![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > repsco | Structured version Visualization version GIF version |
Description: Mapping of words commutes with the "repeated symbol" operation. (Contributed by AV, 11-Nov-2018.) |
Ref | Expression |
---|---|
repsco | ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = ((𝐹‘𝑆) repeatS 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1191 | . . . . 5 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑆 ∈ 𝐴) | |
2 | simpl2 1192 | . . . . 5 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0) | |
3 | simpr 484 | . . . . 5 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁)) | |
4 | repswsymb 14822 | . . . . 5 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆) | |
5 | 1, 2, 3, 4 | syl3anc 1371 | . . . 4 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆) |
6 | 5 | fveq2d 6924 | . . 3 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → (𝐹‘((𝑆 repeatS 𝑁)‘𝑥)) = (𝐹‘𝑆)) |
7 | 6 | mpteq2dva 5266 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘((𝑆 repeatS 𝑁)‘𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘𝑆))) |
8 | simp3 1138 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴⟶𝐵) | |
9 | repsf 14821 | . . . 4 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝐴) | |
10 | 9 | 3adant3 1132 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝐴) |
11 | fcompt 7167 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝐴) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘((𝑆 repeatS 𝑁)‘𝑥)))) | |
12 | 8, 10, 11 | syl2anc 583 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘((𝑆 repeatS 𝑁)‘𝑥)))) |
13 | fvexd 6935 | . . . . 5 ⊢ (𝑆 ∈ 𝐴 → (𝐹‘𝑆) ∈ V) | |
14 | 13 | anim1i 614 | . . . 4 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0) → ((𝐹‘𝑆) ∈ V ∧ 𝑁 ∈ ℕ0)) |
15 | 14 | 3adant3 1132 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → ((𝐹‘𝑆) ∈ V ∧ 𝑁 ∈ ℕ0)) |
16 | reps 14818 | . . 3 ⊢ (((𝐹‘𝑆) ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝐹‘𝑆) repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘𝑆))) | |
17 | 15, 16 | syl 17 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → ((𝐹‘𝑆) repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘𝑆))) |
18 | 7, 12, 17 | 3eqtr4d 2790 | 1 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = ((𝐹‘𝑆) repeatS 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ↦ cmpt 5249 ∘ ccom 5704 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 0cc0 11184 ℕ0cn0 12553 ..^cfzo 13711 repeatS creps 14816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-reps 14817 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |