MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdffval Structured version   Visualization version   GIF version

Theorem psdffval 22075
Description: Value of the power series differentiation operation. (Contributed by SN, 11-Apr-2025.)
Hypotheses
Ref Expression
psdffval.s 𝑆 = (𝐼 mPwSer 𝑅)
psdffval.b 𝐵 = (Base‘𝑆)
psdffval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psdffval.i (𝜑𝐼𝑉)
psdffval.r (𝜑𝑅𝑊)
Assertion
Ref Expression
psdffval (𝜑 → (𝐼 mPSDer 𝑅) = (𝑥𝐼 ↦ (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
Distinct variable groups:   𝑓,𝐼,,𝑘,𝑥,𝑦   𝑅,𝑓,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,,𝑘)   𝐵(𝑥,𝑦,𝑓,,𝑘)   𝐷(𝑥,𝑦,𝑓,,𝑘)   𝑅(𝑦,)   𝑆(𝑥,𝑦,𝑓,,𝑘)   𝑉(𝑥,𝑦,𝑓,,𝑘)   𝑊(𝑥,𝑦,𝑓,,𝑘)

Proof of Theorem psdffval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psd 22074 . . 3 mPSDer = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
21a1i 11 . 2 (𝜑 → mPSDer = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))))))))
3 simpl 482 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → 𝑖 = 𝐼)
4 oveq12 7363 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) = (𝐼 mPwSer 𝑅))
5 psdffval.s . . . . . . . 8 𝑆 = (𝐼 mPwSer 𝑅)
64, 5eqtr4di 2786 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) = 𝑆)
76fveq2d 6834 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPwSer 𝑟)) = (Base‘𝑆))
8 psdffval.b . . . . . 6 𝐵 = (Base‘𝑆)
97, 8eqtr4di 2786 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPwSer 𝑟)) = 𝐵)
103oveq2d 7370 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (ℕ0m 𝑖) = (ℕ0m 𝐼))
1110rabeqdv 3411 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
12 psdffval.d . . . . . . 7 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
1311, 12eqtr4di 2786 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = 𝐷)
14 fveq2 6830 . . . . . . . 8 (𝑟 = 𝑅 → (.g𝑟) = (.g𝑅))
1514adantl 481 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (.g𝑟) = (.g𝑅))
16 eqidd 2734 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝑘𝑥) + 1) = ((𝑘𝑥) + 1))
173mpteq1d 5185 . . . . . . . . 9 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))
1817oveq2d 7370 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0))) = (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))
1918fveq2d 6834 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))) = (𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))
2015, 16, 19oveq123d 7375 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))) = (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))
2113, 20mpteq12dv 5182 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))) = (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))
229, 21mpteq12dv 5182 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))))) = (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))))
233, 22mpteq12dv 5182 . . 3 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑥𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))))) = (𝑥𝐼 ↦ (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
2423adantl 481 . 2 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → (𝑥𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))))) = (𝑥𝐼 ↦ (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
25 psdffval.i . . 3 (𝜑𝐼𝑉)
2625elexd 3461 . 2 (𝜑𝐼 ∈ V)
27 psdffval.r . . 3 (𝜑𝑅𝑊)
2827elexd 3461 . 2 (𝜑𝑅 ∈ V)
2925mptexd 7166 . 2 (𝜑 → (𝑥𝐼 ↦ (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))) ∈ V)
302, 24, 26, 28, 29ovmpod 7506 1 (𝜑 → (𝐼 mPSDer 𝑅) = (𝑥𝐼 ↦ (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  ifcif 4476  cmpt 5176  ccnv 5620  cima 5624  cfv 6488  (class class class)co 7354  cmpo 7356  f cof 7616  m cmap 8758  Fincfn 8877  0cc0 11015  1c1 11016   + caddc 11018  cn 12134  0cn0 12390  Basecbs 17124  .gcmg 18984   mPwSer cmps 21845   mPSDer cpsd 22048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-psd 22074
This theorem is referenced by:  psdfval  22076
  Copyright terms: Public domain W3C validator