MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdfval Structured version   Visualization version   GIF version

Theorem psdfval 22101
Description: Give a map between power series and their partial derivatives with respect to a given variable 𝑋. (Contributed by SN, 11-Apr-2025.)
Hypotheses
Ref Expression
psdffval.s 𝑆 = (𝐼 mPwSer 𝑅)
psdffval.b 𝐵 = (Base‘𝑆)
psdffval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psdffval.i (𝜑𝐼𝑉)
psdffval.r (𝜑𝑅𝑊)
psdfval.x (𝜑𝑋𝐼)
Assertion
Ref Expression
psdfval (𝜑 → ((𝐼 mPSDer 𝑅)‘𝑋) = (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
Distinct variable groups:   𝑓,𝐼,,𝑘,𝑦   𝑅,𝑓,𝑘   𝑓,𝑋,𝑘,𝑦   𝐵,𝑓
Allowed substitution hints:   𝜑(𝑦,𝑓,,𝑘)   𝐵(𝑦,,𝑘)   𝐷(𝑦,𝑓,,𝑘)   𝑅(𝑦,)   𝑆(𝑦,𝑓,,𝑘)   𝑉(𝑦,𝑓,,𝑘)   𝑊(𝑦,𝑓,,𝑘)   𝑋()

Proof of Theorem psdfval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 psdffval.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 psdffval.b . . 3 𝐵 = (Base‘𝑆)
3 psdffval.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
4 psdffval.i . . 3 (𝜑𝐼𝑉)
5 psdffval.r . . 3 (𝜑𝑅𝑊)
61, 2, 3, 4, 5psdffval 22100 . 2 (𝜑 → (𝐼 mPSDer 𝑅) = (𝑥𝐼 ↦ (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
7 fveq2 6881 . . . . . . 7 (𝑥 = 𝑋 → (𝑘𝑥) = (𝑘𝑋))
87oveq1d 7425 . . . . . 6 (𝑥 = 𝑋 → ((𝑘𝑥) + 1) = ((𝑘𝑋) + 1))
9 eqeq2 2748 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑦 = 𝑥𝑦 = 𝑋))
109ifbid 4529 . . . . . . . . 9 (𝑥 = 𝑋 → if(𝑦 = 𝑥, 1, 0) = if(𝑦 = 𝑋, 1, 0))
1110mpteq2dv 5220 . . . . . . . 8 (𝑥 = 𝑋 → (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))
1211oveq2d 7426 . . . . . . 7 (𝑥 = 𝑋 → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))) = (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
1312fveq2d 6885 . . . . . 6 (𝑥 = 𝑋 → (𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))) = (𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
148, 13oveq12d 7428 . . . . 5 (𝑥 = 𝑋 → (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))) = (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
1514mpteq2dv 5220 . . . 4 (𝑥 = 𝑋 → (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))) = (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
1615mpteq2dv 5220 . . 3 (𝑥 = 𝑋 → (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))) = (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
1716adantl 481 . 2 ((𝜑𝑥 = 𝑋) → (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))) = (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
18 psdfval.x . 2 (𝜑𝑋𝐼)
192fvexi 6895 . . . 4 𝐵 ∈ V
2019a1i 11 . . 3 (𝜑𝐵 ∈ V)
2120mptexd 7221 . 2 (𝜑 → (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) ∈ V)
226, 17, 18, 21fvmptd 6998 1 (𝜑 → ((𝐼 mPSDer 𝑅)‘𝑋) = (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3420  Vcvv 3464  ifcif 4505  cmpt 5206  ccnv 5658  cima 5662  cfv 6536  (class class class)co 7410  f cof 7674  m cmap 8845  Fincfn 8964  0cc0 11134  1c1 11135   + caddc 11137  cn 12245  0cn0 12506  Basecbs 17233  .gcmg 19055   mPwSer cmps 21869   mPSDer cpsd 22073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-psd 22099
This theorem is referenced by:  psdval  22102
  Copyright terms: Public domain W3C validator