MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  advlogexp Structured version   Visualization version   GIF version

Theorem advlogexp 26621
Description: The antiderivative of a power of the logarithm. (Set 𝐴 = 1 and multiply by (-1)↑𝑁 · 𝑁! to get the antiderivative of log(𝑥)↑𝑁 itself.) (Contributed by Mario Carneiro, 22-May-2016.)
Assertion
Ref Expression
advlogexp ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))))) = (𝑥 ∈ ℝ+ ↦ (((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁))))
Distinct variable groups:   𝑥,𝑘,𝐴   𝑘,𝑁,𝑥

Proof of Theorem advlogexp
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13996 . . . . . 6 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (0...𝑁) ∈ Fin)
2 rpcn 13024 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
32adantl 481 . . . . . 6 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
4 rpdivcl 13039 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → (𝐴 / 𝑥) ∈ ℝ+)
54adantlr 715 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (𝐴 / 𝑥) ∈ ℝ+)
65relogcld 26589 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (log‘(𝐴 / 𝑥)) ∈ ℝ)
7 elfznn0 13642 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
8 reexpcl 14101 . . . . . . . . 9 (((log‘(𝐴 / 𝑥)) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((log‘(𝐴 / 𝑥))↑𝑘) ∈ ℝ)
96, 7, 8syl2an 596 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘(𝐴 / 𝑥))↑𝑘) ∈ ℝ)
107adantl 481 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
1110faccld 14307 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ)
129, 11nndivred 12299 . . . . . . 7 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘)) ∈ ℝ)
1312recnd 11268 . . . . . 6 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘)) ∈ ℂ)
141, 3, 13fsummulc2 15805 . . . . 5 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (𝑥 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))) = Σ𝑘 ∈ (0...𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))))
15 simplr 768 . . . . . . 7 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → 𝑁 ∈ ℕ0)
16 nn0uz 12899 . . . . . . 7 0 = (ℤ‘0)
1715, 16eleqtrdi 2845 . . . . . 6 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → 𝑁 ∈ (ℤ‘0))
183adantr 480 . . . . . . 7 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → 𝑥 ∈ ℂ)
1918, 13mulcld 11260 . . . . . 6 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))) ∈ ℂ)
20 oveq2 7418 . . . . . . . 8 (𝑘 = 0 → ((log‘(𝐴 / 𝑥))↑𝑘) = ((log‘(𝐴 / 𝑥))↑0))
21 fveq2 6881 . . . . . . . . 9 (𝑘 = 0 → (!‘𝑘) = (!‘0))
22 fac0 14299 . . . . . . . . 9 (!‘0) = 1
2321, 22eqtrdi 2787 . . . . . . . 8 (𝑘 = 0 → (!‘𝑘) = 1)
2420, 23oveq12d 7428 . . . . . . 7 (𝑘 = 0 → (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘)) = (((log‘(𝐴 / 𝑥))↑0) / 1))
2524oveq2d 7426 . . . . . 6 (𝑘 = 0 → (𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))) = (𝑥 · (((log‘(𝐴 / 𝑥))↑0) / 1)))
2617, 19, 25fsum1p 15774 . . . . 5 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ (0...𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))) = ((𝑥 · (((log‘(𝐴 / 𝑥))↑0) / 1)) + Σ𝑘 ∈ ((0 + 1)...𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘)))))
276recnd 11268 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (log‘(𝐴 / 𝑥)) ∈ ℂ)
2827exp0d 14163 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → ((log‘(𝐴 / 𝑥))↑0) = 1)
2928oveq1d 7425 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (((log‘(𝐴 / 𝑥))↑0) / 1) = (1 / 1))
30 1div1e1 11937 . . . . . . . . 9 (1 / 1) = 1
3129, 30eqtrdi 2787 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (((log‘(𝐴 / 𝑥))↑0) / 1) = 1)
3231oveq2d 7426 . . . . . . 7 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (𝑥 · (((log‘(𝐴 / 𝑥))↑0) / 1)) = (𝑥 · 1))
333mulridd 11257 . . . . . . 7 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (𝑥 · 1) = 𝑥)
3432, 33eqtrd 2771 . . . . . 6 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (𝑥 · (((log‘(𝐴 / 𝑥))↑0) / 1)) = 𝑥)
35 1zzd 12628 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℤ)
36 nn0z 12618 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3736ad2antlr 727 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → 𝑁 ∈ ℤ)
38 fz1ssfz0 13645 . . . . . . . . . 10 (1...𝑁) ⊆ (0...𝑁)
3938sseli 3959 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ (0...𝑁))
4039, 19sylan2 593 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...𝑁)) → (𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))) ∈ ℂ)
41 oveq2 7418 . . . . . . . . . 10 (𝑘 = (𝑗 + 1) → ((log‘(𝐴 / 𝑥))↑𝑘) = ((log‘(𝐴 / 𝑥))↑(𝑗 + 1)))
42 fveq2 6881 . . . . . . . . . 10 (𝑘 = (𝑗 + 1) → (!‘𝑘) = (!‘(𝑗 + 1)))
4341, 42oveq12d 7428 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘)) = (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))))
4443oveq2d 7426 . . . . . . . 8 (𝑘 = (𝑗 + 1) → (𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))) = (𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))))
4535, 35, 37, 40, 44fsumshftm 15802 . . . . . . 7 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))) = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))))
46 0p1e1 12367 . . . . . . . . . 10 (0 + 1) = 1
4746oveq1i 7420 . . . . . . . . 9 ((0 + 1)...𝑁) = (1...𝑁)
4847sumeq1i 15718 . . . . . . . 8 Σ𝑘 ∈ ((0 + 1)...𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))) = Σ𝑘 ∈ (1...𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘)))
4948a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ ((0 + 1)...𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))) = Σ𝑘 ∈ (1...𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))))
50 1m1e0 12317 . . . . . . . . . 10 (1 − 1) = 0
5150oveq1i 7420 . . . . . . . . 9 ((1 − 1)..^𝑁) = (0..^𝑁)
52 fzoval 13682 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((1 − 1)..^𝑁) = ((1 − 1)...(𝑁 − 1)))
5337, 52syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → ((1 − 1)..^𝑁) = ((1 − 1)...(𝑁 − 1)))
5451, 53eqtr3id 2785 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (0..^𝑁) = ((1 − 1)...(𝑁 − 1)))
5554sumeq1d 15721 . . . . . . 7 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → Σ𝑗 ∈ (0..^𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))) = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))))
5645, 49, 553eqtr4d 2781 . . . . . 6 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → Σ𝑘 ∈ ((0 + 1)...𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))) = Σ𝑗 ∈ (0..^𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))))
5734, 56oveq12d 7428 . . . . 5 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → ((𝑥 · (((log‘(𝐴 / 𝑥))↑0) / 1)) + Σ𝑘 ∈ ((0 + 1)...𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘)))) = (𝑥 + Σ𝑗 ∈ (0..^𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))))))
5814, 26, 573eqtrd 2775 . . . 4 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (𝑥 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))) = (𝑥 + Σ𝑗 ∈ (0..^𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))))))
5958mpteq2dva 5219 . . 3 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (𝑥 ∈ ℝ+ ↦ (𝑥 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘)))) = (𝑥 ∈ ℝ+ ↦ (𝑥 + Σ𝑗 ∈ (0..^𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))))))
6059oveq2d 7426 . 2 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))))) = (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 + Σ𝑗 ∈ (0..^𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))))))))
61 reelprrecn 11226 . . . 4 ℝ ∈ {ℝ, ℂ}
6261a1i 11 . . 3 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → ℝ ∈ {ℝ, ℂ})
63 1cnd 11235 . . 3 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
64 recn 11224 . . . . 5 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
6564adantl 481 . . . 4 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
66 1cnd 11235 . . . 4 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
6762dvmptid 25918 . . . 4 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
68 rpssre 13021 . . . . 5 + ⊆ ℝ
6968a1i 11 . . . 4 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → ℝ+ ⊆ ℝ)
70 tgioo4 24749 . . . 4 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
71 eqid 2736 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
72 ioorp 13447 . . . . . 6 (0(,)+∞) = ℝ+
73 iooretop 24709 . . . . . 6 (0(,)+∞) ∈ (topGen‘ran (,))
7472, 73eqeltrri 2832 . . . . 5 + ∈ (topGen‘ran (,))
7574a1i 11 . . . 4 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → ℝ+ ∈ (topGen‘ran (,)))
7662, 65, 66, 67, 69, 70, 71, 75dvmptres 25924 . . 3 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (ℝ D (𝑥 ∈ ℝ+𝑥)) = (𝑥 ∈ ℝ+ ↦ 1))
77 fzofi 13997 . . . . 5 (0..^𝑁) ∈ Fin
7877a1i 11 . . . 4 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (0..^𝑁) ∈ Fin)
793adantr 480 . . . . 5 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑥 ∈ ℂ)
80 elfzonn0 13729 . . . . . . . . 9 (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ ℕ0)
81 peano2nn0 12546 . . . . . . . . 9 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
8280, 81syl 17 . . . . . . . 8 (𝑗 ∈ (0..^𝑁) → (𝑗 + 1) ∈ ℕ0)
83 reexpcl 14101 . . . . . . . 8 (((log‘(𝐴 / 𝑥)) ∈ ℝ ∧ (𝑗 + 1) ∈ ℕ0) → ((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) ∈ ℝ)
846, 82, 83syl2an 596 . . . . . . 7 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → ((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) ∈ ℝ)
8582adantl 481 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 + 1) ∈ ℕ0)
8685faccld 14307 . . . . . . 7 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → (!‘(𝑗 + 1)) ∈ ℕ)
8784, 86nndivred 12299 . . . . . 6 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) ∈ ℝ)
8887recnd 11268 . . . . 5 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) ∈ ℂ)
8979, 88mulcld 11260 . . . 4 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))) ∈ ℂ)
9078, 89fsumcl 15754 . . 3 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → Σ𝑗 ∈ (0..^𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))) ∈ ℂ)
916, 15reexpcld 14186 . . . . . 6 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → ((log‘(𝐴 / 𝑥))↑𝑁) ∈ ℝ)
92 faccl 14306 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
9392ad2antlr 727 . . . . . 6 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (!‘𝑁) ∈ ℕ)
9491, 93nndivred 12299 . . . . 5 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) ∈ ℝ)
9594recnd 11268 . . . 4 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) ∈ ℂ)
96 ax-1cn 11192 . . . 4 1 ∈ ℂ
97 subcl 11486 . . . 4 (((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) ∈ ℂ ∧ 1 ∈ ℂ) → ((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) − 1) ∈ ℂ)
9895, 96, 97sylancl 586 . . 3 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → ((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) − 1) ∈ ℂ)
9977a1i 11 . . . . 5 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (0..^𝑁) ∈ Fin)
10089an32s 652 . . . . . 6 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → (𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))) ∈ ℂ)
1011003impa 1109 . . . . 5 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑥 ∈ ℝ+) → (𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))) ∈ ℂ)
102 reexpcl 14101 . . . . . . . . . . 11 (((log‘(𝐴 / 𝑥)) ∈ ℝ ∧ 𝑗 ∈ ℕ0) → ((log‘(𝐴 / 𝑥))↑𝑗) ∈ ℝ)
1036, 80, 102syl2an 596 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → ((log‘(𝐴 / 𝑥))↑𝑗) ∈ ℝ)
10480adantl 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ ℕ0)
105104faccld 14307 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → (!‘𝑗) ∈ ℕ)
106103, 105nndivred 12299 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) ∈ ℝ)
107106recnd 11268 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) ∈ ℂ)
10888, 107subcld 11599 . . . . . . 7 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → ((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) − (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗))) ∈ ℂ)
109108an32s 652 . . . . . 6 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → ((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) − (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗))) ∈ ℂ)
1101093impa 1109 . . . . 5 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑥 ∈ ℝ+) → ((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) − (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗))) ∈ ℂ)
11161a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → ℝ ∈ {ℝ, ℂ})
1122adantl 481 . . . . . . 7 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
113 1cnd 11235 . . . . . . 7 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
11476adantr 480 . . . . . . 7 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑥 ∈ ℝ+𝑥)) = (𝑥 ∈ ℝ+ ↦ 1))
11588an32s 652 . . . . . . 7 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) ∈ ℂ)
116 negex 11485 . . . . . . . 8 -((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) ∈ V
117116a1i 11 . . . . . . 7 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → -((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) ∈ V)
118 cnelprrecn 11227 . . . . . . . . . 10 ℂ ∈ {ℝ, ℂ}
119118a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → ℂ ∈ {ℝ, ℂ})
12027adantlr 715 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → (log‘(𝐴 / 𝑥)) ∈ ℂ)
121 negex 11485 . . . . . . . . . 10 -(1 / 𝑥) ∈ V
122121a1i 11 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → -(1 / 𝑥) ∈ V)
123 id 22 . . . . . . . . . . 11 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
12480adantl 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ ℕ0)
125124, 81syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 + 1) ∈ ℕ0)
126 expcl 14102 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ (𝑗 + 1) ∈ ℕ0) → (𝑦↑(𝑗 + 1)) ∈ ℂ)
127123, 125, 126syl2anr 597 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (𝑦↑(𝑗 + 1)) ∈ ℂ)
128125faccld 14307 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (!‘(𝑗 + 1)) ∈ ℕ)
129128nncnd 12261 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (!‘(𝑗 + 1)) ∈ ℂ)
130129adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (!‘(𝑗 + 1)) ∈ ℂ)
131128nnne0d 12295 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (!‘(𝑗 + 1)) ≠ 0)
132131adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (!‘(𝑗 + 1)) ≠ 0)
133127, 130, 132divcld 12022 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → ((𝑦↑(𝑗 + 1)) / (!‘(𝑗 + 1))) ∈ ℂ)
134 expcl 14102 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝑦𝑗) ∈ ℂ)
135123, 124, 134syl2anr 597 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (𝑦𝑗) ∈ ℂ)
136124faccld 14307 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (!‘𝑗) ∈ ℕ)
137136nncnd 12261 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (!‘𝑗) ∈ ℂ)
138137adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (!‘𝑗) ∈ ℂ)
139124adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → 𝑗 ∈ ℕ0)
140139faccld 14307 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (!‘𝑗) ∈ ℕ)
141140nnne0d 12295 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (!‘𝑗) ≠ 0)
142135, 138, 141divcld 12022 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → ((𝑦𝑗) / (!‘𝑗)) ∈ ℂ)
143 simplll 774 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ+)
144 simpr 484 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
145143, 144relogdivd 26592 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → (log‘(𝐴 / 𝑥)) = ((log‘𝐴) − (log‘𝑥)))
146145mpteq2dva 5219 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑥 ∈ ℝ+ ↦ (log‘(𝐴 / 𝑥))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝐴) − (log‘𝑥))))
147146oveq2d 7426 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘(𝐴 / 𝑥)))) = (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝐴) − (log‘𝑥)))))
148 relogcl 26541 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
149148ad2antrr 726 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (log‘𝐴) ∈ ℝ)
150149recnd 11268 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (log‘𝐴) ∈ ℂ)
151150adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → (log‘𝐴) ∈ ℂ)
152 0cnd 11233 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℂ)
153150adantr 480 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ) → (log‘𝐴) ∈ ℂ)
154 0cnd 11233 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ) → 0 ∈ ℂ)
155111, 150dvmptc 25919 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑥 ∈ ℝ ↦ (log‘𝐴))) = (𝑥 ∈ ℝ ↦ 0))
15668a1i 11 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → ℝ+ ⊆ ℝ)
15774a1i 11 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → ℝ+ ∈ (topGen‘ran (,)))
158111, 153, 154, 155, 156, 70, 71, 157dvmptres 25924 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝐴))) = (𝑥 ∈ ℝ+ ↦ 0))
159144relogcld 26589 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
160159recnd 11268 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
161144rpreccld 13066 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
162 relogf1o 26532 . . . . . . . . . . . . . . . . 17 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
163 f1of 6823 . . . . . . . . . . . . . . . . 17 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
164162, 163mp1i 13 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (log ↾ ℝ+):ℝ+⟶ℝ)
165164feqmptd 6952 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)))
166 fvres 6900 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥))
167166mpteq2ia 5221 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
168165, 167eqtrdi 2787 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
169168oveq2d 7426 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))))
170 dvrelog 26603 . . . . . . . . . . . . 13 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
171169, 170eqtr3di 2786 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
172111, 151, 152, 158, 160, 161, 171dvmptsub 25928 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝐴) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (0 − (1 / 𝑥))))
173147, 172eqtrd 2771 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘(𝐴 / 𝑥)))) = (𝑥 ∈ ℝ+ ↦ (0 − (1 / 𝑥))))
174 df-neg 11474 . . . . . . . . . . 11 -(1 / 𝑥) = (0 − (1 / 𝑥))
175174mpteq2i 5222 . . . . . . . . . 10 (𝑥 ∈ ℝ+ ↦ -(1 / 𝑥)) = (𝑥 ∈ ℝ+ ↦ (0 − (1 / 𝑥)))
176173, 175eqtr4di 2789 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘(𝐴 / 𝑥)))) = (𝑥 ∈ ℝ+ ↦ -(1 / 𝑥)))
177 ovexd 7445 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → ((𝑗 + 1) · (𝑦↑((𝑗 + 1) − 1))) ∈ V)
178 nn0p1nn 12545 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ)
179124, 178syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 + 1) ∈ ℕ)
180 dvexp 25914 . . . . . . . . . . . 12 ((𝑗 + 1) ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑(𝑗 + 1)))) = (𝑦 ∈ ℂ ↦ ((𝑗 + 1) · (𝑦↑((𝑗 + 1) − 1)))))
181179, 180syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑(𝑗 + 1)))) = (𝑦 ∈ ℂ ↦ ((𝑗 + 1) · (𝑦↑((𝑗 + 1) − 1)))))
182119, 127, 177, 181, 129, 131dvmptdivc 25926 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦↑(𝑗 + 1)) / (!‘(𝑗 + 1))))) = (𝑦 ∈ ℂ ↦ (((𝑗 + 1) · (𝑦↑((𝑗 + 1) − 1))) / (!‘(𝑗 + 1)))))
183124nn0cnd 12569 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ ℂ)
184183adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → 𝑗 ∈ ℂ)
185 pncan 11493 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 + 1) − 1) = 𝑗)
186184, 96, 185sylancl 586 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → ((𝑗 + 1) − 1) = 𝑗)
187186oveq2d 7426 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (𝑦↑((𝑗 + 1) − 1)) = (𝑦𝑗))
188187oveq2d 7426 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → ((𝑗 + 1) · (𝑦↑((𝑗 + 1) − 1))) = ((𝑗 + 1) · (𝑦𝑗)))
189 facp1 14301 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ0 → (!‘(𝑗 + 1)) = ((!‘𝑗) · (𝑗 + 1)))
190139, 189syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (!‘(𝑗 + 1)) = ((!‘𝑗) · (𝑗 + 1)))
191 peano2cn 11412 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℂ → (𝑗 + 1) ∈ ℂ)
192184, 191syl 17 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (𝑗 + 1) ∈ ℂ)
193138, 192mulcomd 11261 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → ((!‘𝑗) · (𝑗 + 1)) = ((𝑗 + 1) · (!‘𝑗)))
194190, 193eqtrd 2771 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (!‘(𝑗 + 1)) = ((𝑗 + 1) · (!‘𝑗)))
195188, 194oveq12d 7428 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (((𝑗 + 1) · (𝑦↑((𝑗 + 1) − 1))) / (!‘(𝑗 + 1))) = (((𝑗 + 1) · (𝑦𝑗)) / ((𝑗 + 1) · (!‘𝑗))))
196179nnne0d 12295 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 + 1) ≠ 0)
197196adantr 480 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (𝑗 + 1) ≠ 0)
198135, 138, 192, 141, 197divcan5d 12048 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (((𝑗 + 1) · (𝑦𝑗)) / ((𝑗 + 1) · (!‘𝑗))) = ((𝑦𝑗) / (!‘𝑗)))
199195, 198eqtrd 2771 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑦 ∈ ℂ) → (((𝑗 + 1) · (𝑦↑((𝑗 + 1) − 1))) / (!‘(𝑗 + 1))) = ((𝑦𝑗) / (!‘𝑗)))
200199mpteq2dva 5219 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑦 ∈ ℂ ↦ (((𝑗 + 1) · (𝑦↑((𝑗 + 1) − 1))) / (!‘(𝑗 + 1)))) = (𝑦 ∈ ℂ ↦ ((𝑦𝑗) / (!‘𝑗))))
201182, 200eqtrd 2771 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦↑(𝑗 + 1)) / (!‘(𝑗 + 1))))) = (𝑦 ∈ ℂ ↦ ((𝑦𝑗) / (!‘𝑗))))
202 oveq1 7417 . . . . . . . . . 10 (𝑦 = (log‘(𝐴 / 𝑥)) → (𝑦↑(𝑗 + 1)) = ((log‘(𝐴 / 𝑥))↑(𝑗 + 1)))
203202oveq1d 7425 . . . . . . . . 9 (𝑦 = (log‘(𝐴 / 𝑥)) → ((𝑦↑(𝑗 + 1)) / (!‘(𝑗 + 1))) = (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))))
204 oveq1 7417 . . . . . . . . . 10 (𝑦 = (log‘(𝐴 / 𝑥)) → (𝑦𝑗) = ((log‘(𝐴 / 𝑥))↑𝑗))
205204oveq1d 7425 . . . . . . . . 9 (𝑦 = (log‘(𝐴 / 𝑥)) → ((𝑦𝑗) / (!‘𝑗)) = (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)))
206111, 119, 120, 122, 133, 142, 176, 201, 203, 205dvmptco 25933 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑥 ∈ ℝ+ ↦ (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))))) = (𝑥 ∈ ℝ+ ↦ ((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) · -(1 / 𝑥))))
207107an32s 652 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) ∈ ℂ)
208161rpcnd 13058 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ)
209207, 208mulneg2d 11696 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → ((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) · -(1 / 𝑥)) = -((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) · (1 / 𝑥)))
210 rpne0 13030 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+𝑥 ≠ 0)
211210adantl 481 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
212207, 112, 211divrecd 12025 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → ((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) = ((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) · (1 / 𝑥)))
213212negeqd 11481 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → -((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) = -((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) · (1 / 𝑥)))
214209, 213eqtr4d 2774 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → ((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) · -(1 / 𝑥)) = -((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥))
215214mpteq2dva 5219 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑥 ∈ ℝ+ ↦ ((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) · -(1 / 𝑥))) = (𝑥 ∈ ℝ+ ↦ -((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥)))
216206, 215eqtrd 2771 . . . . . . 7 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑥 ∈ ℝ+ ↦ (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))))) = (𝑥 ∈ ℝ+ ↦ -((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥)))
217111, 112, 113, 114, 115, 117, 216dvmptmul 25922 . . . . . 6 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))))) = (𝑥 ∈ ℝ+ ↦ ((1 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))) + (-((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) · 𝑥))))
21888mullidd 11258 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → (1 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))) = (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))))
219 simplr 768 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑥 ∈ ℝ+)
220106, 219rerpdivcld 13087 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → ((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) ∈ ℝ)
221220recnd 11268 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → ((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) ∈ ℂ)
222221, 79mulneg1d 11695 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → (-((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) · 𝑥) = -(((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) · 𝑥))
223211an32s 652 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑥 ≠ 0)
224107, 79, 223divcan1d 12023 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → (((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) · 𝑥) = (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)))
225224negeqd 11481 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → -(((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) · 𝑥) = -(((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)))
226222, 225eqtrd 2771 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → (-((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) · 𝑥) = -(((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)))
227218, 226oveq12d 7428 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → ((1 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))) + (-((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) · 𝑥)) = ((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) + -(((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗))))
22888, 107negsubd 11605 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → ((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) + -(((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗))) = ((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) − (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗))))
229227, 228eqtrd 2771 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (0..^𝑁)) → ((1 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))) + (-((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) · 𝑥)) = ((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) − (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗))))
230229an32s 652 . . . . . . 7 ((((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ+) → ((1 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))) + (-((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) · 𝑥)) = ((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) − (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗))))
231230mpteq2dva 5219 . . . . . 6 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑥 ∈ ℝ+ ↦ ((1 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))) + (-((((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)) / 𝑥) · 𝑥))) = (𝑥 ∈ ℝ+ ↦ ((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) − (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)))))
232217, 231eqtrd 2771 . . . . 5 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))))) = (𝑥 ∈ ℝ+ ↦ ((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) − (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)))))
23370, 71, 62, 75, 99, 101, 110, 232dvmptfsum 25936 . . . 4 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (ℝ D (𝑥 ∈ ℝ+ ↦ Σ𝑗 ∈ (0..^𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))))) = (𝑥 ∈ ℝ+ ↦ Σ𝑗 ∈ (0..^𝑁)((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) − (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)))))
234 oveq2 7418 . . . . . . . 8 (𝑘 = 𝑗 → ((log‘(𝐴 / 𝑥))↑𝑘) = ((log‘(𝐴 / 𝑥))↑𝑗))
235 fveq2 6881 . . . . . . . 8 (𝑘 = 𝑗 → (!‘𝑘) = (!‘𝑗))
236234, 235oveq12d 7428 . . . . . . 7 (𝑘 = 𝑗 → (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘)) = (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)))
237 oveq2 7418 . . . . . . . 8 (𝑘 = 𝑁 → ((log‘(𝐴 / 𝑥))↑𝑘) = ((log‘(𝐴 / 𝑥))↑𝑁))
238 fveq2 6881 . . . . . . . 8 (𝑘 = 𝑁 → (!‘𝑘) = (!‘𝑁))
239237, 238oveq12d 7428 . . . . . . 7 (𝑘 = 𝑁 → (((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘)) = (((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)))
240236, 43, 24, 239, 17, 13telfsumo2 15824 . . . . . 6 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → Σ𝑗 ∈ (0..^𝑁)((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) − (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗))) = ((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) − (((log‘(𝐴 / 𝑥))↑0) / 1)))
24131oveq2d 7426 . . . . . 6 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → ((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) − (((log‘(𝐴 / 𝑥))↑0) / 1)) = ((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) − 1))
242240, 241eqtrd 2771 . . . . 5 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → Σ𝑗 ∈ (0..^𝑁)((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) − (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗))) = ((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) − 1))
243242mpteq2dva 5219 . . . 4 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (𝑥 ∈ ℝ+ ↦ Σ𝑗 ∈ (0..^𝑁)((((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))) − (((log‘(𝐴 / 𝑥))↑𝑗) / (!‘𝑗)))) = (𝑥 ∈ ℝ+ ↦ ((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) − 1)))
244233, 243eqtrd 2771 . . 3 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (ℝ D (𝑥 ∈ ℝ+ ↦ Σ𝑗 ∈ (0..^𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1)))))) = (𝑥 ∈ ℝ+ ↦ ((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) − 1)))
24562, 3, 63, 76, 90, 98, 244dvmptadd 25921 . 2 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 + Σ𝑗 ∈ (0..^𝑁)(𝑥 · (((log‘(𝐴 / 𝑥))↑(𝑗 + 1)) / (!‘(𝑗 + 1))))))) = (𝑥 ∈ ℝ+ ↦ (1 + ((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) − 1))))
246 pncan3 11495 . . . 4 ((1 ∈ ℂ ∧ (((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) ∈ ℂ) → (1 + ((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) − 1)) = (((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)))
24796, 95, 246sylancr 587 . . 3 (((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) ∧ 𝑥 ∈ ℝ+) → (1 + ((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) − 1)) = (((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)))
248247mpteq2dva 5219 . 2 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (𝑥 ∈ ℝ+ ↦ (1 + ((((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁)) − 1))) = (𝑥 ∈ ℝ+ ↦ (((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁))))
24960, 245, 2483eqtrd 2775 1 ((𝐴 ∈ ℝ+𝑁 ∈ ℕ0) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝐴 / 𝑥))↑𝑘) / (!‘𝑘))))) = (𝑥 ∈ ℝ+ ↦ (((log‘(𝐴 / 𝑥))↑𝑁) / (!‘𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  wss 3931  {cpr 4608  cmpt 5206  ran crn 5660  cres 5661  wf 6532  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  Fincfn 8964  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  +∞cpnf 11271  cmin 11471  -cneg 11472   / cdiv 11899  cn 12245  0cn0 12506  cz 12593  cuz 12857  +crp 13013  (,)cioo 13367  ...cfz 13529  ..^cfzo 13676  cexp 14084  !cfa 14296  Σcsu 15707  TopOpenctopn 17440  topGenctg 17456  fldccnfld 21320   D cdv 25821  logclog 26520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522
This theorem is referenced by:  logexprlim  27193
  Copyright terms: Public domain W3C validator