| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prodeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.) |
| Ref | Expression |
|---|---|
| prodeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| prodeq1d | ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | prodeq1 15873 | . 2 ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∏cprod 15869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-xp 5644 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-iota 6464 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-seq 13967 df-prod 15870 |
| This theorem is referenced by: prodeq12dv 15892 prodeq12rdv 15893 fprodf1o 15912 prodss 15913 fprod1 15929 fprodp1 15935 fprodfac 15939 fprodabs 15940 fprod2d 15947 fprodcom2 15950 risefacval 15974 fallfacval 15975 risefacval2 15976 fallfacval2 15977 risefacp1 15995 fallfacp1 15996 fallfacval4 16009 fprodefsum 16061 prmoval 17004 prmop1 17009 prmgapprmo 17033 gausslemma2dlem4 27280 breprexplema 34621 breprexplemc 34623 breprexp 34624 circlemethhgt 34634 bcprod 35725 aks4d1p1 42064 dvmptfprodlem 45942 dvmptfprod 45943 ovnval 46539 hoiprodp1 46586 hoidmv1le 46592 hspmbllem1 46624 fmtnorec2 47544 |
| Copyright terms: Public domain | W3C validator |