MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmop1 Structured version   Visualization version   GIF version

Theorem prmop1 16376
Description: The primorial of a successor. (Contributed by AV, 28-Aug-2020.)
Assertion
Ref Expression
prmop1 (𝑁 ∈ ℕ0 → (#p‘(𝑁 + 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))

Proof of Theorem prmop1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 peano2nn0 11940 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 prmoval 16371 . . 3 ((𝑁 + 1) ∈ ℕ0 → (#p‘(𝑁 + 1)) = ∏𝑘 ∈ (1...(𝑁 + 1))if(𝑘 ∈ ℙ, 𝑘, 1))
31, 2syl 17 . 2 (𝑁 ∈ ℕ0 → (#p‘(𝑁 + 1)) = ∏𝑘 ∈ (1...(𝑁 + 1))if(𝑘 ∈ ℙ, 𝑘, 1))
4 nn0p1nn 11939 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
5 elnnuz 12285 . . . 4 ((𝑁 + 1) ∈ ℕ ↔ (𝑁 + 1) ∈ (ℤ‘1))
64, 5sylib 220 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (ℤ‘1))
7 elfzelz 12911 . . . . . 6 (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℤ)
87zcnd 12091 . . . . 5 (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℂ)
98adantl 484 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...(𝑁 + 1))) → 𝑘 ∈ ℂ)
10 1cnd 10638 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...(𝑁 + 1))) → 1 ∈ ℂ)
119, 10ifcld 4514 . . 3 ((𝑁 ∈ ℕ0𝑘 ∈ (1...(𝑁 + 1))) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℂ)
12 eleq1 2902 . . . 4 (𝑘 = (𝑁 + 1) → (𝑘 ∈ ℙ ↔ (𝑁 + 1) ∈ ℙ))
13 id 22 . . . 4 (𝑘 = (𝑁 + 1) → 𝑘 = (𝑁 + 1))
1412, 13ifbieq1d 4492 . . 3 (𝑘 = (𝑁 + 1) → if(𝑘 ∈ ℙ, 𝑘, 1) = if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1))
156, 11, 14fprodm1 15323 . 2 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...(𝑁 + 1))if(𝑘 ∈ ℙ, 𝑘, 1) = (∏𝑘 ∈ (1...((𝑁 + 1) − 1))if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)))
16 nn0cn 11910 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
17 pncan1 11066 . . . . . . 7 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
1816, 17syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
1918oveq2d 7174 . . . . 5 (𝑁 ∈ ℕ0 → (1...((𝑁 + 1) − 1)) = (1...𝑁))
2019prodeq1d 15277 . . . 4 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...((𝑁 + 1) − 1))if(𝑘 ∈ ℙ, 𝑘, 1) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
2120oveq1d 7173 . . 3 (𝑁 ∈ ℕ0 → (∏𝑘 ∈ (1...((𝑁 + 1) − 1))if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)))
22 prmoval 16371 . . . . . . . 8 (𝑁 ∈ ℕ0 → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
2322eqcomd 2829 . . . . . . 7 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) = (#p𝑁))
2423adantl 484 . . . . . 6 (((𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) = (#p𝑁))
2524oveq1d 7173 . . . . 5 (((𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · (𝑁 + 1)) = ((#p𝑁) · (𝑁 + 1)))
26 iftrue 4475 . . . . . . . 8 ((𝑁 + 1) ∈ ℙ → if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1) = (𝑁 + 1))
2726oveq2d 7174 . . . . . . 7 ((𝑁 + 1) ∈ ℙ → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · (𝑁 + 1)))
28 iftrue 4475 . . . . . . 7 ((𝑁 + 1) ∈ ℙ → if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) = ((#p𝑁) · (𝑁 + 1)))
2927, 28eqeq12d 2839 . . . . . 6 ((𝑁 + 1) ∈ ℙ → ((∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) ↔ (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · (𝑁 + 1)) = ((#p𝑁) · (𝑁 + 1))))
3029adantr 483 . . . . 5 (((𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ((∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) ↔ (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · (𝑁 + 1)) = ((#p𝑁) · (𝑁 + 1))))
3125, 30mpbird 259 . . . 4 (((𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
32 fzfid 13344 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin)
33 elfznn 12939 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
34 1nn 11651 . . . . . . . . . . . . 13 1 ∈ ℕ
3534a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → 1 ∈ ℕ)
3633, 35ifcld 4514 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
3736adantl 484 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
3832, 37fprodnncl 15311 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
3938nncnd 11656 . . . . . . . 8 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℂ)
4039adantl 484 . . . . . . 7 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℂ)
4140mulid1d 10660 . . . . . 6 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
4222adantl 484 . . . . . 6 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
4341, 42eqtr4d 2861 . . . . 5 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1) = (#p𝑁))
44 iffalse 4478 . . . . . . . 8 (¬ (𝑁 + 1) ∈ ℙ → if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1) = 1)
4544oveq2d 7174 . . . . . . 7 (¬ (𝑁 + 1) ∈ ℙ → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1))
46 iffalse 4478 . . . . . . 7 (¬ (𝑁 + 1) ∈ ℙ → if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) = (#p𝑁))
4745, 46eqeq12d 2839 . . . . . 6 (¬ (𝑁 + 1) ∈ ℙ → ((∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) ↔ (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1) = (#p𝑁)))
4847adantr 483 . . . . 5 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ((∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) ↔ (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1) = (#p𝑁)))
4943, 48mpbird 259 . . . 4 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
5031, 49pm2.61ian 810 . . 3 (𝑁 ∈ ℕ0 → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
5121, 50eqtrd 2858 . 2 (𝑁 ∈ ℕ0 → (∏𝑘 ∈ (1...((𝑁 + 1) − 1))if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
523, 15, 513eqtrd 2862 1 (𝑁 ∈ ℕ0 → (#p‘(𝑁 + 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  ifcif 4469  cfv 6357  (class class class)co 7158  cc 10537  1c1 10540   + caddc 10542   · cmul 10544  cmin 10872  cn 11640  0cn0 11900  cuz 12246  ...cfz 12895  cprod 15261  cprime 16017  #pcprmo 16369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-prod 15262  df-prmo 16370
This theorem is referenced by:  prmonn2  16377
  Copyright terms: Public domain W3C validator