Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmlmd2 Structured version   Visualization version   GIF version

Theorem reldmlmd2 49473
Description: The domain of (𝐶 Limit 𝐷) is a relation. (Contributed by Zhi Wang, 14-Nov-2025.)
Assertion
Ref Expression
reldmlmd2 Rel dom (𝐶 Limit 𝐷)

Proof of Theorem reldmlmd2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 relfunc 17873 . 2 Rel (𝐷 Func 𝐶)
2 ovex 7436 . . . 4 ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓) ∈ V
3 lmdfval 49471 . . . 4 (𝐶 Limit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓))
42, 3dmmpti 6681 . . 3 dom (𝐶 Limit 𝐷) = (𝐷 Func 𝐶)
54releqi 5756 . 2 (Rel dom (𝐶 Limit 𝐷) ↔ Rel (𝐷 Func 𝐶))
61, 5mpbir 231 1 Rel dom (𝐶 Limit 𝐷)
Colors of variables: wff setvar class
Syntax hints:  dom cdm 5654  Rel wrel 5659  cfv 6530  (class class class)co 7403  oppCatcoppc 17721   Func cfunc 17865   FuncCat cfuc 17956  Δfunccdiag 18222  oppFunccoppf 49019   UP cup 49056   Limit clmd 49465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-func 17869  df-lmd 49467
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator