MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repsco Structured version   Visualization version   GIF version

Theorem repsco 14787
Description: Mapping of words commutes with the "repeated symbol" operation. (Contributed by AV, 11-Nov-2018.)
Assertion
Ref Expression
repsco ((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = ((𝐹𝑆) repeatS 𝑁))

Proof of Theorem repsco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1191 . . . . 5 (((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑆𝐴)
2 simpl2 1192 . . . . 5 (((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0)
3 simpr 485 . . . . 5 (((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁))
4 repswsymb 14720 . . . . 5 ((𝑆𝐴𝑁 ∈ ℕ0𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆)
51, 2, 3, 4syl3anc 1371 . . . 4 (((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆)
65fveq2d 6892 . . 3 (((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → (𝐹‘((𝑆 repeatS 𝑁)‘𝑥)) = (𝐹𝑆))
76mpteq2dva 5247 . 2 ((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) → (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘((𝑆 repeatS 𝑁)‘𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹𝑆)))
8 simp3 1138 . . 3 ((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) → 𝐹:𝐴𝐵)
9 repsf 14719 . . . 4 ((𝑆𝐴𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝐴)
1093adant3 1132 . . 3 ((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝐴)
11 fcompt 7127 . . 3 ((𝐹:𝐴𝐵 ∧ (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝐴) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘((𝑆 repeatS 𝑁)‘𝑥))))
128, 10, 11syl2anc 584 . 2 ((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘((𝑆 repeatS 𝑁)‘𝑥))))
13 fvexd 6903 . . . . 5 (𝑆𝐴 → (𝐹𝑆) ∈ V)
1413anim1i 615 . . . 4 ((𝑆𝐴𝑁 ∈ ℕ0) → ((𝐹𝑆) ∈ V ∧ 𝑁 ∈ ℕ0))
15143adant3 1132 . . 3 ((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) → ((𝐹𝑆) ∈ V ∧ 𝑁 ∈ ℕ0))
16 reps 14716 . . 3 (((𝐹𝑆) ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝐹𝑆) repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹𝑆)))
1715, 16syl 17 . 2 ((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) → ((𝐹𝑆) repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹𝑆)))
187, 12, 173eqtr4d 2782 1 ((𝑆𝐴𝑁 ∈ ℕ0𝐹:𝐴𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = ((𝐹𝑆) repeatS 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3474  cmpt 5230  ccom 5679  wf 6536  cfv 6540  (class class class)co 7405  0cc0 11106  0cn0 12468  ..^cfzo 13623   repeatS creps 14714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-reps 14715
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator