MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodeq1d Structured version   Visualization version   GIF version

Theorem prodeq1d 15559
Description: Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
prodeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
prodeq1d (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)

Proof of Theorem prodeq1d
StepHypRef Expression
1 prodeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 prodeq1 15547 . 2 (𝐴 = 𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
31, 2syl 17 1 (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cprod 15543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-xp 5586  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-iota 6376  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-seq 13650  df-prod 15544
This theorem is referenced by:  prodeq12dv  15564  prodeq12rdv  15565  fprodf1o  15584  prodss  15585  fprod1  15601  fprodp1  15607  fprodfac  15611  fprodabs  15612  fprod2d  15619  fprodcom2  15622  risefacval  15646  fallfacval  15647  risefacval2  15648  fallfacval2  15649  risefacp1  15667  fallfacp1  15668  fallfacval4  15681  fprodefsum  15732  prmoval  16662  prmop1  16667  prmgapprmo  16691  gausslemma2dlem4  26422  breprexplema  32510  breprexplemc  32512  breprexp  32513  circlemethhgt  32523  bcprod  33610  aks4d1p1  40012  dvmptfprodlem  43375  dvmptfprod  43376  ovnval  43969  hoiprodp1  44016  hoidmv1le  44022  hspmbllem1  44054  fmtnorec2  44883
  Copyright terms: Public domain W3C validator