| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmdfval2 | Structured version Visualization version GIF version | ||
| Description: The set of limits of a diagram. (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| lmdfval2 | ⊢ ((𝐶 Limit 𝐷)‘𝐹) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmdfval 49644 | . . . 4 ⊢ (𝐶 Limit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)) | |
| 2 | 1 | mptrcl 6939 | . . 3 ⊢ (𝑓 ∈ ((𝐶 Limit 𝐷)‘𝐹) → 𝐹 ∈ (𝐷 Func 𝐶)) |
| 3 | eqid 2729 | . . . . . 6 ⊢ (oppCat‘(𝐷 FuncCat 𝐶)) = (oppCat‘(𝐷 FuncCat 𝐶)) | |
| 4 | eqid 2729 | . . . . . . 7 ⊢ (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶) | |
| 5 | 4 | fucbas 17870 | . . . . . 6 ⊢ (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶)) |
| 6 | 3, 5 | oppcbas 17624 | . . . . 5 ⊢ (𝐷 Func 𝐶) = (Base‘(oppCat‘(𝐷 FuncCat 𝐶))) |
| 7 | 6 | uprcl 49179 | . . . 4 ⊢ (𝑓 ∈ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) → (( oppFunc ‘(𝐶Δfunc𝐷)) ∈ ((oppCat‘𝐶) Func (oppCat‘(𝐷 FuncCat 𝐶))) ∧ 𝐹 ∈ (𝐷 Func 𝐶))) |
| 8 | 7 | simprd 495 | . . 3 ⊢ (𝑓 ∈ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) → 𝐹 ∈ (𝐷 Func 𝐶)) |
| 9 | oveq2 7357 | . . . . 5 ⊢ (𝑓 = 𝐹 → (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)) | |
| 10 | ovex 7382 | . . . . 5 ⊢ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) ∈ V | |
| 11 | 9, 1, 10 | fvmpt 6930 | . . . 4 ⊢ (𝐹 ∈ (𝐷 Func 𝐶) → ((𝐶 Limit 𝐷)‘𝐹) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)) |
| 12 | 11 | eleq2d 2814 | . . 3 ⊢ (𝐹 ∈ (𝐷 Func 𝐶) → (𝑓 ∈ ((𝐶 Limit 𝐷)‘𝐹) ↔ 𝑓 ∈ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹))) |
| 13 | 2, 8, 12 | pm5.21nii 378 | . 2 ⊢ (𝑓 ∈ ((𝐶 Limit 𝐷)‘𝐹) ↔ 𝑓 ∈ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)) |
| 14 | 13 | eqriv 2726 | 1 ⊢ ((𝐶 Limit 𝐷)‘𝐹) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 oppCatcoppc 17617 Func cfunc 17761 FuncCat cfuc 17852 Δfunccdiag 18118 oppFunc coppf 49117 UP cup 49168 Limit clmd 49638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-hom 17185 df-cco 17186 df-oppc 17618 df-func 17765 df-fuc 17854 df-up 49169 df-lmd 49640 |
| This theorem is referenced by: rellmd 49654 islmd 49660 lmddu 49662 lmdran 49666 |
| Copyright terms: Public domain | W3C validator |