Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmcmd2 Structured version   Visualization version   GIF version

Theorem reldmcmd2 49685
Description: The domain of (𝐶 Colimit 𝐷) is a relation. (Contributed by Zhi Wang, 13-Nov-2025.)
Assertion
Ref Expression
reldmcmd2 Rel dom (𝐶 Colimit 𝐷)

Proof of Theorem reldmcmd2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 relfunc 17766 . 2 Rel (𝐷 Func 𝐶)
2 ovex 7379 . . . 4 ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓) ∈ V
3 cmdfval 49681 . . . 4 (𝐶 Colimit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((𝐶Δfunc𝐷)(𝐶 UP (𝐷 FuncCat 𝐶))𝑓))
42, 3dmmpti 6625 . . 3 dom (𝐶 Colimit 𝐷) = (𝐷 Func 𝐶)
54releqi 5718 . 2 (Rel dom (𝐶 Colimit 𝐷) ↔ Rel (𝐷 Func 𝐶))
61, 5mpbir 231 1 Rel dom (𝐶 Colimit 𝐷)
Colors of variables: wff setvar class
Syntax hints:  dom cdm 5616  Rel wrel 5621  (class class class)co 7346   Func cfunc 17758   FuncCat cfuc 17849  Δfunccdiag 18115   UP cup 49204   Colimit ccmd 49675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-func 17762  df-cmd 49677
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator