| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psdfval | Structured version Visualization version GIF version | ||
| Description: Give a map between power series and their partial derivatives with respect to a given variable 𝑋. (Contributed by SN, 11-Apr-2025.) |
| Ref | Expression |
|---|---|
| psdffval.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psdffval.b | ⊢ 𝐵 = (Base‘𝑆) |
| psdffval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| psdffval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| psdffval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
| psdfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| psdfval | ⊢ (𝜑 → ((𝐼 mPSDer 𝑅)‘𝑋) = (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psdffval.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 2 | psdffval.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 3 | psdffval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 4 | psdffval.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 5 | psdffval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
| 6 | 1, 2, 3, 4, 5 | psdffval 22051 | . 2 ⊢ (𝜑 → (𝐼 mPSDer 𝑅) = (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑥) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))))) |
| 7 | fveq2 6861 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑘‘𝑥) = (𝑘‘𝑋)) | |
| 8 | 7 | oveq1d 7405 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑘‘𝑥) + 1) = ((𝑘‘𝑋) + 1)) |
| 9 | eqeq2 2742 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑋 → (𝑦 = 𝑥 ↔ 𝑦 = 𝑋)) | |
| 10 | 9 | ifbid 4515 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → if(𝑦 = 𝑥, 1, 0) = if(𝑦 = 𝑋, 1, 0)) |
| 11 | 10 | mpteq2dv 5204 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) |
| 12 | 11 | oveq2d 7406 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0))) = (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 13 | 12 | fveq2d 6865 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))) = (𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 14 | 8, 13 | oveq12d 7408 | . . . . 5 ⊢ (𝑥 = 𝑋 → (((𝑘‘𝑥) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))) = (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
| 15 | 14 | mpteq2dv 5204 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑥) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))) = (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
| 16 | 15 | mpteq2dv 5204 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑥) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))) = (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))) |
| 17 | 16 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑥) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))) = (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))) |
| 18 | psdfval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 19 | 2 | fvexi 6875 | . . . 4 ⊢ 𝐵 ∈ V |
| 20 | 19 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 21 | 20 | mptexd 7201 | . 2 ⊢ (𝜑 → (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) ∈ V) |
| 22 | 6, 17, 18, 21 | fvmptd 6978 | 1 ⊢ (𝜑 → ((𝐼 mPSDer 𝑅)‘𝑋) = (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ifcif 4491 ↦ cmpt 5191 ◡ccnv 5640 “ cima 5644 ‘cfv 6514 (class class class)co 7390 ∘f cof 7654 ↑m cmap 8802 Fincfn 8921 0cc0 11075 1c1 11076 + caddc 11078 ℕcn 12193 ℕ0cn0 12449 Basecbs 17186 .gcmg 19006 mPwSer cmps 21820 mPSDer cpsd 22024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-psd 22050 |
| This theorem is referenced by: psdval 22053 |
| Copyright terms: Public domain | W3C validator |