Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > repsco | Structured version Visualization version GIF version |
Description: Mapping of words commutes with the "repeated symbol" operation. (Contributed by AV, 11-Nov-2018.) |
Ref | Expression |
---|---|
repsco | ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = ((𝐹‘𝑆) repeatS 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1189 | . . . . 5 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑆 ∈ 𝐴) | |
2 | simpl2 1190 | . . . . 5 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0) | |
3 | simpr 484 | . . . . 5 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁)) | |
4 | repswsymb 14415 | . . . . 5 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | . . . 4 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆) |
6 | 5 | fveq2d 6760 | . . 3 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → (𝐹‘((𝑆 repeatS 𝑁)‘𝑥)) = (𝐹‘𝑆)) |
7 | 6 | mpteq2dva 5170 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘((𝑆 repeatS 𝑁)‘𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘𝑆))) |
8 | simp3 1136 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴⟶𝐵) | |
9 | repsf 14414 | . . . 4 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝐴) | |
10 | 9 | 3adant3 1130 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝐴) |
11 | fcompt 6987 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝐴) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘((𝑆 repeatS 𝑁)‘𝑥)))) | |
12 | 8, 10, 11 | syl2anc 583 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘((𝑆 repeatS 𝑁)‘𝑥)))) |
13 | fvexd 6771 | . . . . 5 ⊢ (𝑆 ∈ 𝐴 → (𝐹‘𝑆) ∈ V) | |
14 | 13 | anim1i 614 | . . . 4 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0) → ((𝐹‘𝑆) ∈ V ∧ 𝑁 ∈ ℕ0)) |
15 | 14 | 3adant3 1130 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → ((𝐹‘𝑆) ∈ V ∧ 𝑁 ∈ ℕ0)) |
16 | reps 14411 | . . 3 ⊢ (((𝐹‘𝑆) ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝐹‘𝑆) repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘𝑆))) | |
17 | 15, 16 | syl 17 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → ((𝐹‘𝑆) repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘𝑆))) |
18 | 7, 12, 17 | 3eqtr4d 2788 | 1 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = ((𝐹‘𝑆) repeatS 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ↦ cmpt 5153 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 0cc0 10802 ℕ0cn0 12163 ..^cfzo 13311 repeatS creps 14409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-reps 14410 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |