MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswsymb Structured version   Visualization version   GIF version

Theorem repswsymb 14813
Description: The symbols of a "repeated symbol word". (Contributed by AV, 4-Nov-2018.)
Assertion
Ref Expression
repswsymb ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝐼) = 𝑆)

Proof of Theorem repswsymb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reps 14809 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
213adant3 1132 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ (0..^𝑁)) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
3 eqidd 2737 . 2 (((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ (0..^𝑁)) ∧ 𝑥 = 𝐼) → 𝑆 = 𝑆)
4 simp3 1138 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ (0..^𝑁)) → 𝐼 ∈ (0..^𝑁))
5 simp1 1136 . 2 ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ (0..^𝑁)) → 𝑆𝑉)
62, 3, 4, 5fvmptd 7022 1 ((𝑆𝑉𝑁 ∈ ℕ0𝐼 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝐼) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  cmpt 5224  cfv 6560  (class class class)co 7432  0cc0 11156  0cn0 12528  ..^cfzo 13695   repeatS creps 14807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-reps 14808
This theorem is referenced by:  repswfsts  14820  repswlsw  14821  repswswrd  14823  repswpfx  14824  repswccat  14825  repswrevw  14826  repsco  14880
  Copyright terms: Public domain W3C validator