Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > repsco | Structured version Visualization version GIF version |
Description: Mapping of words commutes with the "repeated symbol" operation. (Contributed by AV, 11-Nov-2018.) |
Ref | Expression |
---|---|
repsco | ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = ((𝐹‘𝑆) repeatS 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . . . . 5 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑆 ∈ 𝐴) | |
2 | simpl2 1191 | . . . . 5 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0) | |
3 | simpr 485 | . . . . 5 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁)) | |
4 | repswsymb 14475 | . . . . 5 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | . . . 4 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆) |
6 | 5 | fveq2d 6771 | . . 3 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → (𝐹‘((𝑆 repeatS 𝑁)‘𝑥)) = (𝐹‘𝑆)) |
7 | 6 | mpteq2dva 5174 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘((𝑆 repeatS 𝑁)‘𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘𝑆))) |
8 | simp3 1137 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴⟶𝐵) | |
9 | repsf 14474 | . . . 4 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝐴) | |
10 | 9 | 3adant3 1131 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝐴) |
11 | fcompt 6998 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝐴) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘((𝑆 repeatS 𝑁)‘𝑥)))) | |
12 | 8, 10, 11 | syl2anc 584 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘((𝑆 repeatS 𝑁)‘𝑥)))) |
13 | fvexd 6782 | . . . . 5 ⊢ (𝑆 ∈ 𝐴 → (𝐹‘𝑆) ∈ V) | |
14 | 13 | anim1i 615 | . . . 4 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0) → ((𝐹‘𝑆) ∈ V ∧ 𝑁 ∈ ℕ0)) |
15 | 14 | 3adant3 1131 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → ((𝐹‘𝑆) ∈ V ∧ 𝑁 ∈ ℕ0)) |
16 | reps 14471 | . . 3 ⊢ (((𝐹‘𝑆) ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝐹‘𝑆) repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘𝑆))) | |
17 | 15, 16 | syl 17 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → ((𝐹‘𝑆) repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘𝑆))) |
18 | 7, 12, 17 | 3eqtr4d 2788 | 1 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = ((𝐹‘𝑆) repeatS 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Vcvv 3430 ↦ cmpt 5157 ∘ ccom 5589 ⟶wf 6423 ‘cfv 6427 (class class class)co 7268 0cc0 10859 ℕ0cn0 12221 ..^cfzo 13370 repeatS creps 14469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5222 ax-nul 5229 ax-pr 5351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-ov 7271 df-oprab 7272 df-mpo 7273 df-reps 14470 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |