Step | Hyp | Ref
| Expression |
1 | | df-psd 22058 |
. . 3
⊢ mPSDer =
(𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑥) + 1)(.g‘𝑟)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))))))) |
2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → mPSDer = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑥) + 1)(.g‘𝑟)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))))))) |
3 | | simpl 482 |
. . . 4
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → 𝑖 = 𝐼) |
4 | | oveq12 7423 |
. . . . . . . 8
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) = (𝐼 mPwSer 𝑅)) |
5 | | psdffval.s |
. . . . . . . 8
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
6 | 4, 5 | eqtr4di 2785 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) = 𝑆) |
7 | 6 | fveq2d 6895 |
. . . . . 6
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (Base‘(𝑖 mPwSer 𝑟)) = (Base‘𝑆)) |
8 | | psdffval.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑆) |
9 | 7, 8 | eqtr4di 2785 |
. . . . 5
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (Base‘(𝑖 mPwSer 𝑟)) = 𝐵) |
10 | 3 | oveq2d 7430 |
. . . . . . . 8
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (ℕ0
↑m 𝑖) =
(ℕ0 ↑m 𝐼)) |
11 | 10 | rabeqdv 3442 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
12 | | psdffval.d |
. . . . . . 7
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
13 | 11, 12 | eqtr4di 2785 |
. . . . . 6
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} = 𝐷) |
14 | | fveq2 6891 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (.g‘𝑟) = (.g‘𝑅)) |
15 | 14 | adantl 481 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (.g‘𝑟) = (.g‘𝑅)) |
16 | | eqidd 2728 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → ((𝑘‘𝑥) + 1) = ((𝑘‘𝑥) + 1)) |
17 | 3 | mpteq1d 5237 |
. . . . . . . . 9
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0))) |
18 | 17 | oveq2d 7430 |
. . . . . . . 8
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0))) = (𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))) |
19 | 18 | fveq2d 6895 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))) = (𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))) |
20 | 15, 16, 19 | oveq123d 7435 |
. . . . . 6
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (((𝑘‘𝑥) + 1)(.g‘𝑟)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))) = (((𝑘‘𝑥) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))) |
21 | 13, 20 | mpteq12dv 5233 |
. . . . 5
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑥) + 1)(.g‘𝑟)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))) = (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑥) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))) |
22 | 9, 21 | mpteq12dv 5233 |
. . . 4
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑥) + 1)(.g‘𝑟)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))))) = (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑥) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))) |
23 | 3, 22 | mpteq12dv 5233 |
. . 3
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑥) + 1)(.g‘𝑟)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))))) = (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑥) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))))) |
24 | 23 | adantl 481 |
. 2
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑥) + 1)(.g‘𝑟)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))))) = (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑥) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))))) |
25 | | psdffval.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
26 | 25 | elexd 3490 |
. 2
⊢ (𝜑 → 𝐼 ∈ V) |
27 | | psdffval.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ 𝑊) |
28 | 27 | elexd 3490 |
. 2
⊢ (𝜑 → 𝑅 ∈ V) |
29 | 25 | mptexd 7230 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑥) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))) ∈ V) |
30 | 2, 24, 26, 28, 29 | ovmpod 7565 |
1
⊢ (𝜑 → (𝐼 mPSDer 𝑅) = (𝑥 ∈ 𝐼 ↦ (𝑓 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (((𝑘‘𝑥) + 1)(.g‘𝑅)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))))) |