MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdffval Structured version   Visualization version   GIF version

Theorem psdffval 22128
Description: Value of the power series differentiation operation. (Contributed by SN, 11-Apr-2025.)
Hypotheses
Ref Expression
psdffval.s 𝑆 = (𝐼 mPwSer 𝑅)
psdffval.b 𝐵 = (Base‘𝑆)
psdffval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psdffval.i (𝜑𝐼𝑉)
psdffval.r (𝜑𝑅𝑊)
Assertion
Ref Expression
psdffval (𝜑 → (𝐼 mPSDer 𝑅) = (𝑥𝐼 ↦ (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
Distinct variable groups:   𝑓,𝐼,,𝑘,𝑥,𝑦   𝑅,𝑓,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,,𝑘)   𝐵(𝑥,𝑦,𝑓,,𝑘)   𝐷(𝑥,𝑦,𝑓,,𝑘)   𝑅(𝑦,)   𝑆(𝑥,𝑦,𝑓,,𝑘)   𝑉(𝑥,𝑦,𝑓,,𝑘)   𝑊(𝑥,𝑦,𝑓,,𝑘)

Proof of Theorem psdffval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psd 22127 . . 3 mPSDer = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
21a1i 11 . 2 (𝜑 → mPSDer = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))))))))
3 simpl 482 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → 𝑖 = 𝐼)
4 oveq12 7423 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) = (𝐼 mPwSer 𝑅))
5 psdffval.s . . . . . . . 8 𝑆 = (𝐼 mPwSer 𝑅)
64, 5eqtr4di 2787 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) = 𝑆)
76fveq2d 6891 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPwSer 𝑟)) = (Base‘𝑆))
8 psdffval.b . . . . . 6 𝐵 = (Base‘𝑆)
97, 8eqtr4di 2787 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPwSer 𝑟)) = 𝐵)
103oveq2d 7430 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (ℕ0m 𝑖) = (ℕ0m 𝐼))
1110rabeqdv 3436 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
12 psdffval.d . . . . . . 7 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
1311, 12eqtr4di 2787 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = 𝐷)
14 fveq2 6887 . . . . . . . 8 (𝑟 = 𝑅 → (.g𝑟) = (.g𝑅))
1514adantl 481 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (.g𝑟) = (.g𝑅))
16 eqidd 2735 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝑘𝑥) + 1) = ((𝑘𝑥) + 1))
173mpteq1d 5219 . . . . . . . . 9 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))
1817oveq2d 7430 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0))) = (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))
1918fveq2d 6891 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))) = (𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))
2015, 16, 19oveq123d 7435 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))) = (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))
2113, 20mpteq12dv 5215 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))) = (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))
229, 21mpteq12dv 5215 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))))) = (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))))
233, 22mpteq12dv 5215 . . 3 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑥𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))))) = (𝑥𝐼 ↦ (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
2423adantl 481 . 2 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → (𝑥𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))))) = (𝑥𝐼 ↦ (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
25 psdffval.i . . 3 (𝜑𝐼𝑉)
2625elexd 3488 . 2 (𝜑𝐼 ∈ V)
27 psdffval.r . . 3 (𝜑𝑅𝑊)
2827elexd 3488 . 2 (𝜑𝑅 ∈ V)
2925mptexd 7227 . 2 (𝜑 → (𝑥𝐼 ↦ (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))) ∈ V)
302, 24, 26, 28, 29ovmpod 7568 1 (𝜑 → (𝐼 mPSDer 𝑅) = (𝑥𝐼 ↦ (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {crab 3420  Vcvv 3464  ifcif 4507  cmpt 5207  ccnv 5666  cima 5670  cfv 6542  (class class class)co 7414  cmpo 7416  f cof 7678  m cmap 8849  Fincfn 8968  0cc0 11138  1c1 11139   + caddc 11141  cn 12249  0cn0 12510  Basecbs 17230  .gcmg 19059   mPwSer cmps 21891   mPSDer cpsd 22101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-psd 22127
This theorem is referenced by:  psdfval  22129
  Copyright terms: Public domain W3C validator