MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthneq1eq2 Structured version   Visualization version   GIF version

Theorem wspthneq1eq2 29833
Description: Two simple paths with identical sequences of vertices start and end at the same vertices. (Contributed by AV, 14-May-2021.)
Assertion
Ref Expression
wspthneq1eq2 ((𝑃 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ∧ 𝑃 ∈ (𝐶(𝑁 WSPathsNOn 𝐺)𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem wspthneq1eq2
Dummy variables 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
21wspthnonp 29832 . 2 (𝑃 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝑃 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑃)))
31wspthnonp 29832 . 2 (𝑃 ∈ (𝐶(𝑁 WSPathsNOn 𝐺)𝐷) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐶 ∈ (Vtx‘𝐺) ∧ 𝐷 ∈ (Vtx‘𝐺)) ∧ (𝑃 ∈ (𝐶(𝑁 WWalksNOn 𝐺)𝐷) ∧ ∃ (𝐶(SPathsOn‘𝐺)𝐷)𝑃)))
4 simp3r 1203 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝑃 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑃)) → ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑃)
5 simp3r 1203 . . 3 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐶 ∈ (Vtx‘𝐺) ∧ 𝐷 ∈ (Vtx‘𝐺)) ∧ (𝑃 ∈ (𝐶(𝑁 WWalksNOn 𝐺)𝐷) ∧ ∃ (𝐶(SPathsOn‘𝐺)𝐷)𝑃)) → ∃ (𝐶(SPathsOn‘𝐺)𝐷)𝑃)
6 spthonpthon 29724 . . . . . . . . . 10 (𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑃𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑃)
7 spthonpthon 29724 . . . . . . . . . 10 ((𝐶(SPathsOn‘𝐺)𝐷)𝑃(𝐶(PathsOn‘𝐺)𝐷)𝑃)
86, 7anim12i 613 . . . . . . . . 9 ((𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑃(𝐶(SPathsOn‘𝐺)𝐷)𝑃) → (𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑃(𝐶(PathsOn‘𝐺)𝐷)𝑃))
9 pthontrlon 29720 . . . . . . . . . 10 (𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑃𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑃)
10 pthontrlon 29720 . . . . . . . . . 10 ((𝐶(PathsOn‘𝐺)𝐷)𝑃(𝐶(TrailsOn‘𝐺)𝐷)𝑃)
11 trlsonwlkon 29681 . . . . . . . . . . 11 (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑃)
12 trlsonwlkon 29681 . . . . . . . . . . 11 ((𝐶(TrailsOn‘𝐺)𝐷)𝑃(𝐶(WalksOn‘𝐺)𝐷)𝑃)
1311, 12anim12i 613 . . . . . . . . . 10 ((𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑃(𝐶(TrailsOn‘𝐺)𝐷)𝑃) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑃(𝐶(WalksOn‘𝐺)𝐷)𝑃))
149, 10, 13syl2an 596 . . . . . . . . 9 ((𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑃(𝐶(PathsOn‘𝐺)𝐷)𝑃) → (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑃(𝐶(WalksOn‘𝐺)𝐷)𝑃))
15 wlksoneq1eq2 29636 . . . . . . . . 9 ((𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑃(𝐶(WalksOn‘𝐺)𝐷)𝑃) → (𝐴 = 𝐶𝐵 = 𝐷))
168, 14, 153syl 18 . . . . . . . 8 ((𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑃(𝐶(SPathsOn‘𝐺)𝐷)𝑃) → (𝐴 = 𝐶𝐵 = 𝐷))
1716expcom 413 . . . . . . 7 ((𝐶(SPathsOn‘𝐺)𝐷)𝑃 → (𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → (𝐴 = 𝐶𝐵 = 𝐷)))
1817exlimiv 1931 . . . . . 6 (∃ (𝐶(SPathsOn‘𝐺)𝐷)𝑃 → (𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → (𝐴 = 𝐶𝐵 = 𝐷)))
1918com12 32 . . . . 5 (𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → (∃ (𝐶(SPathsOn‘𝐺)𝐷)𝑃 → (𝐴 = 𝐶𝐵 = 𝐷)))
2019exlimiv 1931 . . . 4 (∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → (∃ (𝐶(SPathsOn‘𝐺)𝐷)𝑃 → (𝐴 = 𝐶𝐵 = 𝐷)))
2120imp 406 . . 3 ((∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ∧ ∃ (𝐶(SPathsOn‘𝐺)𝐷)𝑃) → (𝐴 = 𝐶𝐵 = 𝐷))
224, 5, 21syl2an 596 . 2 ((((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝑃 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑃)) ∧ ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝐶 ∈ (Vtx‘𝐺) ∧ 𝐷 ∈ (Vtx‘𝐺)) ∧ (𝑃 ∈ (𝐶(𝑁 WWalksNOn 𝐺)𝐷) ∧ ∃ (𝐶(SPathsOn‘𝐺)𝐷)𝑃))) → (𝐴 = 𝐶𝐵 = 𝐷))
232, 3, 22syl2an 596 1 ((𝑃 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ∧ 𝑃 ∈ (𝐶(𝑁 WSPathsNOn 𝐺)𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436   class class class wbr 5086  cfv 6476  (class class class)co 7341  0cn0 12376  Vtxcvtx 28969  WalksOncwlkson 29571  TrailsOnctrlson 29663  PathsOncpthson 29685  SPathsOncspthson 29686   WWalksNOn cwwlksnon 29800   WSPathsNOn cwwspthsnon 29802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-fzo 13550  df-hash 14233  df-word 14416  df-wlks 29573  df-wlkson 29574  df-trls 29664  df-trlson 29665  df-pths 29687  df-spths 29688  df-pthson 29689  df-spthson 29690  df-wwlksnon 29805  df-wspthsnon 29807
This theorem is referenced by:  2wspdisj  29935  2wspiundisj  29936
  Copyright terms: Public domain W3C validator