MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodeq1d Structured version   Visualization version   GIF version

Theorem prodeq1d 15957
Description: Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
prodeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
prodeq1d (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)

Proof of Theorem prodeq1d
StepHypRef Expression
1 prodeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 prodeq1 15944 . 2 (𝐴 = 𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
31, 2syl 17 1 (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cprod 15940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-xp 5690  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-iota 6513  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-seq 14044  df-prod 15941
This theorem is referenced by:  prodeq12dv  15963  prodeq12rdv  15964  fprodf1o  15983  prodss  15984  fprod1  16000  fprodp1  16006  fprodfac  16010  fprodabs  16011  fprod2d  16018  fprodcom2  16021  risefacval  16045  fallfacval  16046  risefacval2  16047  fallfacval2  16048  risefacp1  16066  fallfacp1  16067  fallfacval4  16080  fprodefsum  16132  prmoval  17072  prmop1  17077  prmgapprmo  17101  gausslemma2dlem4  27414  breprexplema  34646  breprexplemc  34648  breprexp  34649  circlemethhgt  34659  bcprod  35739  aks4d1p1  42078  dvmptfprodlem  45964  dvmptfprod  45965  ovnval  46561  hoiprodp1  46608  hoidmv1le  46614  hspmbllem1  46646  fmtnorec2  47535
  Copyright terms: Public domain W3C validator