![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > repsco | Structured version Visualization version GIF version |
Description: Mapping of words commutes with the "repeated symbol" operation. (Contributed by AV, 11-Nov-2018.) |
Ref | Expression |
---|---|
repsco | ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = ((𝐹‘𝑆) repeatS 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1191 | . . . . 5 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑆 ∈ 𝐴) | |
2 | simpl2 1192 | . . . . 5 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0) | |
3 | simpr 485 | . . . . 5 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁)) | |
4 | repswsymb 14720 | . . . . 5 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆) | |
5 | 1, 2, 3, 4 | syl3anc 1371 | . . . 4 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝑥) = 𝑆) |
6 | 5 | fveq2d 6892 | . . 3 ⊢ (((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) ∧ 𝑥 ∈ (0..^𝑁)) → (𝐹‘((𝑆 repeatS 𝑁)‘𝑥)) = (𝐹‘𝑆)) |
7 | 6 | mpteq2dva 5247 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘((𝑆 repeatS 𝑁)‘𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘𝑆))) |
8 | simp3 1138 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → 𝐹:𝐴⟶𝐵) | |
9 | repsf 14719 | . . . 4 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝐴) | |
10 | 9 | 3adant3 1132 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝐴) |
11 | fcompt 7127 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝐴) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘((𝑆 repeatS 𝑁)‘𝑥)))) | |
12 | 8, 10, 11 | syl2anc 584 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘((𝑆 repeatS 𝑁)‘𝑥)))) |
13 | fvexd 6903 | . . . . 5 ⊢ (𝑆 ∈ 𝐴 → (𝐹‘𝑆) ∈ V) | |
14 | 13 | anim1i 615 | . . . 4 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0) → ((𝐹‘𝑆) ∈ V ∧ 𝑁 ∈ ℕ0)) |
15 | 14 | 3adant3 1132 | . . 3 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → ((𝐹‘𝑆) ∈ V ∧ 𝑁 ∈ ℕ0)) |
16 | reps 14716 | . . 3 ⊢ (((𝐹‘𝑆) ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝐹‘𝑆) repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘𝑆))) | |
17 | 15, 16 | syl 17 | . 2 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → ((𝐹‘𝑆) repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ (𝐹‘𝑆))) |
18 | 7, 12, 17 | 3eqtr4d 2782 | 1 ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 ∘ (𝑆 repeatS 𝑁)) = ((𝐹‘𝑆) repeatS 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ↦ cmpt 5230 ∘ ccom 5679 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 0cc0 11106 ℕ0cn0 12468 ..^cfzo 13623 repeatS creps 14714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-reps 14715 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |