Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ranrcl4lem Structured version   Visualization version   GIF version

Theorem ranrcl4lem 49373
Description: Lemma for ranrcl4 49374 and ranrcl5 49375. (Contributed by Zhi Wang, 4-Nov-2025.)
Hypothesis
Ref Expression
ranrcl2.l (𝜑𝐿(𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋)𝐴)
Assertion
Ref Expression
ranrcl4lem (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ⟨(1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)), (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))⟩)

Proof of Theorem ranrcl4lem
StepHypRef Expression
1 ranrcl2.l . . . 4 (𝜑𝐿(𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋)𝐴)
21ranrcl2 49371 . . 3 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
3 opex 5437 . . . 4 𝐷, 𝐸⟩ ∈ V
43a1i 11 . . 3 (𝜑 → ⟨𝐷, 𝐸⟩ ∈ V)
52, 4prcofelvv 49153 . 2 (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) ∈ (V × V))
6 1st2nd2 8022 . 2 ((⟨𝐷, 𝐸⟩ −∘F 𝐹) ∈ (V × V) → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ⟨(1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)), (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))⟩)
75, 6syl 17 1 (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ⟨(1st ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)), (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3457  cop 4605   class class class wbr 5117   × cxp 5650  cfv 6528  (class class class)co 7400  1st c1st 7981  2nd c2nd 7982   Func cfunc 17854   −∘F cprcof 49147  Rancran 49344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-prcof 49148  df-ran 49346
This theorem is referenced by:  ranrcl4  49374  ranrcl5  49375
  Copyright terms: Public domain W3C validator