MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repsco Structured version   Visualization version   GIF version

Theorem repsco 14765
Description: Mapping of words commutes with the "repeated symbol" operation. (Contributed by AV, 11-Nov-2018.)
Assertion
Ref Expression
repsco ((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = ((𝐹𝑆) repeatS 𝑁))

Proof of Theorem repsco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . 5 (((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑆𝐴)
2 simpl2 1193 . . . . 5 (((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0)
3 simpr 484 . . . . 5 (((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁))
4 repswsymb 14698 . . . . 5 ((𝑆𝐴𝑁 ∈ ℕ0𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆)
51, 2, 3, 4syl3anc 1373 . . . 4 (((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆)
65fveq2d 6830 . . 3 (((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → (𝐹‘((𝑆 repeatS 𝑁)‘𝑥)) = (𝐹𝑆))
76mpteq2dva 5188 . 2 ((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) → (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘((𝑆 repeatS 𝑁)‘𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹𝑆)))
8 simp3 1138 . . 3 ((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) → 𝐹:𝐴𝐵)
9 repsf 14697 . . . 4 ((𝑆𝐴𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝐴)
1093adant3 1132 . . 3 ((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝐴)
11 fcompt 7071 . . 3 ((𝐹:𝐴𝐵 ∧ (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝐴) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘((𝑆 repeatS 𝑁)‘𝑥))))
128, 10, 11syl2anc 584 . 2 ((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘((𝑆 repeatS 𝑁)‘𝑥))))
13 fvexd 6841 . . . . 5 (𝑆𝐴 → (𝐹𝑆) ∈ V)
1413anim1i 615 . . . 4 ((𝑆𝐴𝑁 ∈ ℕ0) → ((𝐹𝑆) ∈ V ∧ 𝑁 ∈ ℕ0))
15143adant3 1132 . . 3 ((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) → ((𝐹𝑆) ∈ V ∧ 𝑁 ∈ ℕ0))
16 reps 14694 . . 3 (((𝐹𝑆) ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝐹𝑆) repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹𝑆)))
1715, 16syl 17 . 2 ((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) → ((𝐹𝑆) repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹𝑆)))
187, 12, 173eqtr4d 2774 1 ((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = ((𝐹𝑆) repeatS 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438  cmpt 5176  ccom 5627  wf 6482  cfv 6486  (class class class)co 7353  0cc0 11028  0cn0 12402  ..^cfzo 13575   repeatS creps 14692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-reps 14693
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator