| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmlmd2 | Structured version Visualization version GIF version | ||
| Description: The domain of (𝐶 Limit 𝐷) is a relation. (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| reldmlmd2 | ⊢ Rel dom (𝐶 Limit 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17787 | . 2 ⊢ Rel (𝐷 Func 𝐶) | |
| 2 | ovex 7386 | . . . 4 ⊢ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓) ∈ V | |
| 3 | lmdfval 49635 | . . . 4 ⊢ (𝐶 Limit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)) | |
| 4 | 2, 3 | dmmpti 6630 | . . 3 ⊢ dom (𝐶 Limit 𝐷) = (𝐷 Func 𝐶) |
| 5 | 4 | releqi 5725 | . 2 ⊢ (Rel dom (𝐶 Limit 𝐷) ↔ Rel (𝐷 Func 𝐶)) |
| 6 | 1, 5 | mpbir 231 | 1 ⊢ Rel dom (𝐶 Limit 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: dom cdm 5623 Rel wrel 5628 ‘cfv 6486 (class class class)co 7353 oppCatcoppc 17635 Func cfunc 17779 FuncCat cfuc 17870 Δfunccdiag 18136 oppFunc coppf 49108 UP cup 49159 Limit clmd 49629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-func 17783 df-lmd 49631 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |