MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdffval Structured version   Visualization version   GIF version

Theorem psdffval 22073
Description: Value of the power series differentiation operation. (Contributed by SN, 11-Apr-2025.)
Hypotheses
Ref Expression
psdffval.s 𝑆 = (𝐼 mPwSer 𝑅)
psdffval.b 𝐵 = (Base‘𝑆)
psdffval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psdffval.i (𝜑𝐼𝑉)
psdffval.r (𝜑𝑅𝑊)
Assertion
Ref Expression
psdffval (𝜑 → (𝐼 mPSDer 𝑅) = (𝑥𝐼 ↦ (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
Distinct variable groups:   𝑓,𝐼,,𝑘,𝑥,𝑦   𝑅,𝑓,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,,𝑘)   𝐵(𝑥,𝑦,𝑓,,𝑘)   𝐷(𝑥,𝑦,𝑓,,𝑘)   𝑅(𝑦,)   𝑆(𝑥,𝑦,𝑓,,𝑘)   𝑉(𝑥,𝑦,𝑓,,𝑘)   𝑊(𝑥,𝑦,𝑓,,𝑘)

Proof of Theorem psdffval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psd 22072 . . 3 mPSDer = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
21a1i 11 . 2 (𝜑 → mPSDer = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))))))))
3 simpl 482 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → 𝑖 = 𝐼)
4 oveq12 7355 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) = (𝐼 mPwSer 𝑅))
5 psdffval.s . . . . . . . 8 𝑆 = (𝐼 mPwSer 𝑅)
64, 5eqtr4di 2784 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPwSer 𝑟) = 𝑆)
76fveq2d 6826 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPwSer 𝑟)) = (Base‘𝑆))
8 psdffval.b . . . . . 6 𝐵 = (Base‘𝑆)
97, 8eqtr4di 2784 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPwSer 𝑟)) = 𝐵)
103oveq2d 7362 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (ℕ0m 𝑖) = (ℕ0m 𝐼))
1110rabeqdv 3410 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
12 psdffval.d . . . . . . 7 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
1311, 12eqtr4di 2784 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = 𝐷)
14 fveq2 6822 . . . . . . . 8 (𝑟 = 𝑅 → (.g𝑟) = (.g𝑅))
1514adantl 481 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (.g𝑟) = (.g𝑅))
16 eqidd 2732 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝑘𝑥) + 1) = ((𝑘𝑥) + 1))
173mpteq1d 5181 . . . . . . . . 9 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))
1817oveq2d 7362 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0))) = (𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))
1918fveq2d 6826 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))) = (𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))
2015, 16, 19oveq123d 7367 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))) = (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))
2113, 20mpteq12dv 5178 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))) = (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))
229, 21mpteq12dv 5178 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))))) = (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0))))))))
233, 22mpteq12dv 5178 . . 3 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑥𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))))) = (𝑥𝐼 ↦ (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
2423adantl 481 . 2 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → (𝑥𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))))) = (𝑥𝐼 ↦ (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
25 psdffval.i . . 3 (𝜑𝐼𝑉)
2625elexd 3460 . 2 (𝜑𝐼 ∈ V)
27 psdffval.r . . 3 (𝜑𝑅𝑊)
2827elexd 3460 . 2 (𝜑𝑅 ∈ V)
2925mptexd 7158 . 2 (𝜑 → (𝑥𝐼 ↦ (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))) ∈ V)
302, 24, 26, 28, 29ovmpod 7498 1 (𝜑 → (𝐼 mPSDer 𝑅) = (𝑥𝐼 ↦ (𝑓𝐵 ↦ (𝑘𝐷 ↦ (((𝑘𝑥) + 1)(.g𝑅)(𝑓‘(𝑘f + (𝑦𝐼 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  ifcif 4475  cmpt 5172  ccnv 5615  cima 5619  cfv 6481  (class class class)co 7346  cmpo 7348  f cof 7608  m cmap 8750  Fincfn 8869  0cc0 11006  1c1 11007   + caddc 11009  cn 12125  0cn0 12381  Basecbs 17120  .gcmg 18980   mPwSer cmps 21842   mPSDer cpsd 22046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-psd 22072
This theorem is referenced by:  psdfval  22074
  Copyright terms: Public domain W3C validator