Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmcmd2 Structured version   Visualization version   GIF version

Theorem reldmcmd2 49779
Description: The domain of (𝐶 Colimit 𝐷) is a relation. (Contributed by Zhi Wang, 13-Nov-2025.)
Assertion
Ref Expression
reldmcmd2 Rel dom (𝐶 Colimit 𝐷)

Proof of Theorem reldmcmd2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 relfunc 17771 . 2 Rel (𝐷 Func 𝐶)
2 ovex 7385 . . . 4 ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓) ∈ V
3 cmdfval 49775 . . . 4 (𝐶 Colimit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓))
42, 3dmmpti 6630 . . 3 dom (𝐶 Colimit 𝐷) = (𝐷 Func 𝐶)
54releqi 5722 . 2 (Rel dom (𝐶 Colimit 𝐷) ↔ Rel (𝐷 Func 𝐶))
61, 5mpbir 231 1 Rel dom (𝐶 Colimit 𝐷)
Colors of variables: wff setvar class
Syntax hints:  dom cdm 5619  Rel wrel 5624  (class class class)co 7352   Func cfunc 17763   FuncCat cfuc 17854  Δfunccdiag 18120   UP cup 49298   Colimit ccmd 49769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-func 17767  df-cmd 49771
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator