MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgapprmo Structured version   Visualization version   GIF version

Theorem prmgapprmo 17096
Description: Alternate proof of prmgap 17093: in contrast to prmgap 17093, where the gap starts at n! , the factorial of n, the gap starts at n#, the primorial of n. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 29-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
prmgapprmo 𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)
Distinct variable group:   𝑛,𝑝,𝑞,𝑧

Proof of Theorem prmgapprmo
Dummy variables 𝑖 𝑗 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
2 eqid 2735 . . . . . 6 (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘)) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))
3 fzfid 14011 . . . . . . 7 (𝑗 ∈ ℕ → (1...𝑗) ∈ Fin)
4 eqidd 2736 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (1...𝑗)) → (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)))
5 eleq1 2827 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑚 ∈ ℙ ↔ 𝑘 ∈ ℙ))
6 id 22 . . . . . . . . . . 11 (𝑚 = 𝑘𝑚 = 𝑘)
75, 6ifbieq1d 4555 . . . . . . . . . 10 (𝑚 = 𝑘 → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑘 ∈ ℙ, 𝑘, 1))
87adantl 481 . . . . . . . . 9 (((𝑗 ∈ ℕ ∧ 𝑘 ∈ (1...𝑗)) ∧ 𝑚 = 𝑘) → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑘 ∈ ℙ, 𝑘, 1))
9 elfznn 13590 . . . . . . . . . 10 (𝑘 ∈ (1...𝑗) → 𝑘 ∈ ℕ)
109adantl 481 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (1...𝑗)) → 𝑘 ∈ ℕ)
11 1nn 12275 . . . . . . . . . . . 12 1 ∈ ℕ
1211a1i 11 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑗) → 1 ∈ ℕ)
139, 12ifcld 4577 . . . . . . . . . 10 (𝑘 ∈ (1...𝑗) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
1413adantl 481 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (1...𝑗)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
154, 8, 10, 14fvmptd 7023 . . . . . . . 8 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (1...𝑗)) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) = if(𝑘 ∈ ℙ, 𝑘, 1))
1615, 14eqeltrd 2839 . . . . . . 7 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (1...𝑗)) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) ∈ ℕ)
173, 16fprodnncl 15988 . . . . . 6 (𝑗 ∈ ℕ → ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) ∈ ℕ)
182, 17fmpti 7132 . . . . 5 (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘)):ℕ⟶ℕ
19 nnex 12270 . . . . . 6 ℕ ∈ V
2019, 19elmap 8910 . . . . 5 ((𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘)) ∈ (ℕ ↑m ℕ) ↔ (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘)):ℕ⟶ℕ)
2118, 20mpbir 231 . . . 4 (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘)) ∈ (ℕ ↑m ℕ)
2221a1i 11 . . 3 (𝑛 ∈ ℕ → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘)) ∈ (ℕ ↑m ℕ))
23 prmgapprmolem 17095 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 1 < (((#p𝑛) + 𝑖) gcd 𝑖))
24 eqidd 2736 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)))
257adantl 481 . . . . . . . . . . . 12 (((((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) ∧ 𝑚 = 𝑘) → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑘 ∈ ℙ, 𝑘, 1))
269adantl 481 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝑘 ∈ ℕ)
27 elfzelz 13561 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑗) → 𝑘 ∈ ℤ)
28 1zzd 12646 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑗) → 1 ∈ ℤ)
2927, 28ifcld 4577 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑗) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ)
3029adantl 481 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ)
3124, 25, 26, 30fvmptd 7023 . . . . . . . . . . 11 ((((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) = if(𝑘 ∈ ℙ, 𝑘, 1))
3231prodeq2dv 15955 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) = ∏𝑘 ∈ (1...𝑗)if(𝑘 ∈ ℙ, 𝑘, 1))
3332mpteq2dva 5248 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘)) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)if(𝑘 ∈ ℙ, 𝑘, 1)))
34 oveq2 7439 . . . . . . . . . . 11 (𝑗 = 𝑛 → (1...𝑗) = (1...𝑛))
3534prodeq1d 15953 . . . . . . . . . 10 (𝑗 = 𝑛 → ∏𝑘 ∈ (1...𝑗)if(𝑘 ∈ ℙ, 𝑘, 1) = ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1))
3635adantl 481 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑗 = 𝑛) → ∏𝑘 ∈ (1...𝑗)if(𝑘 ∈ ℙ, 𝑘, 1) = ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1))
37 simpl 482 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 𝑛 ∈ ℕ)
38 fzfid 14011 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (1...𝑛) ∈ Fin)
39 elfznn 13590 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
4011a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑛) → 1 ∈ ℕ)
4139, 40ifcld 4577 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑛) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
4241adantl 481 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑘 ∈ (1...𝑛)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
4338, 42fprodnncl 15988 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
4433, 36, 37, 43fvmptd 7023 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))‘𝑛) = ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1))
45 nnnn0 12531 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
46 prmoval 17067 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (#p𝑛) = ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1))
4745, 46syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (#p𝑛) = ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1))
4847eqcomd 2741 . . . . . . . . 9 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1) = (#p𝑛))
4948adantr 480 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1) = (#p𝑛))
5044, 49eqtrd 2775 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))‘𝑛) = (#p𝑛))
5150oveq1d 7446 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (((𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))‘𝑛) + 𝑖) = ((#p𝑛) + 𝑖))
5251oveq1d 7446 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((((𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))‘𝑛) + 𝑖) gcd 𝑖) = (((#p𝑛) + 𝑖) gcd 𝑖))
5323, 52breqtrrd 5176 . . . 4 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 1 < ((((𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))‘𝑛) + 𝑖) gcd 𝑖))
5453ralrimiva 3144 . . 3 (𝑛 ∈ ℕ → ∀𝑖 ∈ (2...𝑛)1 < ((((𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))‘𝑛) + 𝑖) gcd 𝑖))
551, 22, 54prmgaplem8 17092 . 2 (𝑛 ∈ ℕ → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ))
5655rgen 3061 1 𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2106  wnel 3044  wral 3059  wrex 3068  ifcif 4531   class class class wbr 5148  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cmin 11490  cn 12264  2c2 12319  0cn0 12524  cz 12611  ...cfz 13544  ..^cfzo 13691  cprod 15936   gcd cgcd 16528  cprime 16705  #pcprmo 17065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-fac 14310  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-prod 15937  df-dvds 16288  df-gcd 16529  df-prm 16706  df-prmo 17066
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator