MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmop1 Structured version   Visualization version   GIF version

Theorem prmop1 17016
Description: The primorial of a successor. (Contributed by AV, 28-Aug-2020.)
Assertion
Ref Expression
prmop1 (𝑁 ∈ ℕ0 → (#p‘(𝑁 + 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))

Proof of Theorem prmop1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 peano2nn0 12489 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 prmoval 17011 . . 3 ((𝑁 + 1) ∈ ℕ0 → (#p‘(𝑁 + 1)) = ∏𝑘 ∈ (1...(𝑁 + 1))if(𝑘 ∈ ℙ, 𝑘, 1))
31, 2syl 17 . 2 (𝑁 ∈ ℕ0 → (#p‘(𝑁 + 1)) = ∏𝑘 ∈ (1...(𝑁 + 1))if(𝑘 ∈ ℙ, 𝑘, 1))
4 nn0p1nn 12488 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
5 elnnuz 12844 . . . 4 ((𝑁 + 1) ∈ ℕ ↔ (𝑁 + 1) ∈ (ℤ‘1))
64, 5sylib 218 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (ℤ‘1))
7 elfzelz 13492 . . . . . 6 (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℤ)
87zcnd 12646 . . . . 5 (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℂ)
98adantl 481 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...(𝑁 + 1))) → 𝑘 ∈ ℂ)
10 1cnd 11176 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...(𝑁 + 1))) → 1 ∈ ℂ)
119, 10ifcld 4538 . . 3 ((𝑁 ∈ ℕ0𝑘 ∈ (1...(𝑁 + 1))) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℂ)
12 eleq1 2817 . . . 4 (𝑘 = (𝑁 + 1) → (𝑘 ∈ ℙ ↔ (𝑁 + 1) ∈ ℙ))
13 id 22 . . . 4 (𝑘 = (𝑁 + 1) → 𝑘 = (𝑁 + 1))
1412, 13ifbieq1d 4516 . . 3 (𝑘 = (𝑁 + 1) → if(𝑘 ∈ ℙ, 𝑘, 1) = if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1))
156, 11, 14fprodm1 15940 . 2 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...(𝑁 + 1))if(𝑘 ∈ ℙ, 𝑘, 1) = (∏𝑘 ∈ (1...((𝑁 + 1) − 1))if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)))
16 nn0cn 12459 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
17 pncan1 11609 . . . . . . 7 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
1816, 17syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
1918oveq2d 7406 . . . . 5 (𝑁 ∈ ℕ0 → (1...((𝑁 + 1) − 1)) = (1...𝑁))
2019prodeq1d 15893 . . . 4 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...((𝑁 + 1) − 1))if(𝑘 ∈ ℙ, 𝑘, 1) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
2120oveq1d 7405 . . 3 (𝑁 ∈ ℕ0 → (∏𝑘 ∈ (1...((𝑁 + 1) − 1))if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)))
22 prmoval 17011 . . . . . . . 8 (𝑁 ∈ ℕ0 → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
2322eqcomd 2736 . . . . . . 7 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) = (#p𝑁))
2423adantl 481 . . . . . 6 (((𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) = (#p𝑁))
2524oveq1d 7405 . . . . 5 (((𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · (𝑁 + 1)) = ((#p𝑁) · (𝑁 + 1)))
26 iftrue 4497 . . . . . . . 8 ((𝑁 + 1) ∈ ℙ → if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1) = (𝑁 + 1))
2726oveq2d 7406 . . . . . . 7 ((𝑁 + 1) ∈ ℙ → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · (𝑁 + 1)))
28 iftrue 4497 . . . . . . 7 ((𝑁 + 1) ∈ ℙ → if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) = ((#p𝑁) · (𝑁 + 1)))
2927, 28eqeq12d 2746 . . . . . 6 ((𝑁 + 1) ∈ ℙ → ((∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) ↔ (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · (𝑁 + 1)) = ((#p𝑁) · (𝑁 + 1))))
3029adantr 480 . . . . 5 (((𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ((∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) ↔ (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · (𝑁 + 1)) = ((#p𝑁) · (𝑁 + 1))))
3125, 30mpbird 257 . . . 4 (((𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
32 fzfid 13945 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin)
33 elfznn 13521 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
34 1nn 12204 . . . . . . . . . . . . 13 1 ∈ ℕ
3534a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → 1 ∈ ℕ)
3633, 35ifcld 4538 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
3736adantl 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
3832, 37fprodnncl 15928 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
3938nncnd 12209 . . . . . . . 8 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℂ)
4039adantl 481 . . . . . . 7 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℂ)
4140mulridd 11198 . . . . . 6 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
4222adantl 481 . . . . . 6 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
4341, 42eqtr4d 2768 . . . . 5 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1) = (#p𝑁))
44 iffalse 4500 . . . . . . . 8 (¬ (𝑁 + 1) ∈ ℙ → if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1) = 1)
4544oveq2d 7406 . . . . . . 7 (¬ (𝑁 + 1) ∈ ℙ → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1))
46 iffalse 4500 . . . . . . 7 (¬ (𝑁 + 1) ∈ ℙ → if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) = (#p𝑁))
4745, 46eqeq12d 2746 . . . . . 6 (¬ (𝑁 + 1) ∈ ℙ → ((∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) ↔ (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1) = (#p𝑁)))
4847adantr 480 . . . . 5 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ((∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) ↔ (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1) = (#p𝑁)))
4943, 48mpbird 257 . . . 4 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
5031, 49pm2.61ian 811 . . 3 (𝑁 ∈ ℕ0 → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
5121, 50eqtrd 2765 . 2 (𝑁 ∈ ℕ0 → (∏𝑘 ∈ (1...((𝑁 + 1) − 1))if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
523, 15, 513eqtrd 2769 1 (𝑁 ∈ ℕ0 → (#p‘(𝑁 + 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ifcif 4491  cfv 6514  (class class class)co 7390  cc 11073  1c1 11076   + caddc 11078   · cmul 11080  cmin 11412  cn 12193  0cn0 12449  cuz 12800  ...cfz 13475  cprod 15876  cprime 16648  #pcprmo 17009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-prod 15877  df-prmo 17010
This theorem is referenced by:  prmonn2  17017
  Copyright terms: Public domain W3C validator