![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prodeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.) |
Ref | Expression |
---|---|
prodeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
prodeq1d | ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | prodeq1 15955 | . 2 ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∏cprod 15951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-seq 14053 df-prod 15952 |
This theorem is referenced by: prodeq12dv 15974 prodeq12rdv 15975 fprodf1o 15994 prodss 15995 fprod1 16011 fprodp1 16017 fprodfac 16021 fprodabs 16022 fprod2d 16029 fprodcom2 16032 risefacval 16056 fallfacval 16057 risefacval2 16058 fallfacval2 16059 risefacp1 16077 fallfacp1 16078 fallfacval4 16091 fprodefsum 16143 prmoval 17080 prmop1 17085 prmgapprmo 17109 gausslemma2dlem4 27431 breprexplema 34607 breprexplemc 34609 breprexp 34610 circlemethhgt 34620 bcprod 35700 aks4d1p1 42033 dvmptfprodlem 45865 dvmptfprod 45866 ovnval 46462 hoiprodp1 46509 hoidmv1le 46515 hspmbllem1 46547 fmtnorec2 47417 |
Copyright terms: Public domain | W3C validator |