Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > repswlsw | Structured version Visualization version GIF version |
Description: The last symbol of a nonempty "repeated symbol word". (Contributed by AV, 4-Nov-2018.) |
Ref | Expression |
---|---|
repswlsw | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (lastS‘(𝑆 repeatS 𝑁)) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0 12186 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
2 | repsw 14432 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) ∈ Word 𝑉) | |
3 | 1, 2 | sylan2 592 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑆 repeatS 𝑁) ∈ Word 𝑉) |
4 | lsw 14211 | . . 3 ⊢ ((𝑆 repeatS 𝑁) ∈ Word 𝑉 → (lastS‘(𝑆 repeatS 𝑁)) = ((𝑆 repeatS 𝑁)‘((♯‘(𝑆 repeatS 𝑁)) − 1))) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (lastS‘(𝑆 repeatS 𝑁)) = ((𝑆 repeatS 𝑁)‘((♯‘(𝑆 repeatS 𝑁)) − 1))) |
6 | simpl 482 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑆 ∈ 𝑉) | |
7 | 1 | adantl 481 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0) |
8 | repswlen 14433 | . . . . . 6 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁) | |
9 | 1, 8 | sylan2 592 | . . . . 5 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁) |
10 | 9 | oveq1d 7275 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((♯‘(𝑆 repeatS 𝑁)) − 1) = (𝑁 − 1)) |
11 | fzo0end 13423 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (0..^𝑁)) | |
12 | 11 | adantl 481 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ (0..^𝑁)) |
13 | 10, 12 | eqeltrd 2837 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((♯‘(𝑆 repeatS 𝑁)) − 1) ∈ (0..^𝑁)) |
14 | repswsymb 14431 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ ((♯‘(𝑆 repeatS 𝑁)) − 1) ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘((♯‘(𝑆 repeatS 𝑁)) − 1)) = 𝑆) | |
15 | 6, 7, 13, 14 | syl3anc 1369 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((𝑆 repeatS 𝑁)‘((♯‘(𝑆 repeatS 𝑁)) − 1)) = 𝑆) |
16 | 5, 15 | eqtrd 2777 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (lastS‘(𝑆 repeatS 𝑁)) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ‘cfv 6423 (class class class)co 7260 0cc0 10818 1c1 10819 − cmin 11151 ℕcn 11919 ℕ0cn0 12179 ..^cfzo 13327 ♯chash 13988 Word cword 14161 lastSclsw 14209 repeatS creps 14425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 ax-cnex 10874 ax-resscn 10875 ax-1cn 10876 ax-icn 10877 ax-addcl 10878 ax-addrcl 10879 ax-mulcl 10880 ax-mulrcl 10881 ax-mulcom 10882 ax-addass 10883 ax-mulass 10884 ax-distr 10885 ax-i2m1 10886 ax-1ne0 10887 ax-1rid 10888 ax-rnegex 10889 ax-rrecex 10890 ax-cnre 10891 ax-pre-lttri 10892 ax-pre-lttrn 10893 ax-pre-ltadd 10894 ax-pre-mulgt0 10895 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6259 df-on 6260 df-lim 6261 df-suc 6262 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-riota 7217 df-ov 7263 df-oprab 7264 df-mpo 7265 df-om 7693 df-1st 7809 df-2nd 7810 df-frecs 8073 df-wrecs 8104 df-recs 8178 df-rdg 8217 df-1o 8272 df-er 8461 df-en 8697 df-dom 8698 df-sdom 8699 df-fin 8700 df-card 9644 df-pnf 10958 df-mnf 10959 df-xr 10960 df-ltxr 10961 df-le 10962 df-sub 11153 df-neg 11154 df-nn 11920 df-n0 12180 df-z 12266 df-uz 12528 df-fz 13185 df-fzo 13328 df-hash 13989 df-word 14162 df-lsw 14210 df-reps 14426 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |