MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdfval Structured version   Visualization version   GIF version

Theorem psdfval 22045
Description: Give a map between power series and their partial derivatives with respect to a given variable 𝑋. (Contributed by SN, 11-Apr-2025.)
Hypotheses
Ref Expression
psdffval.s 𝑆 = (𝐼 mPwSer 𝑅)
psdffval.b 𝐵 = (Base‘𝑆)
psdffval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psdffval.i (𝜑𝐼𝑉)
psdffval.r (𝜑𝑅𝑊)
psdfval.x (𝜑𝑋𝐼)
Assertion
Ref Expression
psdfval (𝜑 → ((𝐼 mPSDer 𝑅)‘𝑋) = (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
Distinct variable groups:   𝑓,𝐼,,𝑘,𝑦   𝑅,𝑓,𝑘   𝑓,𝑋,𝑘,𝑦   𝐵,𝑓
Allowed substitution hints:   𝜑(𝑦,𝑓,,𝑘)   𝐵(𝑦,,𝑘)   𝐷(𝑦,𝑓,,𝑘)   𝑅(𝑦,)   𝑆(𝑦,𝑓,,𝑘)   𝑉(𝑦,𝑓,,𝑘)   𝑊(𝑦,𝑓,,𝑘)   𝑋()

Proof of Theorem psdfval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 psdffval.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 psdffval.b . . 3 𝐵 = (Base‘𝑆)
3 psdffval.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
4 psdffval.i . . 3 (𝜑𝐼𝑉)
5 psdffval.r . . 3 (𝜑𝑅𝑊)
61, 2, 3, 4, 5psdffval 22044 . 2 (𝜑 → (𝐼 mPSDer 𝑅) = (𝑥𝐼 ↦ (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
7 fveq2 6858 . . . . . . 7 (𝑥 = 𝑋 → (𝑘𝑥) = (𝑘𝑋))
87oveq1d 7402 . . . . . 6 (𝑥 = 𝑋 → ((𝑘𝑥) + 1) = ((𝑘𝑋) + 1))
9 eqeq2 2741 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑦 = 𝑥𝑦 = 𝑋))
109ifbid 4512 . . . . . . . . 9 (𝑥 = 𝑋 → if(𝑦 = 𝑥, 1, 0) = if(𝑦 = 𝑋, 1, 0))
1110mpteq2dv 5201 . . . . . . . 8 (𝑥 = 𝑋 → (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))
1211oveq2d 7403 . . . . . . 7 (𝑥 = 𝑋 → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))) = (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
1312fveq2d 6862 . . . . . 6 (𝑥 = 𝑋 → (𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))) = (𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
148, 13oveq12d 7405 . . . . 5 (𝑥 = 𝑋 → (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))) = (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
1514mpteq2dv 5201 . . . 4 (𝑥 = 𝑋 → (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))) = (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
1615mpteq2dv 5201 . . 3 (𝑥 = 𝑋 → (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))) = (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
1716adantl 481 . 2 ((𝜑𝑥 = 𝑋) → (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))) = (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
18 psdfval.x . 2 (𝜑𝑋𝐼)
192fvexi 6872 . . . 4 𝐵 ∈ V
2019a1i 11 . . 3 (𝜑𝐵 ∈ V)
2120mptexd 7198 . 2 (𝜑 → (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) ∈ V)
226, 17, 18, 21fvmptd 6975 1 (𝜑 → ((𝐼 mPSDer 𝑅)‘𝑋) = (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  ifcif 4488  cmpt 5188  ccnv 5637  cima 5641  cfv 6511  (class class class)co 7387  f cof 7651  m cmap 8799  Fincfn 8918  0cc0 11068  1c1 11069   + caddc 11071  cn 12186  0cn0 12442  Basecbs 17179  .gcmg 18999   mPwSer cmps 21813   mPSDer cpsd 22017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-psd 22043
This theorem is referenced by:  psdval  22046
  Copyright terms: Public domain W3C validator