MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodeq1d Structured version   Visualization version   GIF version

Theorem prodeq1d 15631
Description: Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
prodeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
prodeq1d (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)

Proof of Theorem prodeq1d
StepHypRef Expression
1 prodeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 prodeq1 15619 . 2 (𝐴 = 𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
31, 2syl 17 1 (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cprod 15615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-xp 5595  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-iota 6391  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-seq 13722  df-prod 15616
This theorem is referenced by:  prodeq12dv  15636  prodeq12rdv  15637  fprodf1o  15656  prodss  15657  fprod1  15673  fprodp1  15679  fprodfac  15683  fprodabs  15684  fprod2d  15691  fprodcom2  15694  risefacval  15718  fallfacval  15719  risefacval2  15720  fallfacval2  15721  risefacp1  15739  fallfacp1  15740  fallfacval4  15753  fprodefsum  15804  prmoval  16734  prmop1  16739  prmgapprmo  16763  gausslemma2dlem4  26517  breprexplema  32610  breprexplemc  32612  breprexp  32613  circlemethhgt  32623  bcprod  33704  aks4d1p1  40084  dvmptfprodlem  43485  dvmptfprod  43486  ovnval  44079  hoiprodp1  44126  hoidmv1le  44132  hspmbllem1  44164  fmtnorec2  44995
  Copyright terms: Public domain W3C validator