MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmop1 Structured version   Visualization version   GIF version

Theorem prmop1 17009
Description: The primorial of a successor. (Contributed by AV, 28-Aug-2020.)
Assertion
Ref Expression
prmop1 (𝑁 ∈ ℕ0 → (#p‘(𝑁 + 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))

Proof of Theorem prmop1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 peano2nn0 12482 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 prmoval 17004 . . 3 ((𝑁 + 1) ∈ ℕ0 → (#p‘(𝑁 + 1)) = ∏𝑘 ∈ (1...(𝑁 + 1))if(𝑘 ∈ ℙ, 𝑘, 1))
31, 2syl 17 . 2 (𝑁 ∈ ℕ0 → (#p‘(𝑁 + 1)) = ∏𝑘 ∈ (1...(𝑁 + 1))if(𝑘 ∈ ℙ, 𝑘, 1))
4 nn0p1nn 12481 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
5 elnnuz 12837 . . . 4 ((𝑁 + 1) ∈ ℕ ↔ (𝑁 + 1) ∈ (ℤ‘1))
64, 5sylib 218 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (ℤ‘1))
7 elfzelz 13485 . . . . . 6 (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℤ)
87zcnd 12639 . . . . 5 (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℂ)
98adantl 481 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...(𝑁 + 1))) → 𝑘 ∈ ℂ)
10 1cnd 11169 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...(𝑁 + 1))) → 1 ∈ ℂ)
119, 10ifcld 4535 . . 3 ((𝑁 ∈ ℕ0𝑘 ∈ (1...(𝑁 + 1))) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℂ)
12 eleq1 2816 . . . 4 (𝑘 = (𝑁 + 1) → (𝑘 ∈ ℙ ↔ (𝑁 + 1) ∈ ℙ))
13 id 22 . . . 4 (𝑘 = (𝑁 + 1) → 𝑘 = (𝑁 + 1))
1412, 13ifbieq1d 4513 . . 3 (𝑘 = (𝑁 + 1) → if(𝑘 ∈ ℙ, 𝑘, 1) = if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1))
156, 11, 14fprodm1 15933 . 2 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...(𝑁 + 1))if(𝑘 ∈ ℙ, 𝑘, 1) = (∏𝑘 ∈ (1...((𝑁 + 1) − 1))if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)))
16 nn0cn 12452 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
17 pncan1 11602 . . . . . . 7 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
1816, 17syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
1918oveq2d 7403 . . . . 5 (𝑁 ∈ ℕ0 → (1...((𝑁 + 1) − 1)) = (1...𝑁))
2019prodeq1d 15886 . . . 4 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...((𝑁 + 1) − 1))if(𝑘 ∈ ℙ, 𝑘, 1) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
2120oveq1d 7402 . . 3 (𝑁 ∈ ℕ0 → (∏𝑘 ∈ (1...((𝑁 + 1) − 1))if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)))
22 prmoval 17004 . . . . . . . 8 (𝑁 ∈ ℕ0 → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
2322eqcomd 2735 . . . . . . 7 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) = (#p𝑁))
2423adantl 481 . . . . . 6 (((𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) = (#p𝑁))
2524oveq1d 7402 . . . . 5 (((𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · (𝑁 + 1)) = ((#p𝑁) · (𝑁 + 1)))
26 iftrue 4494 . . . . . . . 8 ((𝑁 + 1) ∈ ℙ → if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1) = (𝑁 + 1))
2726oveq2d 7403 . . . . . . 7 ((𝑁 + 1) ∈ ℙ → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · (𝑁 + 1)))
28 iftrue 4494 . . . . . . 7 ((𝑁 + 1) ∈ ℙ → if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) = ((#p𝑁) · (𝑁 + 1)))
2927, 28eqeq12d 2745 . . . . . 6 ((𝑁 + 1) ∈ ℙ → ((∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) ↔ (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · (𝑁 + 1)) = ((#p𝑁) · (𝑁 + 1))))
3029adantr 480 . . . . 5 (((𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ((∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) ↔ (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · (𝑁 + 1)) = ((#p𝑁) · (𝑁 + 1))))
3125, 30mpbird 257 . . . 4 (((𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
32 fzfid 13938 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin)
33 elfznn 13514 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
34 1nn 12197 . . . . . . . . . . . . 13 1 ∈ ℕ
3534a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → 1 ∈ ℕ)
3633, 35ifcld 4535 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
3736adantl 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
3832, 37fprodnncl 15921 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
3938nncnd 12202 . . . . . . . 8 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℂ)
4039adantl 481 . . . . . . 7 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℂ)
4140mulridd 11191 . . . . . 6 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
4222adantl 481 . . . . . 6 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
4341, 42eqtr4d 2767 . . . . 5 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1) = (#p𝑁))
44 iffalse 4497 . . . . . . . 8 (¬ (𝑁 + 1) ∈ ℙ → if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1) = 1)
4544oveq2d 7403 . . . . . . 7 (¬ (𝑁 + 1) ∈ ℙ → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1))
46 iffalse 4497 . . . . . . 7 (¬ (𝑁 + 1) ∈ ℙ → if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) = (#p𝑁))
4745, 46eqeq12d 2745 . . . . . 6 (¬ (𝑁 + 1) ∈ ℙ → ((∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) ↔ (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1) = (#p𝑁)))
4847adantr 480 . . . . 5 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ((∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) ↔ (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1) = (#p𝑁)))
4943, 48mpbird 257 . . . 4 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
5031, 49pm2.61ian 811 . . 3 (𝑁 ∈ ℕ0 → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
5121, 50eqtrd 2764 . 2 (𝑁 ∈ ℕ0 → (∏𝑘 ∈ (1...((𝑁 + 1) − 1))if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
523, 15, 513eqtrd 2768 1 (𝑁 ∈ ℕ0 → (#p‘(𝑁 + 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ifcif 4488  cfv 6511  (class class class)co 7387  cc 11066  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405  cn 12186  0cn0 12442  cuz 12793  ...cfz 13468  cprod 15869  cprime 16641  #pcprmo 17002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-prod 15870  df-prmo 17003
This theorem is referenced by:  prmonn2  17010
  Copyright terms: Public domain W3C validator