| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psdfval | Structured version Visualization version GIF version | ||
| Description: Give a map between power series and their partial derivatives with respect to a given variable 𝑋. (Contributed by SN, 11-Apr-2025.) |
| Ref | Expression |
|---|---|
| psdffval.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| psdffval.b | ⊢ 𝐵 = (Base‘𝑆) |
| psdffval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| psdffval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| psdffval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
| psdfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| psdfval | ⊢ (𝜑 → ((𝐼 mPSDer 𝑅)‘𝑋) = (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psdffval.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 2 | psdffval.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 3 | psdffval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 4 | psdffval.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 5 | psdffval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
| 6 | 1, 2, 3, 4, 5 | psdffval 22073 | . 2 ⊢ (𝜑 → (𝐼 mPSDer 𝑅) = (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑥) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))))) |
| 7 | fveq2 6828 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑘‘𝑥) = (𝑘‘𝑋)) | |
| 8 | 7 | oveq1d 7367 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑘‘𝑥) + 1) = ((𝑘‘𝑋) + 1)) |
| 9 | eqeq2 2745 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑋 → (𝑦 = 𝑥 ↔ 𝑦 = 𝑋)) | |
| 10 | 9 | ifbid 4498 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → if(𝑦 = 𝑥, 1, 0) = if(𝑦 = 𝑋, 1, 0)) |
| 11 | 10 | mpteq2dv 5187 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) |
| 12 | 11 | oveq2d 7368 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0))) = (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 13 | 12 | fveq2d 6832 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))) = (𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 14 | 8, 13 | oveq12d 7370 | . . . . 5 ⊢ (𝑥 = 𝑋 → (((𝑘‘𝑥) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))) = (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
| 15 | 14 | mpteq2dv 5187 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑥) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))) = (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
| 16 | 15 | mpteq2dv 5187 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑥) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))) = (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))) |
| 17 | 16 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑥) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))) = (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))) |
| 18 | psdfval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 19 | 2 | fvexi 6842 | . . . 4 ⊢ 𝐵 ∈ V |
| 20 | 19 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 21 | 20 | mptexd 7164 | . 2 ⊢ (𝜑 → (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) ∈ V) |
| 22 | 6, 17, 18, 21 | fvmptd 6942 | 1 ⊢ (𝜑 → ((𝐼 mPSDer 𝑅)‘𝑋) = (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑋) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {crab 3396 Vcvv 3437 ifcif 4474 ↦ cmpt 5174 ◡ccnv 5618 “ cima 5622 ‘cfv 6486 (class class class)co 7352 ∘f cof 7614 ↑m cmap 8756 Fincfn 8875 0cc0 11013 1c1 11014 + caddc 11016 ℕcn 12132 ℕ0cn0 12388 Basecbs 17122 .gcmg 18982 mPwSer cmps 21843 mPSDer cpsd 22046 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-psd 22072 |
| This theorem is referenced by: psdval 22075 |
| Copyright terms: Public domain | W3C validator |