MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdffval Structured version   Visualization version   GIF version

Theorem psdffval 22184
Description: Value of the power series differentiation operation. (Contributed by SN, 11-Apr-2025.)
Hypotheses
Ref Expression
psdffval.s 𝑆 = (𝐼 mPwSer 𝑅)
psdffval.b 𝐵 = (Base‘𝑆)
psdffval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psdffval.i (𝜑𝐼𝑉)
psdffval.r (𝜑𝑅𝑊)
Assertion
Ref Expression
psdffval (𝜑 → (𝐼 mPSDer 𝑅) = (𝑥𝐼 ↦ (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
Distinct variable groups:   𝑓,𝐼,,𝑘,𝑥,𝑦   𝑅,𝑓,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,,𝑘)   𝐵(𝑥,𝑦,𝑓,,𝑘)   𝐷(𝑥,𝑦,𝑓,,𝑘)   𝑅(𝑦,)   𝑆(𝑥,𝑦,𝑓,,𝑘)   𝑉(𝑥,𝑦,𝑓,,𝑘)   𝑊(𝑥,𝑦,𝑓,,𝑘)

Proof of Theorem psdffval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psd 22183 . . 3 mPSDer = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
21a1i 11 . 2 (𝜑 → mPSDer = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))))))))
3 simpl 482 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → 𝑖 = 𝐼)
4 oveq12 7457 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) = (𝐼 mPwSer 𝑅))
5 psdffval.s . . . . . . . 8 𝑆 = (𝐼 mPwSer 𝑅)
64, 5eqtr4di 2798 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) = 𝑆)
76fveq2d 6924 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPwSer 𝑟)) = (Base‘𝑆))
8 psdffval.b . . . . . 6 𝐵 = (Base‘𝑆)
97, 8eqtr4di 2798 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPwSer 𝑟)) = 𝐵)
103oveq2d 7464 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (ℕ0m 𝑖) = (ℕ0m 𝐼))
1110rabeqdv 3459 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
12 psdffval.d . . . . . . 7 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
1311, 12eqtr4di 2798 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = 𝐷)
14 fveq2 6920 . . . . . . . 8 (𝑟 = 𝑅 → (.g𝑟) = (.g𝑅))
1514adantl 481 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (.g𝑟) = (.g𝑅))
16 eqidd 2741 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝑘𝑥) + 1) = ((𝑘𝑥) + 1))
173mpteq1d 5261 . . . . . . . . 9 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))
1817oveq2d 7464 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0))) = (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))
1918fveq2d 6924 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))) = (𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))
2015, 16, 19oveq123d 7469 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))) = (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))
2113, 20mpteq12dv 5257 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))) = (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))
229, 21mpteq12dv 5257 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))))) = (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))))
233, 22mpteq12dv 5257 . . 3 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑥𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))))) = (𝑥𝐼 ↦ (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
2423adantl 481 . 2 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → (𝑥𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))))) = (𝑥𝐼 ↦ (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
25 psdffval.i . . 3 (𝜑𝐼𝑉)
2625elexd 3512 . 2 (𝜑𝐼 ∈ V)
27 psdffval.r . . 3 (𝜑𝑅𝑊)
2827elexd 3512 . 2 (𝜑𝑅 ∈ V)
2925mptexd 7261 . 2 (𝜑 → (𝑥𝐼 ↦ (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))) ∈ V)
302, 24, 26, 28, 29ovmpod 7602 1 (𝜑 → (𝐼 mPSDer 𝑅) = (𝑥𝐼 ↦ (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  ifcif 4548  cmpt 5249  ccnv 5699  cima 5703  cfv 6573  (class class class)co 7448  cmpo 7450  f cof 7712  m cmap 8884  Fincfn 9003  0cc0 11184  1c1 11185   + caddc 11187  cn 12293  0cn0 12553  Basecbs 17258  .gcmg 19107   mPwSer cmps 21947   mPSDer cpsd 22157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-psd 22183
This theorem is referenced by:  psdfval  22185
  Copyright terms: Public domain W3C validator