| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > repsco | Structured version Visualization version GIF version | ||
| Description: Mapping of words commutes with the "repeated symbol" operation. (Contributed by AV, 11-Nov-2018.) |
| Ref | Expression |
|---|---|
| repsco | ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = ((𝐹‘𝑆) repeatS 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . . . 5 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑆 ∈ 𝐴) | |
| 2 | simpl2 1193 | . . . . 5 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0) | |
| 3 | simpr 484 | . . . . 5 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁)) | |
| 4 | repswsymb 14749 | . . . . 5 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | . . . 4 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆) |
| 6 | 5 | fveq2d 6869 | . . 3 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → (𝐹‘((𝑆 repeatS 𝑁)‘𝑥)) = (𝐹‘𝑆)) |
| 7 | 6 | mpteq2dva 5208 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘((𝑆 repeatS 𝑁)‘𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘𝑆))) |
| 8 | simp3 1138 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴⟶𝐵) | |
| 9 | repsf 14748 | . . . 4 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝐴) | |
| 10 | 9 | 3adant3 1132 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝐴) |
| 11 | fcompt 7112 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝐴) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘((𝑆 repeatS 𝑁)‘𝑥)))) | |
| 12 | 8, 10, 11 | syl2anc 584 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘((𝑆 repeatS 𝑁)‘𝑥)))) |
| 13 | fvexd 6880 | . . . . 5 ⊢ (𝑆 ∈ 𝐴 → (𝐹‘𝑆) ∈ V) | |
| 14 | 13 | anim1i 615 | . . . 4 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0) → ((𝐹‘𝑆) ∈ V ∧ 𝑁 ∈ ℕ0)) |
| 15 | 14 | 3adant3 1132 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → ((𝐹‘𝑆) ∈ V ∧ 𝑁 ∈ ℕ0)) |
| 16 | reps 14745 | . . 3 ⊢ (((𝐹‘𝑆) ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝐹‘𝑆) repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘𝑆))) | |
| 17 | 15, 16 | syl 17 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → ((𝐹‘𝑆) repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘𝑆))) |
| 18 | 7, 12, 17 | 3eqtr4d 2775 | 1 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = ((𝐹‘𝑆) repeatS 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ↦ cmpt 5196 ∘ ccom 5650 ⟶wf 6515 ‘cfv 6519 (class class class)co 7394 0cc0 11086 ℕ0cn0 12458 ..^cfzo 13628 repeatS creps 14743 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-reps 14744 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |