑗))) = ((𝑦𝑗) / (!‘𝑗)))
199195, 198eqtrd 2833 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (((𝑗 + 1) · (𝑦↑((𝑗 + 1) − 1))) / (!‘(𝑗 + 1))) = ((𝑦𝑗) / (!‘𝑗)))
200199mpteq2dva 5125 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑦 ∈ ℂ ↦ (((𝑗 + 1) · (𝑦↑((𝑗 + 1) − 1))) / (!‘(𝑗 + 1)))) = (𝑦 ∈ ℂ ↦ ((𝑦𝑗) / (!‘𝑗))))
201182, 200eqtrd 2833 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦↑(𝑗 + 1)) / (!‘(𝑗 + 1))))) = (𝑦 ∈ ℂ ↦ ((𝑦𝑗) / (!‘𝑗))))
202 oveq1 7142 . . . . . . . . . 10 (𝑦 = (log‘(𝐴 / 𝑥)) → (𝑦↑(𝑗 + 1)) = ((log‘(𝐴 / 𝑥))↑(𝑗 + 1)))
203202oveq1d 7150 . . . . . . . . 9 (𝑦 = (log‘(𝐴 / 𝑥)) → ((𝑦↑(𝑗 + 1)) / (!‘(𝑗 + 1))) = (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))))
204 oveq1 7142 . . . . . . . . . 10 (𝑦 = (log‘(𝐴 / 𝑥)) → (𝑦𝑗) = ((log‘(𝐴 / 𝑥))↑𝑗))
205204oveq1d 7150 . . . . . . . . 9 (𝑦 = (log‘(𝐴 / 𝑥)) → ((𝑦𝑗) / (!‘𝑗)) = (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)))
206111, 119, 120, 122, 133, 142, 176, 201, 203, 205dvmptco 24575 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑥 ∈ ℝ+ ↦ (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))))) = (𝑥 ∈ ℝ+ ↦ ((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) · -(1 / 𝑥))))
207107an32s 651 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) ∈ ℂ)
208161rpcnd 12421 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ)
209207, 208mulneg2d 11083 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → ((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) · -(1 / 𝑥)) = -((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) · (1 / 𝑥)))
210 rpne0 12393 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+𝑥 ≠ 0)
211210adantl 485 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
212207, 112, 211divrecd 11408 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → ((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) = ((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) · (1 / 𝑥)))
213212negeqd 10869 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → -((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) = -((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) · (1 / 𝑥)))
214209, 213eqtr4d 2836 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → ((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) · -(1 / 𝑥)) = -((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥))
215214mpteq2dva 5125 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑥 ∈ ℝ+ ↦ ((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) · -(1 / 𝑥))) = (𝑥 ∈ ℝ+ ↦ -((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥)))
216206, 215eqtrd 2833 . . . . . . 7 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑥 ∈ ℝ+ ↦ (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))))) = (𝑥 ∈ ℝ+ ↦ -((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥)))
217111, 112, 113, 114, 115, 117, 216dvmptmul 24564 . . . . . 6 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))))) = (𝑥 ∈ ℝ+ ↦ ((1 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))) + (-((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) · 𝑥))))
21888mulid2d 10648 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → (1 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))) = (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))))
219 simplr 768 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑥 ∈ ℝ+)
220106, 219rerpdivcld 12450 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → ((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) ∈ ℝ)
221220recnd 10658 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → ((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) ∈ ℂ)
222221, 79mulneg1d 11082 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → (-((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) · 𝑥) = -(((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) · 𝑥))
223211an32s 651 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑥 ≠ 0)
224107, 79, 223divcan1d 11406 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → (((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) · 𝑥) = (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)))
225224negeqd 10869 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → -(((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) · 𝑥) = -(((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)))
226222, 225eqtrd 2833 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → (-((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) · 𝑥) = -(((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)))
227218, 226oveq12d 7153 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → ((1 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))) + (-((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) · 𝑥)) = ((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) + -(((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗))))
22888, 107negsubd 10992 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → ((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) + -(((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗))) = ((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) − (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗))))
229227, 228eqtrd 2833 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → ((1 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))) + (-((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) · 𝑥)) = ((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) − (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗))))
230229an32s 651 . . . . . . 7 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → ((1 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))) + (-((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) · 𝑥)) = ((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) − (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗))))
231230mpteq2dva 5125 . . . . . 6 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑥 ∈ ℝ+ ↦ ((1 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))) + (-((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) · 𝑥))) = (𝑥 ∈ ℝ+ ↦ ((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) − (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)))))
232217, 231eqtrd 2833 . . . . 5 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))))) = (𝑥 ∈ ℝ+ ↦ ((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) − (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)))))
23371, 70, 62, 75, 99, 101, 110, 232dvmptfsum 24578 . . . 4 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (ℝ D (𝑥 ∈ ℝ+ ↦ Σ𝑗 ∈ (0..^𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))))) = (𝑥 ∈ ℝ+ ↦ Σ𝑗 ∈ (0..^𝑁)((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) − (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)))))
234 oveq2 7143 . . . . . . . 8 (𝑘 = 𝑗 → ((log‘(𝐴 / 𝑥))↑𝑘) = ((log‘(𝐴 / 𝑥))↑𝑗))
235 fveq2 6645 . . . . . . . 8 (𝑘 = 𝑗 → (!‘𝑘) = (!‘𝑗))
236234, 235oveq12d 7153 . . . . . . 7 (𝑘 = 𝑗 → (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘)) = (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)))
237 oveq2 7143 . . . . . . . 8 (𝑘 = 𝑁 → ((log‘(𝐴 / 𝑥))↑𝑘) = ((log‘(𝐴 / 𝑥))↑𝑁))
238 fveq2 6645 . . . . . . . 8 (𝑘 = 𝑁 → (!‘𝑘) = (!‘𝑁))
239237, 238oveq12d 7153 . . . . . . 7 (𝑘 = 𝑁 → (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘)) = (((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)))
240236, 43, 24, 239, 17, 13telfsumo2 15150 . . . . . 6 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → Σ𝑗 ∈ (0..^𝑁)((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) − (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗))) = ((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) − (((log‘(𝐴 / 𝑥))↑0) / 1)))
24131oveq2d 7151 . . . . . 6 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → ((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) − (((log‘(𝐴 / 𝑥))↑0) / 1)) = ((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) − 1))
242240, 241eqtrd 2833 . . . . 5 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → Σ𝑗 ∈ (0..^𝑁)((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) − (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗))) = ((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) − 1))
243242mpteq2dva 5125 . . . 4 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (𝑥 ∈ ℝ+ ↦ Σ𝑗 ∈ (0..^𝑁)((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) − (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)))) = (𝑥 ∈ ℝ+ ↦ ((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) − 1)))
244233, 243eqtrd 2833 . . 3 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (ℝ D (𝑥 ∈ ℝ+ ↦ Σ𝑗 ∈ (0..^𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))))) = (𝑥 ∈ ℝ+ ↦ ((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) − 1)))
24562, 3, 63, 76, 90, 98, 244dvmptadd 24563 . 2 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 + Σ𝑗 ∈ (0..^𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))))))) = (𝑥 ∈ ℝ+ ↦ (1 + ((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) − 1))))
246 pncan3 10883 . . . 4 ((1 ∈ ℂ ∧ (((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) ∈ ℂ) → (1 + ((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) − 1)) = (((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)))
24796, 95, 246sylancr 590 . . 3 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (1 + ((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) − 1)) = (((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)))
248247mpteq2dva 5125 . 2 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (𝑥 ∈ ℝ+ ↦ (1 + ((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) − 1))) = (𝑥 ∈ ℝ+ ↦ (((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁))))
24960, 245, 2483eqtrd 2837 1 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))))) = (𝑥 ∈ ℝ+ ↦ (((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  wss 3881  {cpr 4527  cmpt 5110  ran crn 5520  cres 5521  wf 6320  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  Fincfn 8492  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661  cmin 10859  -cneg 10860   / cdiv 11286  cn 11625  0cn0 11885  cz 11969  cuz 12231  +crp 12377  (,)cioo 12726  ...cfz 12885  ..^cfzo 13028  cexp 13425  !cfa 13629  Σcsu 15034  TopOpenctopn 16687  topGenctg 16703  fldccnfld 20091   D cdv 24466  logclog 25146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148
This theorem is referenced by:  logexprlim  25809
  Copyright terms: Public domain W3C validator