![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psdfval | Structured version Visualization version GIF version |
Description: Give a map between power series and their partial derivatives with respect to a given variable 𝑋. (Contributed by SN, 11-Apr-2025.) |
Ref | Expression |
---|---|
psdffval.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psdffval.b | ⊢ 𝐵 = (Base‘𝑆) |
psdffval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
psdffval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
psdffval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
psdfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
Ref | Expression |
---|---|
psdfval | ⊢ (𝜑 → ((𝐼 mPSDer 𝑅)‘𝑋) = (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psdffval.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
2 | psdffval.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
3 | psdffval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
4 | psdffval.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
5 | psdffval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
6 | 1, 2, 3, 4, 5 | psdffval 22029 | . 2 ⊢ (𝜑 → (𝐼 mPSDer 𝑅) = (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑥) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))))) |
7 | fveq2 6882 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑘‘𝑥) = (𝑘‘𝑋)) | |
8 | 7 | oveq1d 7417 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑘‘𝑥) + 1) = ((𝑘‘𝑋) + 1)) |
9 | eqeq2 2736 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑋 → (𝑦 = 𝑥 ↔ 𝑦 = 𝑋)) | |
10 | 9 | ifbid 4544 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → if(𝑦 = 𝑥, 1, 0) = if(𝑦 = 𝑋, 1, 0)) |
11 | 10 | mpteq2dv 5241 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) |
12 | 11 | oveq2d 7418 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0))) = (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
13 | 12 | fveq2d 6886 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))) = (𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
14 | 8, 13 | oveq12d 7420 | . . . . 5 ⊢ (𝑥 = 𝑋 → (((𝑘‘𝑥) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))) = (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
15 | 14 | mpteq2dv 5241 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑥) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))) = (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
16 | 15 | mpteq2dv 5241 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑥) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))) = (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))) |
17 | 16 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑥) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))) = (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))) |
18 | psdfval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
19 | 2 | fvexi 6896 | . . . 4 ⊢ 𝐵 ∈ V |
20 | 19 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
21 | 20 | mptexd 7218 | . 2 ⊢ (𝜑 → (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) ∈ V) |
22 | 6, 17, 18, 21 | fvmptd 6996 | 1 ⊢ (𝜑 → ((𝐼 mPSDer 𝑅)‘𝑋) = (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {crab 3424 Vcvv 3466 ifcif 4521 ↦ cmpt 5222 ◡ccnv 5666 “ cima 5670 ‘cfv 6534 (class class class)co 7402 ∘f cof 7662 ↑m cmap 8817 Fincfn 8936 0cc0 11107 1c1 11108 + caddc 11110 ℕcn 12211 ℕ0cn0 12471 Basecbs 17149 .gcmg 18991 mPwSer cmps 21787 mPSDer cpsd 22004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-psd 22028 |
This theorem is referenced by: psdval 22031 |
Copyright terms: Public domain | W3C validator |