MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdfval Structured version   Visualization version   GIF version

Theorem psdfval 22180
Description: Give a map between power series and their partial derivatives with respect to a given variable 𝑋. (Contributed by SN, 11-Apr-2025.)
Hypotheses
Ref Expression
psdffval.s 𝑆 = (𝐼 mPwSer 𝑅)
psdffval.b 𝐵 = (Base‘𝑆)
psdffval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psdffval.i (𝜑𝐼𝑉)
psdffval.r (𝜑𝑅𝑊)
psdfval.x (𝜑𝑋𝐼)
Assertion
Ref Expression
psdfval (𝜑 → ((𝐼 mPSDer 𝑅)‘𝑋) = (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
Distinct variable groups:   𝑓,𝐼,,𝑘,𝑦   𝑅,𝑓,𝑘   𝑓,𝑋,𝑘,𝑦   𝐵,𝑓
Allowed substitution hints:   𝜑(𝑦,𝑓,,𝑘)   𝐵(𝑦,,𝑘)   𝐷(𝑦,𝑓,,𝑘)   𝑅(𝑦,)   𝑆(𝑦,𝑓,,𝑘)   𝑉(𝑦,𝑓,,𝑘)   𝑊(𝑦,𝑓,,𝑘)   𝑋()

Proof of Theorem psdfval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 psdffval.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 psdffval.b . . 3 𝐵 = (Base‘𝑆)
3 psdffval.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
4 psdffval.i . . 3 (𝜑𝐼𝑉)
5 psdffval.r . . 3 (𝜑𝑅𝑊)
61, 2, 3, 4, 5psdffval 22179 . 2 (𝜑 → (𝐼 mPSDer 𝑅) = (𝑥𝐼 ↦ (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
7 fveq2 6907 . . . . . . 7 (𝑥 = 𝑋 → (𝑘𝑥) = (𝑘𝑋))
87oveq1d 7446 . . . . . 6 (𝑥 = 𝑋 → ((𝑘𝑥) + 1) = ((𝑘𝑋) + 1))
9 eqeq2 2747 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑦 = 𝑥𝑦 = 𝑋))
109ifbid 4554 . . . . . . . . 9 (𝑥 = 𝑋 → if(𝑦 = 𝑥, 1, 0) = if(𝑦 = 𝑋, 1, 0))
1110mpteq2dv 5250 . . . . . . . 8 (𝑥 = 𝑋 → (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))
1211oveq2d 7447 . . . . . . 7 (𝑥 = 𝑋 → (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))) = (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
1312fveq2d 6911 . . . . . 6 (𝑥 = 𝑋 → (𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))) = (𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
148, 13oveq12d 7449 . . . . 5 (𝑥 = 𝑋 → (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))) = (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
1514mpteq2dv 5250 . . . 4 (𝑥 = 𝑋 → (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))) = (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
1615mpteq2dv 5250 . . 3 (𝑥 = 𝑋 → (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))) = (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
1716adantl 481 . 2 ((𝜑𝑥 = 𝑋) → (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))) = (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
18 psdfval.x . 2 (𝜑𝑋𝐼)
192fvexi 6921 . . . 4 𝐵 ∈ V
2019a1i 11 . . 3 (𝜑𝐵 ∈ V)
2120mptexd 7244 . 2 (𝜑 → (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) ∈ V)
226, 17, 18, 21fvmptd 7023 1 (𝜑 → ((𝐼 mPSDer 𝑅)‘𝑋) = (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑋) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478  ifcif 4531  cmpt 5231  ccnv 5688  cima 5692  cfv 6563  (class class class)co 7431  f cof 7695  m cmap 8865  Fincfn 8984  0cc0 11153  1c1 11154   + caddc 11156  cn 12264  0cn0 12524  Basecbs 17245  .gcmg 19098   mPwSer cmps 21942   mPSDer cpsd 22152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-psd 22178
This theorem is referenced by:  psdval  22181
  Copyright terms: Public domain W3C validator