Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmcmd2 Structured version   Visualization version   GIF version

Theorem reldmcmd2 49474
Description: The domain of (𝐶 Colimit 𝐷) is a relation. (Contributed by Zhi Wang, 13-Nov-2025.)
Assertion
Ref Expression
reldmcmd2 Rel dom (𝐶 Colimit 𝐷)

Proof of Theorem reldmcmd2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 relfunc 17873 . 2 Rel (𝐷 Func 𝐶)
2 ovex 7436 . . . 4 ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓) ∈ V
3 cmdfval 49472 . . . 4 (𝐶 Colimit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓))
42, 3dmmpti 6681 . . 3 dom (𝐶 Colimit 𝐷) = (𝐷 Func 𝐶)
54releqi 5756 . 2 (Rel dom (𝐶 Colimit 𝐷) ↔ Rel (𝐷 Func 𝐶))
61, 5mpbir 231 1 Rel dom (𝐶 Colimit 𝐷)
Colors of variables: wff setvar class
Syntax hints:  dom cdm 5654  Rel wrel 5659  (class class class)co 7403   Func cfunc 17865   FuncCat cfuc 17956  Δfunccdiag 18222   UP cup 49056   Colimit ccmd 49466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-func 17869  df-cmd 49468
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator