MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthontrlon Structured version   Visualization version   GIF version

Theorem pthontrlon 29439
Description: A path between two vertices is a trail between these vertices. (Contributed by AV, 24-Jan-2021.)
Assertion
Ref Expression
pthontrlon (๐น(๐ด(PathsOnโ€˜๐บ)๐ต)๐‘ƒ โ†’ ๐น(๐ด(TrailsOnโ€˜๐บ)๐ต)๐‘ƒ)

Proof of Theorem pthontrlon
StepHypRef Expression
1 eqid 2724 . . 3 (Vtxโ€˜๐บ) = (Vtxโ€˜๐บ)
21pthsonprop 29436 . 2 (๐น(๐ด(PathsOnโ€˜๐บ)๐ต)๐‘ƒ โ†’ ((๐บ โˆˆ V โˆง ๐ด โˆˆ (Vtxโ€˜๐บ) โˆง ๐ต โˆˆ (Vtxโ€˜๐บ)) โˆง (๐น โˆˆ V โˆง ๐‘ƒ โˆˆ V) โˆง (๐น(๐ด(TrailsOnโ€˜๐บ)๐ต)๐‘ƒ โˆง ๐น(Pathsโ€˜๐บ)๐‘ƒ)))
3 simp3l 1198 . 2 (((๐บ โˆˆ V โˆง ๐ด โˆˆ (Vtxโ€˜๐บ) โˆง ๐ต โˆˆ (Vtxโ€˜๐บ)) โˆง (๐น โˆˆ V โˆง ๐‘ƒ โˆˆ V) โˆง (๐น(๐ด(TrailsOnโ€˜๐บ)๐ต)๐‘ƒ โˆง ๐น(Pathsโ€˜๐บ)๐‘ƒ)) โ†’ ๐น(๐ด(TrailsOnโ€˜๐บ)๐ต)๐‘ƒ)
42, 3syl 17 1 (๐น(๐ด(PathsOnโ€˜๐บ)๐ต)๐‘ƒ โ†’ ๐น(๐ด(TrailsOnโ€˜๐บ)๐ต)๐‘ƒ)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   โˆง w3a 1084   โˆˆ wcel 2098  Vcvv 3466   class class class wbr 5138  โ€˜cfv 6533  (class class class)co 7401  Vtxcvtx 28691  TrailsOnctrlson 29383  Pathscpths 29404  PathsOncpthson 29406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-pthson 29410
This theorem is referenced by:  uhgrwkspth  29447  usgr2wlkspth  29451  wspthneq1eq2  29549  conngrv2edg  29883
  Copyright terms: Public domain W3C validator