Step | Hyp | Ref
| Expression |
1 | | resssra.a |
. . . . . . 7
β’ π΄ = (Baseβπ
) |
2 | | eqidd 2731 |
. . . . . . . 8
β’ (π β ((subringAlg βπ
)βπΆ) = ((subringAlg βπ
)βπΆ)) |
3 | | resssra.c |
. . . . . . . . . 10
β’ (π β πΆ β π΅) |
4 | | resssra.b |
. . . . . . . . . 10
β’ (π β π΅ β π΄) |
5 | 3, 4 | sstrd 3991 |
. . . . . . . . 9
β’ (π β πΆ β π΄) |
6 | 5, 1 | sseqtrdi 4031 |
. . . . . . . 8
β’ (π β πΆ β (Baseβπ
)) |
7 | 2, 6 | srabase 20937 |
. . . . . . 7
β’ (π β (Baseβπ
) = (Baseβ((subringAlg
βπ
)βπΆ))) |
8 | 1, 7 | eqtrid 2782 |
. . . . . 6
β’ (π β π΄ = (Baseβ((subringAlg βπ
)βπΆ))) |
9 | 8 | oveq2d 7427 |
. . . . 5
β’ (π β (((subringAlg βπ
)βπΆ) βΎs π΄) = (((subringAlg βπ
)βπΆ) βΎs
(Baseβ((subringAlg βπ
)βπΆ)))) |
10 | 9 | adantr 479 |
. . . 4
β’ ((π β§ π΄ β π΅) β (((subringAlg βπ
)βπΆ) βΎs π΄) = (((subringAlg βπ
)βπΆ) βΎs
(Baseβ((subringAlg βπ
)βπΆ)))) |
11 | | simpr 483 |
. . . . . 6
β’ ((π β§ π΄ β π΅) β π΄ β π΅) |
12 | 4 | adantr 479 |
. . . . . 6
β’ ((π β§ π΄ β π΅) β π΅ β π΄) |
13 | 11, 12 | eqssd 3998 |
. . . . 5
β’ ((π β§ π΄ β π΅) β π΄ = π΅) |
14 | 13 | oveq2d 7427 |
. . . 4
β’ ((π β§ π΄ β π΅) β (((subringAlg βπ
)βπΆ) βΎs π΄) = (((subringAlg βπ
)βπΆ) βΎs π΅)) |
15 | | fvex 6903 |
. . . . 5
β’
((subringAlg βπ
)βπΆ) β V |
16 | | eqid 2730 |
. . . . . 6
β’
(Baseβ((subringAlg βπ
)βπΆ)) = (Baseβ((subringAlg βπ
)βπΆ)) |
17 | 16 | ressid 17193 |
. . . . 5
β’
(((subringAlg βπ
)βπΆ) β V β (((subringAlg βπ
)βπΆ) βΎs
(Baseβ((subringAlg βπ
)βπΆ))) = ((subringAlg βπ
)βπΆ)) |
18 | 15, 17 | mp1i 13 |
. . . 4
β’ ((π β§ π΄ β π΅) β (((subringAlg βπ
)βπΆ) βΎs
(Baseβ((subringAlg βπ
)βπΆ))) = ((subringAlg βπ
)βπΆ)) |
19 | 10, 14, 18 | 3eqtr3d 2778 |
. . 3
β’ ((π β§ π΄ β π΅) β (((subringAlg βπ
)βπΆ) βΎs π΅) = ((subringAlg βπ
)βπΆ)) |
20 | 1 | oveq2i 7422 |
. . . . . . . 8
β’ (π
βΎs π΄) = (π
βΎs (Baseβπ
)) |
21 | | resssra.r |
. . . . . . . . . 10
β’ (π β π
β π) |
22 | 21 | elexd 3493 |
. . . . . . . . 9
β’ (π β π
β V) |
23 | | eqid 2730 |
. . . . . . . . . 10
β’
(Baseβπ
) =
(Baseβπ
) |
24 | 23 | ressid 17193 |
. . . . . . . . 9
β’ (π
β V β (π
βΎs
(Baseβπ
)) = π
) |
25 | 22, 24 | syl 17 |
. . . . . . . 8
β’ (π β (π
βΎs (Baseβπ
)) = π
) |
26 | 20, 25 | eqtrid 2782 |
. . . . . . 7
β’ (π β (π
βΎs π΄) = π
) |
27 | 26 | adantr 479 |
. . . . . 6
β’ ((π β§ π΄ β π΅) β (π
βΎs π΄) = π
) |
28 | 13 | oveq2d 7427 |
. . . . . . 7
β’ ((π β§ π΄ β π΅) β (π
βΎs π΄) = (π
βΎs π΅)) |
29 | | resssra.s |
. . . . . . 7
β’ π = (π
βΎs π΅) |
30 | 28, 29 | eqtr4di 2788 |
. . . . . 6
β’ ((π β§ π΄ β π΅) β (π
βΎs π΄) = π) |
31 | 27, 30 | eqtr3d 2772 |
. . . . 5
β’ ((π β§ π΄ β π΅) β π
= π) |
32 | 31 | fveq2d 6894 |
. . . 4
β’ ((π β§ π΄ β π΅) β (subringAlg βπ
) = (subringAlg βπ)) |
33 | 32 | fveq1d 6892 |
. . 3
β’ ((π β§ π΄ β π΅) β ((subringAlg βπ
)βπΆ) = ((subringAlg βπ)βπΆ)) |
34 | 19, 33 | eqtr2d 2771 |
. 2
β’ ((π β§ π΄ β π΅) β ((subringAlg βπ)βπΆ) = (((subringAlg βπ
)βπΆ) βΎs π΅)) |
35 | | simpr 483 |
. . . . . . . . . . 11
β’ ((π β§ Β¬ π΄ β π΅) β Β¬ π΄ β π΅) |
36 | 22 | adantr 479 |
. . . . . . . . . . 11
β’ ((π β§ Β¬ π΄ β π΅) β π
β V) |
37 | 1 | fvexi 6904 |
. . . . . . . . . . . . . 14
β’ π΄ β V |
38 | 37 | a1i 11 |
. . . . . . . . . . . . 13
β’ (π β π΄ β V) |
39 | 38, 4 | ssexd 5323 |
. . . . . . . . . . . 12
β’ (π β π΅ β V) |
40 | 39 | adantr 479 |
. . . . . . . . . . 11
β’ ((π β§ Β¬ π΄ β π΅) β π΅ β V) |
41 | 29, 1 | ressval2 17182 |
. . . . . . . . . . 11
β’ ((Β¬
π΄ β π΅ β§ π
β V β§ π΅ β V) β π = (π
sSet β¨(Baseβndx), (π΅ β© π΄)β©)) |
42 | 35, 36, 40, 41 | syl3anc 1369 |
. . . . . . . . . 10
β’ ((π β§ Β¬ π΄ β π΅) β π = (π
sSet β¨(Baseβndx), (π΅ β© π΄)β©)) |
43 | | df-ss 3964 |
. . . . . . . . . . . . . 14
β’ (π΅ β π΄ β (π΅ β© π΄) = π΅) |
44 | 4, 43 | sylib 217 |
. . . . . . . . . . . . 13
β’ (π β (π΅ β© π΄) = π΅) |
45 | 44 | opeq2d 4879 |
. . . . . . . . . . . 12
β’ (π β β¨(Baseβndx),
(π΅ β© π΄)β© = β¨(Baseβndx), π΅β©) |
46 | 45 | oveq2d 7427 |
. . . . . . . . . . 11
β’ (π β (π
sSet β¨(Baseβndx), (π΅ β© π΄)β©) = (π
sSet β¨(Baseβndx), π΅β©)) |
47 | 46 | adantr 479 |
. . . . . . . . . 10
β’ ((π β§ Β¬ π΄ β π΅) β (π
sSet β¨(Baseβndx), (π΅ β© π΄)β©) = (π
sSet β¨(Baseβndx), π΅β©)) |
48 | 42, 47 | eqtrd 2770 |
. . . . . . . . 9
β’ ((π β§ Β¬ π΄ β π΅) β π = (π
sSet β¨(Baseβndx), π΅β©)) |
49 | 29 | oveq1i 7421 |
. . . . . . . . . . . 12
β’ (π βΎs πΆ) = ((π
βΎs π΅) βΎs πΆ) |
50 | | ressabs 17198 |
. . . . . . . . . . . . 13
β’ ((π΅ β V β§ πΆ β π΅) β ((π
βΎs π΅) βΎs πΆ) = (π
βΎs πΆ)) |
51 | 39, 3, 50 | syl2anc 582 |
. . . . . . . . . . . 12
β’ (π β ((π
βΎs π΅) βΎs πΆ) = (π
βΎs πΆ)) |
52 | 49, 51 | eqtrid 2782 |
. . . . . . . . . . 11
β’ (π β (π βΎs πΆ) = (π
βΎs πΆ)) |
53 | 52 | opeq2d 4879 |
. . . . . . . . . 10
β’ (π β β¨(Scalarβndx),
(π βΎs
πΆ)β© =
β¨(Scalarβndx), (π
βΎs πΆ)β©) |
54 | 53 | adantr 479 |
. . . . . . . . 9
β’ ((π β§ Β¬ π΄ β π΅) β β¨(Scalarβndx), (π βΎs πΆ)β© =
β¨(Scalarβndx), (π
βΎs πΆ)β©) |
55 | 48, 54 | oveq12d 7429 |
. . . . . . . 8
β’ ((π β§ Β¬ π΄ β π΅) β (π sSet β¨(Scalarβndx), (π βΎs πΆ)β©) = ((π
sSet β¨(Baseβndx), π΅β©) sSet
β¨(Scalarβndx), (π
βΎs πΆ)β©)) |
56 | | scandxnbasendx 17265 |
. . . . . . . . . . 11
β’
(Scalarβndx) β (Baseβndx) |
57 | 56 | a1i 11 |
. . . . . . . . . 10
β’ (π β (Scalarβndx) β
(Baseβndx)) |
58 | | ovexd 7446 |
. . . . . . . . . 10
β’ (π β (π
βΎs πΆ) β V) |
59 | | fvex 6903 |
. . . . . . . . . . 11
β’
(Scalarβndx) β V |
60 | | fvex 6903 |
. . . . . . . . . . 11
β’
(Baseβndx) β V |
61 | 59, 60 | setscom 17117 |
. . . . . . . . . 10
β’ (((π
β V β§
(Scalarβndx) β (Baseβndx)) β§ ((π
βΎs πΆ) β V β§ π΅ β V)) β ((π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet
β¨(Baseβndx), π΅β©) = ((π
sSet β¨(Baseβndx), π΅β©) sSet
β¨(Scalarβndx), (π
βΎs πΆ)β©)) |
62 | 22, 57, 58, 39, 61 | syl22anc 835 |
. . . . . . . . 9
β’ (π β ((π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet
β¨(Baseβndx), π΅β©) = ((π
sSet β¨(Baseβndx), π΅β©) sSet
β¨(Scalarβndx), (π
βΎs πΆ)β©)) |
63 | 62 | adantr 479 |
. . . . . . . 8
β’ ((π β§ Β¬ π΄ β π΅) β ((π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet
β¨(Baseβndx), π΅β©) = ((π
sSet β¨(Baseβndx), π΅β©) sSet
β¨(Scalarβndx), (π
βΎs πΆ)β©)) |
64 | 55, 63 | eqtr4d 2773 |
. . . . . . 7
β’ ((π β§ Β¬ π΄ β π΅) β (π sSet β¨(Scalarβndx), (π βΎs πΆ)β©) = ((π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet
β¨(Baseβndx), π΅β©)) |
65 | | eqid 2730 |
. . . . . . . . . . . 12
β’
(.rβπ
) = (.rβπ
) |
66 | 29, 65 | ressmulr 17256 |
. . . . . . . . . . 11
β’ (π΅ β V β
(.rβπ
) =
(.rβπ)) |
67 | 39, 66 | syl 17 |
. . . . . . . . . 10
β’ (π β (.rβπ
) = (.rβπ)) |
68 | 67 | eqcomd 2736 |
. . . . . . . . 9
β’ (π β (.rβπ) = (.rβπ
)) |
69 | 68 | opeq2d 4879 |
. . . . . . . 8
β’ (π β β¨(
Β·π βndx), (.rβπ)β© = β¨(
Β·π βndx), (.rβπ
)β©) |
70 | 69 | adantr 479 |
. . . . . . 7
β’ ((π β§ Β¬ π΄ β π΅) β β¨(
Β·π βndx), (.rβπ)β© = β¨(
Β·π βndx), (.rβπ
)β©) |
71 | 64, 70 | oveq12d 7429 |
. . . . . 6
β’ ((π β§ Β¬ π΄ β π΅) β ((π sSet β¨(Scalarβndx), (π βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) = (((π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet
β¨(Baseβndx), π΅β©) sSet β¨(
Β·π βndx), (.rβπ
)β©)) |
72 | | ovexd 7446 |
. . . . . . . 8
β’ (π β (π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) β
V) |
73 | | vscandxnbasendx 17270 |
. . . . . . . . 9
β’ (
Β·π βndx) β
(Baseβndx) |
74 | 73 | a1i 11 |
. . . . . . . 8
β’ (π β (
Β·π βndx) β
(Baseβndx)) |
75 | | fvexd 6905 |
. . . . . . . 8
β’ (π β (.rβπ
) β V) |
76 | | fvex 6903 |
. . . . . . . . 9
β’ (
Β·π βndx) β V |
77 | 76, 60 | setscom 17117 |
. . . . . . . 8
β’ ((((π
sSet β¨(Scalarβndx),
(π
βΎs
πΆ)β©) β V β§ (
Β·π βndx) β (Baseβndx)) β§
((.rβπ
)
β V β§ π΅ β V))
β (((π
sSet
β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ
)β©) sSet
β¨(Baseβndx), π΅β©) = (((π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet
β¨(Baseβndx), π΅β©) sSet β¨(
Β·π βndx), (.rβπ
)β©)) |
78 | 72, 74, 75, 39, 77 | syl22anc 835 |
. . . . . . 7
β’ (π β (((π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ
)β©) sSet
β¨(Baseβndx), π΅β©) = (((π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet
β¨(Baseβndx), π΅β©) sSet β¨(
Β·π βndx), (.rβπ
)β©)) |
79 | 78 | adantr 479 |
. . . . . 6
β’ ((π β§ Β¬ π΄ β π΅) β (((π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ
)β©) sSet
β¨(Baseβndx), π΅β©) = (((π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet
β¨(Baseβndx), π΅β©) sSet β¨(
Β·π βndx), (.rβπ
)β©)) |
80 | 71, 79 | eqtr4d 2773 |
. . . . 5
β’ ((π β§ Β¬ π΄ β π΅) β ((π sSet β¨(Scalarβndx), (π βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) = (((π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ
)β©) sSet
β¨(Baseβndx), π΅β©)) |
81 | 68 | opeq2d 4879 |
. . . . . 6
β’ (π β
β¨(Β·πβndx),
(.rβπ)β© =
β¨(Β·πβndx),
(.rβπ
)β©) |
82 | 81 | adantr 479 |
. . . . 5
β’ ((π β§ Β¬ π΄ β π΅) β
β¨(Β·πβndx),
(.rβπ)β© =
β¨(Β·πβndx),
(.rβπ
)β©) |
83 | 80, 82 | oveq12d 7429 |
. . . 4
β’ ((π β§ Β¬ π΄ β π΅) β (((π sSet β¨(Scalarβndx), (π βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©) = ((((π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ
)β©) sSet
β¨(Baseβndx), π΅β©) sSet
β¨(Β·πβndx),
(.rβπ
)β©)) |
84 | | ovexd 7446 |
. . . . . 6
β’ (π β ((π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ
)β©) β
V) |
85 | | ipndxnbasendx 17281 |
. . . . . . 7
β’
(Β·πβndx) β
(Baseβndx) |
86 | 85 | a1i 11 |
. . . . . 6
β’ (π β
(Β·πβndx) β
(Baseβndx)) |
87 | | fvex 6903 |
. . . . . . 7
β’
(Β·πβndx) β
V |
88 | 87, 60 | setscom 17117 |
. . . . . 6
β’
(((((π
sSet
β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ
)β©) β V β§
(Β·πβndx) β (Baseβndx)) β§
((.rβπ
)
β V β§ π΅ β V))
β ((((π
sSet
β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ
)β©) sSet
β¨(Β·πβndx),
(.rβπ
)β©) sSet β¨(Baseβndx), π΅β©) = ((((π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ
)β©) sSet
β¨(Baseβndx), π΅β©) sSet
β¨(Β·πβndx),
(.rβπ
)β©)) |
89 | 84, 86, 75, 39, 88 | syl22anc 835 |
. . . . 5
β’ (π β ((((π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ
)β©) sSet
β¨(Β·πβndx),
(.rβπ
)β©) sSet β¨(Baseβndx), π΅β©) = ((((π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ
)β©) sSet
β¨(Baseβndx), π΅β©) sSet
β¨(Β·πβndx),
(.rβπ
)β©)) |
90 | 89 | adantr 479 |
. . . 4
β’ ((π β§ Β¬ π΄ β π΅) β ((((π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ
)β©) sSet
β¨(Β·πβndx),
(.rβπ
)β©) sSet β¨(Baseβndx), π΅β©) = ((((π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ
)β©) sSet
β¨(Baseβndx), π΅β©) sSet
β¨(Β·πβndx),
(.rβπ
)β©)) |
91 | 83, 90 | eqtr4d 2773 |
. . 3
β’ ((π β§ Β¬ π΄ β π΅) β (((π sSet β¨(Scalarβndx), (π βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©) = ((((π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ
)β©) sSet
β¨(Β·πβndx),
(.rβπ
)β©) sSet β¨(Baseβndx), π΅β©)) |
92 | 29 | ovexi 7445 |
. . . 4
β’ π β V |
93 | 29, 1 | ressbas2 17186 |
. . . . . . 7
β’ (π΅ β π΄ β π΅ = (Baseβπ)) |
94 | 4, 93 | syl 17 |
. . . . . 6
β’ (π β π΅ = (Baseβπ)) |
95 | 3, 94 | sseqtrd 4021 |
. . . . 5
β’ (π β πΆ β (Baseβπ)) |
96 | 95 | adantr 479 |
. . . 4
β’ ((π β§ Β¬ π΄ β π΅) β πΆ β (Baseβπ)) |
97 | | sraval 20934 |
. . . 4
β’ ((π β V β§ πΆ β (Baseβπ)) β ((subringAlg
βπ)βπΆ) = (((π sSet β¨(Scalarβndx), (π βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©)) |
98 | 92, 96, 97 | sylancr 585 |
. . 3
β’ ((π β§ Β¬ π΄ β π΅) β ((subringAlg βπ)βπΆ) = (((π sSet β¨(Scalarβndx), (π βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©)) |
99 | 8 | adantr 479 |
. . . . . . 7
β’ ((π β§ Β¬ π΄ β π΅) β π΄ = (Baseβ((subringAlg βπ
)βπΆ))) |
100 | 99 | sseq1d 4012 |
. . . . . 6
β’ ((π β§ Β¬ π΄ β π΅) β (π΄ β π΅ β (Baseβ((subringAlg
βπ
)βπΆ)) β π΅)) |
101 | 35, 100 | mtbid 323 |
. . . . 5
β’ ((π β§ Β¬ π΄ β π΅) β Β¬ (Baseβ((subringAlg
βπ
)βπΆ)) β π΅) |
102 | | fvexd 6905 |
. . . . 5
β’ ((π β§ Β¬ π΄ β π΅) β ((subringAlg βπ
)βπΆ) β V) |
103 | | eqid 2730 |
. . . . . 6
β’
(((subringAlg βπ
)βπΆ) βΎs π΅) = (((subringAlg βπ
)βπΆ) βΎs π΅) |
104 | 103, 16 | ressval2 17182 |
. . . . 5
β’ ((Β¬
(Baseβ((subringAlg βπ
)βπΆ)) β π΅ β§ ((subringAlg βπ
)βπΆ) β V β§ π΅ β V) β (((subringAlg βπ
)βπΆ) βΎs π΅) = (((subringAlg βπ
)βπΆ) sSet β¨(Baseβndx), (π΅ β© (Baseβ((subringAlg
βπ
)βπΆ)))β©)) |
105 | 101, 102,
40, 104 | syl3anc 1369 |
. . . 4
β’ ((π β§ Β¬ π΄ β π΅) β (((subringAlg βπ
)βπΆ) βΎs π΅) = (((subringAlg βπ
)βπΆ) sSet β¨(Baseβndx), (π΅ β© (Baseβ((subringAlg
βπ
)βπΆ)))β©)) |
106 | 8 | ineq2d 4211 |
. . . . . . . 8
β’ (π β (π΅ β© π΄) = (π΅ β© (Baseβ((subringAlg βπ
)βπΆ)))) |
107 | 106, 44 | eqtr3d 2772 |
. . . . . . 7
β’ (π β (π΅ β© (Baseβ((subringAlg βπ
)βπΆ))) = π΅) |
108 | 107 | opeq2d 4879 |
. . . . . 6
β’ (π β β¨(Baseβndx),
(π΅ β©
(Baseβ((subringAlg βπ
)βπΆ)))β© = β¨(Baseβndx), π΅β©) |
109 | 108 | oveq2d 7427 |
. . . . 5
β’ (π β (((subringAlg βπ
)βπΆ) sSet β¨(Baseβndx), (π΅ β© (Baseβ((subringAlg
βπ
)βπΆ)))β©) = (((subringAlg
βπ
)βπΆ) sSet β¨(Baseβndx),
π΅β©)) |
110 | 109 | adantr 479 |
. . . 4
β’ ((π β§ Β¬ π΄ β π΅) β (((subringAlg βπ
)βπΆ) sSet β¨(Baseβndx), (π΅ β© (Baseβ((subringAlg
βπ
)βπΆ)))β©) = (((subringAlg
βπ
)βπΆ) sSet β¨(Baseβndx),
π΅β©)) |
111 | | sraval 20934 |
. . . . . . 7
β’ ((π
β π β§ πΆ β (Baseβπ
)) β ((subringAlg βπ
)βπΆ) = (((π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ
)β©) sSet
β¨(Β·πβndx),
(.rβπ
)β©)) |
112 | 21, 6, 111 | syl2anc 582 |
. . . . . 6
β’ (π β ((subringAlg βπ
)βπΆ) = (((π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ
)β©) sSet
β¨(Β·πβndx),
(.rβπ
)β©)) |
113 | 112 | oveq1d 7426 |
. . . . 5
β’ (π β (((subringAlg βπ
)βπΆ) sSet β¨(Baseβndx), π΅β©) = ((((π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ
)β©) sSet
β¨(Β·πβndx),
(.rβπ
)β©) sSet β¨(Baseβndx), π΅β©)) |
114 | 113 | adantr 479 |
. . . 4
β’ ((π β§ Β¬ π΄ β π΅) β (((subringAlg βπ
)βπΆ) sSet β¨(Baseβndx), π΅β©) = ((((π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ
)β©) sSet
β¨(Β·πβndx),
(.rβπ
)β©) sSet β¨(Baseβndx), π΅β©)) |
115 | 105, 110,
114 | 3eqtrd 2774 |
. . 3
β’ ((π β§ Β¬ π΄ β π΅) β (((subringAlg βπ
)βπΆ) βΎs π΅) = ((((π
sSet β¨(Scalarβndx), (π
βΎs πΆ)β©) sSet β¨(
Β·π βndx), (.rβπ
)β©) sSet
β¨(Β·πβndx),
(.rβπ
)β©) sSet β¨(Baseβndx), π΅β©)) |
116 | 91, 98, 115 | 3eqtr4d 2780 |
. 2
β’ ((π β§ Β¬ π΄ β π΅) β ((subringAlg βπ)βπΆ) = (((subringAlg βπ
)βπΆ) βΎs π΅)) |
117 | 34, 116 | pm2.61dan 809 |
1
β’ (π β ((subringAlg βπ)βπΆ) = (((subringAlg βπ
)βπΆ) βΎs π΅)) |