| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > repswsymb | Structured version Visualization version GIF version | ||
| Description: The symbols of a "repeated symbol word". (Contributed by AV, 4-Nov-2018.) |
| Ref | Expression |
|---|---|
| repswsymb | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝐼) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reps 14793 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) | |
| 2 | 1 | 3adant3 1132 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ (0..^𝑁)) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) |
| 3 | eqidd 2737 | . 2 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ (0..^𝑁)) ∧ 𝑥 = 𝐼) → 𝑆 = 𝑆) | |
| 4 | simp3 1138 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ (0..^𝑁)) → 𝐼 ∈ (0..^𝑁)) | |
| 5 | simp1 1136 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ (0..^𝑁)) → 𝑆 ∈ 𝑉) | |
| 6 | 2, 3, 4, 5 | fvmptd 6998 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝐼) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 0cc0 11134 ℕ0cn0 12506 ..^cfzo 13676 repeatS creps 14791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-reps 14792 |
| This theorem is referenced by: repswfsts 14804 repswlsw 14805 repswswrd 14807 repswpfx 14808 repswccat 14809 repswrevw 14810 repsco 14864 |
| Copyright terms: Public domain | W3C validator |