| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmcmd2 | Structured version Visualization version GIF version | ||
| Description: The domain of (𝐶 Colimit 𝐷) is a relation. (Contributed by Zhi Wang, 13-Nov-2025.) |
| Ref | Expression |
|---|---|
| reldmcmd2 | ⊢ Rel dom (𝐶 Colimit 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17873 | . 2 ⊢ Rel (𝐷 Func 𝐶) | |
| 2 | ovex 7436 | . . . 4 ⊢ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓) ∈ V | |
| 3 | cmdfval 49472 | . . . 4 ⊢ (𝐶 Colimit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓)) | |
| 4 | 2, 3 | dmmpti 6681 | . . 3 ⊢ dom (𝐶 Colimit 𝐷) = (𝐷 Func 𝐶) |
| 5 | 4 | releqi 5756 | . 2 ⊢ (Rel dom (𝐶 Colimit 𝐷) ↔ Rel (𝐷 Func 𝐶)) |
| 6 | 1, 5 | mpbir 231 | 1 ⊢ Rel dom (𝐶 Colimit 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: dom cdm 5654 Rel wrel 5659 (class class class)co 7403 Func cfunc 17865 FuncCat cfuc 17956 Δfunccdiag 18222 UP cup 49056 Colimit ccmd 49466 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-func 17869 df-cmd 49468 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |