Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resssra Structured version   Visualization version   GIF version

Theorem resssra 32977
Description: The subring algebra of a restricted structure is the restriction of the subring algebra. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
resssra.a 𝐴 = (Base‘𝑅)
resssra.s 𝑆 = (𝑅s 𝐵)
resssra.b (𝜑𝐵𝐴)
resssra.c (𝜑𝐶𝐵)
resssra.r (𝜑𝑅𝑉)
Assertion
Ref Expression
resssra (𝜑 → ((subringAlg ‘𝑆)‘𝐶) = (((subringAlg ‘𝑅)‘𝐶) ↾s 𝐵))

Proof of Theorem resssra
StepHypRef Expression
1 resssra.a . . . . . . 7 𝐴 = (Base‘𝑅)
2 eqidd 2732 . . . . . . . 8 (𝜑 → ((subringAlg ‘𝑅)‘𝐶) = ((subringAlg ‘𝑅)‘𝐶))
3 resssra.c . . . . . . . . . 10 (𝜑𝐶𝐵)
4 resssra.b . . . . . . . . . 10 (𝜑𝐵𝐴)
53, 4sstrd 3992 . . . . . . . . 9 (𝜑𝐶𝐴)
65, 1sseqtrdi 4032 . . . . . . . 8 (𝜑𝐶 ⊆ (Base‘𝑅))
72, 6srabase 20941 . . . . . . 7 (𝜑 → (Base‘𝑅) = (Base‘((subringAlg ‘𝑅)‘𝐶)))
81, 7eqtrid 2783 . . . . . 6 (𝜑𝐴 = (Base‘((subringAlg ‘𝑅)‘𝐶)))
98oveq2d 7428 . . . . 5 (𝜑 → (((subringAlg ‘𝑅)‘𝐶) ↾s 𝐴) = (((subringAlg ‘𝑅)‘𝐶) ↾s (Base‘((subringAlg ‘𝑅)‘𝐶))))
109adantr 480 . . . 4 ((𝜑𝐴𝐵) → (((subringAlg ‘𝑅)‘𝐶) ↾s 𝐴) = (((subringAlg ‘𝑅)‘𝐶) ↾s (Base‘((subringAlg ‘𝑅)‘𝐶))))
11 simpr 484 . . . . . 6 ((𝜑𝐴𝐵) → 𝐴𝐵)
124adantr 480 . . . . . 6 ((𝜑𝐴𝐵) → 𝐵𝐴)
1311, 12eqssd 3999 . . . . 5 ((𝜑𝐴𝐵) → 𝐴 = 𝐵)
1413oveq2d 7428 . . . 4 ((𝜑𝐴𝐵) → (((subringAlg ‘𝑅)‘𝐶) ↾s 𝐴) = (((subringAlg ‘𝑅)‘𝐶) ↾s 𝐵))
15 fvex 6904 . . . . 5 ((subringAlg ‘𝑅)‘𝐶) ∈ V
16 eqid 2731 . . . . . 6 (Base‘((subringAlg ‘𝑅)‘𝐶)) = (Base‘((subringAlg ‘𝑅)‘𝐶))
1716ressid 17196 . . . . 5 (((subringAlg ‘𝑅)‘𝐶) ∈ V → (((subringAlg ‘𝑅)‘𝐶) ↾s (Base‘((subringAlg ‘𝑅)‘𝐶))) = ((subringAlg ‘𝑅)‘𝐶))
1815, 17mp1i 13 . . . 4 ((𝜑𝐴𝐵) → (((subringAlg ‘𝑅)‘𝐶) ↾s (Base‘((subringAlg ‘𝑅)‘𝐶))) = ((subringAlg ‘𝑅)‘𝐶))
1910, 14, 183eqtr3d 2779 . . 3 ((𝜑𝐴𝐵) → (((subringAlg ‘𝑅)‘𝐶) ↾s 𝐵) = ((subringAlg ‘𝑅)‘𝐶))
201oveq2i 7423 . . . . . . . 8 (𝑅s 𝐴) = (𝑅s (Base‘𝑅))
21 resssra.r . . . . . . . . . 10 (𝜑𝑅𝑉)
2221elexd 3494 . . . . . . . . 9 (𝜑𝑅 ∈ V)
23 eqid 2731 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
2423ressid 17196 . . . . . . . . 9 (𝑅 ∈ V → (𝑅s (Base‘𝑅)) = 𝑅)
2522, 24syl 17 . . . . . . . 8 (𝜑 → (𝑅s (Base‘𝑅)) = 𝑅)
2620, 25eqtrid 2783 . . . . . . 7 (𝜑 → (𝑅s 𝐴) = 𝑅)
2726adantr 480 . . . . . 6 ((𝜑𝐴𝐵) → (𝑅s 𝐴) = 𝑅)
2813oveq2d 7428 . . . . . . 7 ((𝜑𝐴𝐵) → (𝑅s 𝐴) = (𝑅s 𝐵))
29 resssra.s . . . . . . 7 𝑆 = (𝑅s 𝐵)
3028, 29eqtr4di 2789 . . . . . 6 ((𝜑𝐴𝐵) → (𝑅s 𝐴) = 𝑆)
3127, 30eqtr3d 2773 . . . . 5 ((𝜑𝐴𝐵) → 𝑅 = 𝑆)
3231fveq2d 6895 . . . 4 ((𝜑𝐴𝐵) → (subringAlg ‘𝑅) = (subringAlg ‘𝑆))
3332fveq1d 6893 . . 3 ((𝜑𝐴𝐵) → ((subringAlg ‘𝑅)‘𝐶) = ((subringAlg ‘𝑆)‘𝐶))
3419, 33eqtr2d 2772 . 2 ((𝜑𝐴𝐵) → ((subringAlg ‘𝑆)‘𝐶) = (((subringAlg ‘𝑅)‘𝐶) ↾s 𝐵))
35 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐴𝐵) → ¬ 𝐴𝐵)
3622adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝑅 ∈ V)
371fvexi 6905 . . . . . . . . . . . . . 14 𝐴 ∈ V
3837a1i 11 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ V)
3938, 4ssexd 5324 . . . . . . . . . . . 12 (𝜑𝐵 ∈ V)
4039adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝐵 ∈ V)
4129, 1ressval2 17185 . . . . . . . . . . 11 ((¬ 𝐴𝐵𝑅 ∈ V ∧ 𝐵 ∈ V) → 𝑆 = (𝑅 sSet ⟨(Base‘ndx), (𝐵𝐴)⟩))
4235, 36, 40, 41syl3anc 1370 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝑆 = (𝑅 sSet ⟨(Base‘ndx), (𝐵𝐴)⟩))
43 df-ss 3965 . . . . . . . . . . . . . 14 (𝐵𝐴 ↔ (𝐵𝐴) = 𝐵)
444, 43sylib 217 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐴) = 𝐵)
4544opeq2d 4880 . . . . . . . . . . . 12 (𝜑 → ⟨(Base‘ndx), (𝐵𝐴)⟩ = ⟨(Base‘ndx), 𝐵⟩)
4645oveq2d 7428 . . . . . . . . . . 11 (𝜑 → (𝑅 sSet ⟨(Base‘ndx), (𝐵𝐴)⟩) = (𝑅 sSet ⟨(Base‘ndx), 𝐵⟩))
4746adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴𝐵) → (𝑅 sSet ⟨(Base‘ndx), (𝐵𝐴)⟩) = (𝑅 sSet ⟨(Base‘ndx), 𝐵⟩))
4842, 47eqtrd 2771 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝑆 = (𝑅 sSet ⟨(Base‘ndx), 𝐵⟩))
4929oveq1i 7422 . . . . . . . . . . . 12 (𝑆s 𝐶) = ((𝑅s 𝐵) ↾s 𝐶)
50 ressabs 17201 . . . . . . . . . . . . 13 ((𝐵 ∈ V ∧ 𝐶𝐵) → ((𝑅s 𝐵) ↾s 𝐶) = (𝑅s 𝐶))
5139, 3, 50syl2anc 583 . . . . . . . . . . . 12 (𝜑 → ((𝑅s 𝐵) ↾s 𝐶) = (𝑅s 𝐶))
5249, 51eqtrid 2783 . . . . . . . . . . 11 (𝜑 → (𝑆s 𝐶) = (𝑅s 𝐶))
5352opeq2d 4880 . . . . . . . . . 10 (𝜑 → ⟨(Scalar‘ndx), (𝑆s 𝐶)⟩ = ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩)
5453adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐴𝐵) → ⟨(Scalar‘ndx), (𝑆s 𝐶)⟩ = ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩)
5548, 54oveq12d 7430 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴𝐵) → (𝑆 sSet ⟨(Scalar‘ndx), (𝑆s 𝐶)⟩) = ((𝑅 sSet ⟨(Base‘ndx), 𝐵⟩) sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩))
56 scandxnbasendx 17268 . . . . . . . . . . 11 (Scalar‘ndx) ≠ (Base‘ndx)
5756a1i 11 . . . . . . . . . 10 (𝜑 → (Scalar‘ndx) ≠ (Base‘ndx))
58 ovexd 7447 . . . . . . . . . 10 (𝜑 → (𝑅s 𝐶) ∈ V)
59 fvex 6904 . . . . . . . . . . 11 (Scalar‘ndx) ∈ V
60 fvex 6904 . . . . . . . . . . 11 (Base‘ndx) ∈ V
6159, 60setscom 17120 . . . . . . . . . 10 (((𝑅 ∈ V ∧ (Scalar‘ndx) ≠ (Base‘ndx)) ∧ ((𝑅s 𝐶) ∈ V ∧ 𝐵 ∈ V)) → ((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨(Base‘ndx), 𝐵⟩) = ((𝑅 sSet ⟨(Base‘ndx), 𝐵⟩) sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩))
6222, 57, 58, 39, 61syl22anc 836 . . . . . . . . 9 (𝜑 → ((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨(Base‘ndx), 𝐵⟩) = ((𝑅 sSet ⟨(Base‘ndx), 𝐵⟩) sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩))
6362adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴𝐵) → ((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨(Base‘ndx), 𝐵⟩) = ((𝑅 sSet ⟨(Base‘ndx), 𝐵⟩) sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩))
6455, 63eqtr4d 2774 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐵) → (𝑆 sSet ⟨(Scalar‘ndx), (𝑆s 𝐶)⟩) = ((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨(Base‘ndx), 𝐵⟩))
65 eqid 2731 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
6629, 65ressmulr 17259 . . . . . . . . . . 11 (𝐵 ∈ V → (.r𝑅) = (.r𝑆))
6739, 66syl 17 . . . . . . . . . 10 (𝜑 → (.r𝑅) = (.r𝑆))
6867eqcomd 2737 . . . . . . . . 9 (𝜑 → (.r𝑆) = (.r𝑅))
6968opeq2d 4880 . . . . . . . 8 (𝜑 → ⟨( ·𝑠 ‘ndx), (.r𝑆)⟩ = ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩)
7069adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐵) → ⟨( ·𝑠 ‘ndx), (.r𝑆)⟩ = ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩)
7164, 70oveq12d 7430 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐵) → ((𝑆 sSet ⟨(Scalar‘ndx), (𝑆s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑆)⟩) = (((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨(Base‘ndx), 𝐵⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩))
72 ovexd 7447 . . . . . . . 8 (𝜑 → (𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) ∈ V)
73 vscandxnbasendx 17273 . . . . . . . . 9 ( ·𝑠 ‘ndx) ≠ (Base‘ndx)
7473a1i 11 . . . . . . . 8 (𝜑 → ( ·𝑠 ‘ndx) ≠ (Base‘ndx))
75 fvexd 6906 . . . . . . . 8 (𝜑 → (.r𝑅) ∈ V)
76 fvex 6904 . . . . . . . . 9 ( ·𝑠 ‘ndx) ∈ V
7776, 60setscom 17120 . . . . . . . 8 ((((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) ∈ V ∧ ( ·𝑠 ‘ndx) ≠ (Base‘ndx)) ∧ ((.r𝑅) ∈ V ∧ 𝐵 ∈ V)) → (((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), 𝐵⟩) = (((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨(Base‘ndx), 𝐵⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩))
7872, 74, 75, 39, 77syl22anc 836 . . . . . . 7 (𝜑 → (((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), 𝐵⟩) = (((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨(Base‘ndx), 𝐵⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩))
7978adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐵) → (((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), 𝐵⟩) = (((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨(Base‘ndx), 𝐵⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩))
8071, 79eqtr4d 2774 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐵) → ((𝑆 sSet ⟨(Scalar‘ndx), (𝑆s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑆)⟩) = (((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), 𝐵⟩))
8168opeq2d 4880 . . . . . 6 (𝜑 → ⟨(·𝑖‘ndx), (.r𝑆)⟩ = ⟨(·𝑖‘ndx), (.r𝑅)⟩)
8281adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐵) → ⟨(·𝑖‘ndx), (.r𝑆)⟩ = ⟨(·𝑖‘ndx), (.r𝑅)⟩)
8380, 82oveq12d 7430 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐵) → (((𝑆 sSet ⟨(Scalar‘ndx), (𝑆s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑆)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑆)⟩) = ((((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), 𝐵⟩) sSet ⟨(·𝑖‘ndx), (.r𝑅)⟩))
84 ovexd 7447 . . . . . 6 (𝜑 → ((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩) ∈ V)
85 ipndxnbasendx 17284 . . . . . . 7 (·𝑖‘ndx) ≠ (Base‘ndx)
8685a1i 11 . . . . . 6 (𝜑 → (·𝑖‘ndx) ≠ (Base‘ndx))
87 fvex 6904 . . . . . . 7 (·𝑖‘ndx) ∈ V
8887, 60setscom 17120 . . . . . 6 (((((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩) ∈ V ∧ (·𝑖‘ndx) ≠ (Base‘ndx)) ∧ ((.r𝑅) ∈ V ∧ 𝐵 ∈ V)) → ((((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), 𝐵⟩) = ((((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), 𝐵⟩) sSet ⟨(·𝑖‘ndx), (.r𝑅)⟩))
8984, 86, 75, 39, 88syl22anc 836 . . . . 5 (𝜑 → ((((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), 𝐵⟩) = ((((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), 𝐵⟩) sSet ⟨(·𝑖‘ndx), (.r𝑅)⟩))
9089adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐵) → ((((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), 𝐵⟩) = ((((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), 𝐵⟩) sSet ⟨(·𝑖‘ndx), (.r𝑅)⟩))
9183, 90eqtr4d 2774 . . 3 ((𝜑 ∧ ¬ 𝐴𝐵) → (((𝑆 sSet ⟨(Scalar‘ndx), (𝑆s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑆)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑆)⟩) = ((((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), 𝐵⟩))
9229ovexi 7446 . . . 4 𝑆 ∈ V
9329, 1ressbas2 17189 . . . . . . 7 (𝐵𝐴𝐵 = (Base‘𝑆))
944, 93syl 17 . . . . . 6 (𝜑𝐵 = (Base‘𝑆))
953, 94sseqtrd 4022 . . . . 5 (𝜑𝐶 ⊆ (Base‘𝑆))
9695adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝐶 ⊆ (Base‘𝑆))
97 sraval 20938 . . . 4 ((𝑆 ∈ V ∧ 𝐶 ⊆ (Base‘𝑆)) → ((subringAlg ‘𝑆)‘𝐶) = (((𝑆 sSet ⟨(Scalar‘ndx), (𝑆s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑆)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑆)⟩))
9892, 96, 97sylancr 586 . . 3 ((𝜑 ∧ ¬ 𝐴𝐵) → ((subringAlg ‘𝑆)‘𝐶) = (((𝑆 sSet ⟨(Scalar‘ndx), (𝑆s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑆)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑆)⟩))
998adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝐴 = (Base‘((subringAlg ‘𝑅)‘𝐶)))
10099sseq1d 4013 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐵) → (𝐴𝐵 ↔ (Base‘((subringAlg ‘𝑅)‘𝐶)) ⊆ 𝐵))
10135, 100mtbid 324 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐵) → ¬ (Base‘((subringAlg ‘𝑅)‘𝐶)) ⊆ 𝐵)
102 fvexd 6906 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐵) → ((subringAlg ‘𝑅)‘𝐶) ∈ V)
103 eqid 2731 . . . . . 6 (((subringAlg ‘𝑅)‘𝐶) ↾s 𝐵) = (((subringAlg ‘𝑅)‘𝐶) ↾s 𝐵)
104103, 16ressval2 17185 . . . . 5 ((¬ (Base‘((subringAlg ‘𝑅)‘𝐶)) ⊆ 𝐵 ∧ ((subringAlg ‘𝑅)‘𝐶) ∈ V ∧ 𝐵 ∈ V) → (((subringAlg ‘𝑅)‘𝐶) ↾s 𝐵) = (((subringAlg ‘𝑅)‘𝐶) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘((subringAlg ‘𝑅)‘𝐶)))⟩))
105101, 102, 40, 104syl3anc 1370 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐵) → (((subringAlg ‘𝑅)‘𝐶) ↾s 𝐵) = (((subringAlg ‘𝑅)‘𝐶) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘((subringAlg ‘𝑅)‘𝐶)))⟩))
1068ineq2d 4212 . . . . . . . 8 (𝜑 → (𝐵𝐴) = (𝐵 ∩ (Base‘((subringAlg ‘𝑅)‘𝐶))))
107106, 44eqtr3d 2773 . . . . . . 7 (𝜑 → (𝐵 ∩ (Base‘((subringAlg ‘𝑅)‘𝐶))) = 𝐵)
108107opeq2d 4880 . . . . . 6 (𝜑 → ⟨(Base‘ndx), (𝐵 ∩ (Base‘((subringAlg ‘𝑅)‘𝐶)))⟩ = ⟨(Base‘ndx), 𝐵⟩)
109108oveq2d 7428 . . . . 5 (𝜑 → (((subringAlg ‘𝑅)‘𝐶) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘((subringAlg ‘𝑅)‘𝐶)))⟩) = (((subringAlg ‘𝑅)‘𝐶) sSet ⟨(Base‘ndx), 𝐵⟩))
110109adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐵) → (((subringAlg ‘𝑅)‘𝐶) sSet ⟨(Base‘ndx), (𝐵 ∩ (Base‘((subringAlg ‘𝑅)‘𝐶)))⟩) = (((subringAlg ‘𝑅)‘𝐶) sSet ⟨(Base‘ndx), 𝐵⟩))
111 sraval 20938 . . . . . . 7 ((𝑅𝑉𝐶 ⊆ (Base‘𝑅)) → ((subringAlg ‘𝑅)‘𝐶) = (((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑅)⟩))
11221, 6, 111syl2anc 583 . . . . . 6 (𝜑 → ((subringAlg ‘𝑅)‘𝐶) = (((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑅)⟩))
113112oveq1d 7427 . . . . 5 (𝜑 → (((subringAlg ‘𝑅)‘𝐶) sSet ⟨(Base‘ndx), 𝐵⟩) = ((((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), 𝐵⟩))
114113adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐵) → (((subringAlg ‘𝑅)‘𝐶) sSet ⟨(Base‘ndx), 𝐵⟩) = ((((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), 𝐵⟩))
115105, 110, 1143eqtrd 2775 . . 3 ((𝜑 ∧ ¬ 𝐴𝐵) → (((subringAlg ‘𝑅)‘𝐶) ↾s 𝐵) = ((((𝑅 sSet ⟨(Scalar‘ndx), (𝑅s 𝐶)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑅)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), 𝐵⟩))
11691, 98, 1153eqtr4d 2781 . 2 ((𝜑 ∧ ¬ 𝐴𝐵) → ((subringAlg ‘𝑆)‘𝐶) = (((subringAlg ‘𝑅)‘𝐶) ↾s 𝐵))
11734, 116pm2.61dan 810 1 (𝜑 → ((subringAlg ‘𝑆)‘𝐶) = (((subringAlg ‘𝑅)‘𝐶) ↾s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2105  wne 2939  Vcvv 3473  cin 3947  wss 3948  cop 4634  cfv 6543  (class class class)co 7412   sSet csts 17103  ndxcnx 17133  Basecbs 17151  s cress 17180  .rcmulr 17205  Scalarcsca 17207   ·𝑠 cvsca 17208  ·𝑖cip 17209  subringAlg csra 20930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-mulr 17218  df-sca 17220  df-vsca 17221  df-ip 17222  df-sra 20934
This theorem is referenced by:  lsssra  32978  algextdeglem2  33078
  Copyright terms: Public domain W3C validator