MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgapprmo Structured version   Visualization version   GIF version

Theorem prmgapprmo 16388
Description: Alternate proof of prmgap 16385: in contrast to prmgap 16385, where the gap starts at n! , the factorial of n, the gap starts at n#, the primorial of n. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 29-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
prmgapprmo 𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)
Distinct variable group:   𝑛,𝑝,𝑞,𝑧

Proof of Theorem prmgapprmo
Dummy variables 𝑖 𝑗 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
2 eqid 2798 . . . . . 6 (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘)) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))
3 fzfid 13336 . . . . . . 7 (𝑗 ∈ ℕ → (1...𝑗) ∈ Fin)
4 eqidd 2799 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (1...𝑗)) → (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)))
5 eleq1 2877 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑚 ∈ ℙ ↔ 𝑘 ∈ ℙ))
6 id 22 . . . . . . . . . . 11 (𝑚 = 𝑘𝑚 = 𝑘)
75, 6ifbieq1d 4448 . . . . . . . . . 10 (𝑚 = 𝑘 → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑘 ∈ ℙ, 𝑘, 1))
87adantl 485 . . . . . . . . 9 (((𝑗 ∈ ℕ ∧ 𝑘 ∈ (1...𝑗)) ∧ 𝑚 = 𝑘) → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑘 ∈ ℙ, 𝑘, 1))
9 elfznn 12931 . . . . . . . . . 10 (𝑘 ∈ (1...𝑗) → 𝑘 ∈ ℕ)
109adantl 485 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (1...𝑗)) → 𝑘 ∈ ℕ)
11 1nn 11636 . . . . . . . . . . . 12 1 ∈ ℕ
1211a1i 11 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑗) → 1 ∈ ℕ)
139, 12ifcld 4470 . . . . . . . . . 10 (𝑘 ∈ (1...𝑗) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
1413adantl 485 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (1...𝑗)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
154, 8, 10, 14fvmptd 6752 . . . . . . . 8 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (1...𝑗)) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) = if(𝑘 ∈ ℙ, 𝑘, 1))
1615, 14eqeltrd 2890 . . . . . . 7 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (1...𝑗)) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) ∈ ℕ)
173, 16fprodnncl 15301 . . . . . 6 (𝑗 ∈ ℕ → ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) ∈ ℕ)
182, 17fmpti 6853 . . . . 5 (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘)):ℕ⟶ℕ
19 nnex 11631 . . . . . 6 ℕ ∈ V
2019, 19elmap 8418 . . . . 5 ((𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘)) ∈ (ℕ ↑m ℕ) ↔ (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘)):ℕ⟶ℕ)
2118, 20mpbir 234 . . . 4 (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘)) ∈ (ℕ ↑m ℕ)
2221a1i 11 . . 3 (𝑛 ∈ ℕ → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘)) ∈ (ℕ ↑m ℕ))
23 prmgapprmolem 16387 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 1 < (((#p𝑛) + 𝑖) gcd 𝑖))
24 eqidd 2799 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)))
257adantl 485 . . . . . . . . . . . 12 (((((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) ∧ 𝑚 = 𝑘) → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑘 ∈ ℙ, 𝑘, 1))
269adantl 485 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝑘 ∈ ℕ)
27 elfzelz 12902 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑗) → 𝑘 ∈ ℤ)
28 1zzd 12001 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑗) → 1 ∈ ℤ)
2927, 28ifcld 4470 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑗) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ)
3029adantl 485 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ)
3124, 25, 26, 30fvmptd 6752 . . . . . . . . . . 11 ((((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) = if(𝑘 ∈ ℙ, 𝑘, 1))
3231prodeq2dv 15269 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) = ∏𝑘 ∈ (1...𝑗)if(𝑘 ∈ ℙ, 𝑘, 1))
3332mpteq2dva 5125 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘)) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)if(𝑘 ∈ ℙ, 𝑘, 1)))
34 oveq2 7143 . . . . . . . . . . 11 (𝑗 = 𝑛 → (1...𝑗) = (1...𝑛))
3534prodeq1d 15267 . . . . . . . . . 10 (𝑗 = 𝑛 → ∏𝑘 ∈ (1...𝑗)if(𝑘 ∈ ℙ, 𝑘, 1) = ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1))
3635adantl 485 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑗 = 𝑛) → ∏𝑘 ∈ (1...𝑗)if(𝑘 ∈ ℙ, 𝑘, 1) = ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1))
37 simpl 486 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 𝑛 ∈ ℕ)
38 fzfid 13336 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (1...𝑛) ∈ Fin)
39 elfznn 12931 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
4011a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑛) → 1 ∈ ℕ)
4139, 40ifcld 4470 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑛) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
4241adantl 485 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑘 ∈ (1...𝑛)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
4338, 42fprodnncl 15301 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
4433, 36, 37, 43fvmptd 6752 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))‘𝑛) = ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1))
45 nnnn0 11892 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
46 prmoval 16359 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (#p𝑛) = ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1))
4745, 46syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (#p𝑛) = ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1))
4847eqcomd 2804 . . . . . . . . 9 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1) = (#p𝑛))
4948adantr 484 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1) = (#p𝑛))
5044, 49eqtrd 2833 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))‘𝑛) = (#p𝑛))
5150oveq1d 7150 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (((𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))‘𝑛) + 𝑖) = ((#p𝑛) + 𝑖))
5251oveq1d 7150 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((((𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))‘𝑛) + 𝑖) gcd 𝑖) = (((#p𝑛) + 𝑖) gcd 𝑖))
5323, 52breqtrrd 5058 . . . 4 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 1 < ((((𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))‘𝑛) + 𝑖) gcd 𝑖))
5453ralrimiva 3149 . . 3 (𝑛 ∈ ℕ → ∀𝑖 ∈ (2...𝑛)1 < ((((𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))‘𝑛) + 𝑖) gcd 𝑖))
551, 22, 54prmgaplem8 16384 . 2 (𝑛 ∈ ℕ → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ))
5655rgen 3116 1 𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wcel 2111  wnel 3091  wral 3106  wrex 3107  ifcif 4425   class class class wbr 5030  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  1c1 10527   + caddc 10529   < clt 10664  cle 10665  cmin 10859  cn 11625  2c2 11680  0cn0 11885  cz 11969  ...cfz 12885  ..^cfzo 13028  cprod 15251   gcd cgcd 15833  cprime 16005  #pcprmo 16357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-fac 13630  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-prod 15252  df-dvds 15600  df-gcd 15834  df-prm 16006  df-prmo 16358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator