MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswsymb Structured version   Visualization version   GIF version

Theorem repswsymb 14777
Description: The symbols of a "repeated symbol word". (Contributed by AV, 4-Nov-2018.)
Assertion
Ref Expression
repswsymb ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝐼) = 𝑆)

Proof of Theorem repswsymb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reps 14773 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
213adant3 1129 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ (0..^𝑁)) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
3 eqidd 2727 . 2 (((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ (0..^𝑁)) ∧ 𝑥 = 𝐼) → 𝑆 = 𝑆)
4 simp3 1135 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ (0..^𝑁)) → 𝐼 ∈ (0..^𝑁))
5 simp1 1133 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ (0..^𝑁)) → 𝑆𝑉)
62, 3, 4, 5fvmptd 7008 1 ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝐼) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  cmpt 5228  cfv 6546  (class class class)co 7416  0cc0 11149  0cn0 12518  ..^cfzo 13675   repeatS creps 14771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421  df-reps 14772
This theorem is referenced by:  repswfsts  14784  repswlsw  14785  repswswrd  14787  repswpfx  14788  repswccat  14789  repswrevw  14790  repsco  14844
  Copyright terms: Public domain W3C validator