| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prodeq1d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.) |
| Ref | Expression |
|---|---|
| prodeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| prodeq1d | ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | prodeq1 15880 | . 2 ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∏cprod 15876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-xp 5647 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-iota 6467 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-seq 13974 df-prod 15877 |
| This theorem is referenced by: prodeq12dv 15899 prodeq12rdv 15900 fprodf1o 15919 prodss 15920 fprod1 15936 fprodp1 15942 fprodfac 15946 fprodabs 15947 fprod2d 15954 fprodcom2 15957 risefacval 15981 fallfacval 15982 risefacval2 15983 fallfacval2 15984 risefacp1 16002 fallfacp1 16003 fallfacval4 16016 fprodefsum 16068 prmoval 17011 prmop1 17016 prmgapprmo 17040 gausslemma2dlem4 27287 breprexplema 34628 breprexplemc 34630 breprexp 34631 circlemethhgt 34641 bcprod 35732 aks4d1p1 42071 dvmptfprodlem 45949 dvmptfprod 45950 ovnval 46546 hoiprodp1 46593 hoidmv1le 46599 hspmbllem1 46631 fmtnorec2 47548 |
| Copyright terms: Public domain | W3C validator |