MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdfval Structured version   Visualization version   GIF version

Theorem psdfval 22074
Description: Give a map between power series and their partial derivatives with respect to a given variable 𝑋. (Contributed by SN, 11-Apr-2025.)
Hypotheses
Ref Expression
psdffval.s 𝑆 = (𝐼 mPwSer 𝑅)
psdffval.b 𝐵 = (Base‘𝑆)
psdffval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psdffval.i (𝜑𝐼𝑉)
psdffval.r (𝜑𝑅𝑊)
psdfval.x (𝜑𝑋𝐼)
Assertion
Ref Expression
psdfval (𝜑 → ((𝐼 mPSDer 𝑅)‘𝑋) = (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
Distinct variable groups:   𝑓,𝐼,,𝑘,𝑦   𝑅,𝑓,𝑘   𝑓,𝑋,𝑘,𝑦   𝐵,𝑓
Allowed substitution hints:   𝜑(𝑦,𝑓,,𝑘)   𝐵(𝑦,,𝑘)   𝐷(𝑦,𝑓,,𝑘)   𝑅(𝑦,)   𝑆(𝑦,𝑓,,𝑘)   𝑉(𝑦,𝑓,,𝑘)   𝑊(𝑦,𝑓,,𝑘)   𝑋()

Proof of Theorem psdfval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 psdffval.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 psdffval.b . . 3 𝐵 = (Base‘𝑆)
3 psdffval.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
4 psdffval.i . . 3 (𝜑𝐼𝑉)
5 psdffval.r . . 3 (𝜑𝑅𝑊)
61, 2, 3, 4, 5psdffval 22073 . 2 (𝜑 → (𝐼 mPSDer 𝑅) = (𝑥𝐼 ↦ (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
7 fveq2 6828 . . . . . . 7 (𝑥 = 𝑋 → (𝑘𝑥) = (𝑘𝑋))
87oveq1d 7367 . . . . . 6 (𝑥 = 𝑋 → ((𝑘𝑥) + 1) = ((𝑘𝑋) + 1))
9 eqeq2 2745 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑦 = 𝑥𝑦 = 𝑋))
109ifbid 4498 . . . . . . . . 9 (𝑥 = 𝑋 → if(𝑦 = 𝑥, 1, 0) = if(𝑦 = 𝑋, 1, 0))
1110mpteq2dv 5187 . . . . . . . 8 (𝑥 = 𝑋 → (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))
1211oveq2d 7368 . . . . . . 7 (𝑥 = 𝑋 → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))) = (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
1312fveq2d 6832 . . . . . 6 (𝑥 = 𝑋 → (𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))) = (𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
148, 13oveq12d 7370 . . . . 5 (𝑥 = 𝑋 → (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))) = (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
1514mpteq2dv 5187 . . . 4 (𝑥 = 𝑋 → (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))) = (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
1615mpteq2dv 5187 . . 3 (𝑥 = 𝑋 → (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))) = (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
1716adantl 481 . 2 ((𝜑𝑥 = 𝑋) → (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))) = (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
18 psdfval.x . 2 (𝜑𝑋𝐼)
192fvexi 6842 . . . 4 𝐵 ∈ V
2019a1i 11 . . 3 (𝜑𝐵 ∈ V)
2120mptexd 7164 . 2 (𝜑 → (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) ∈ V)
226, 17, 18, 21fvmptd 6942 1 (𝜑 → ((𝐼 mPSDer 𝑅)‘𝑋) = (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  ifcif 4474  cmpt 5174  ccnv 5618  cima 5622  cfv 6486  (class class class)co 7352  f cof 7614  m cmap 8756  Fincfn 8875  0cc0 11013  1c1 11014   + caddc 11016  cn 12132  0cn0 12388  Basecbs 17122  .gcmg 18982   mPwSer cmps 21843   mPSDer cpsd 22046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-psd 22072
This theorem is referenced by:  psdval  22075
  Copyright terms: Public domain W3C validator