MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  revrev Structured version   Visualization version   GIF version

Theorem revrev 14671
Description: Reversal is an involution on words. (Contributed by Mario Carneiro, 1-Oct-2015.)
Assertion
Ref Expression
revrev (𝑊 ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) = 𝑊)

Proof of Theorem revrev
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 revcl 14665 . . . 4 (𝑊 ∈ Word 𝐴 → (reverse‘𝑊) ∈ Word 𝐴)
2 revcl 14665 . . . 4 ((reverse‘𝑊) ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) ∈ Word 𝐴)
3 wrdf 14422 . . . 4 ((reverse‘(reverse‘𝑊)) ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)):(0..^(♯‘(reverse‘(reverse‘𝑊))))⟶𝐴)
4 ffn 6651 . . . 4 ((reverse‘(reverse‘𝑊)):(0..^(♯‘(reverse‘(reverse‘𝑊))))⟶𝐴 → (reverse‘(reverse‘𝑊)) Fn (0..^(♯‘(reverse‘(reverse‘𝑊)))))
51, 2, 3, 44syl 19 . . 3 (𝑊 ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) Fn (0..^(♯‘(reverse‘(reverse‘𝑊)))))
6 revlen 14666 . . . . . . 7 ((reverse‘𝑊) ∈ Word 𝐴 → (♯‘(reverse‘(reverse‘𝑊))) = (♯‘(reverse‘𝑊)))
71, 6syl 17 . . . . . 6 (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘(reverse‘𝑊))) = (♯‘(reverse‘𝑊)))
8 revlen 14666 . . . . . 6 (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘𝑊)) = (♯‘𝑊))
97, 8eqtrd 2766 . . . . 5 (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘(reverse‘𝑊))) = (♯‘𝑊))
109oveq2d 7362 . . . 4 (𝑊 ∈ Word 𝐴 → (0..^(♯‘(reverse‘(reverse‘𝑊)))) = (0..^(♯‘𝑊)))
1110fneq2d 6575 . . 3 (𝑊 ∈ Word 𝐴 → ((reverse‘(reverse‘𝑊)) Fn (0..^(♯‘(reverse‘(reverse‘𝑊)))) ↔ (reverse‘(reverse‘𝑊)) Fn (0..^(♯‘𝑊))))
125, 11mpbid 232 . 2 (𝑊 ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) Fn (0..^(♯‘𝑊)))
13 wrdfn 14432 . 2 (𝑊 ∈ Word 𝐴𝑊 Fn (0..^(♯‘𝑊)))
14 simpr 484 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0..^(♯‘𝑊)))
158adantr 480 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (♯‘(reverse‘𝑊)) = (♯‘𝑊))
1615oveq2d 7362 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (0..^(♯‘(reverse‘𝑊))) = (0..^(♯‘𝑊)))
1714, 16eleqtrrd 2834 . . . 4 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0..^(♯‘(reverse‘𝑊))))
18 revfv 14667 . . . 4 (((reverse‘𝑊) ∈ Word 𝐴𝑥 ∈ (0..^(♯‘(reverse‘𝑊)))) → ((reverse‘(reverse‘𝑊))‘𝑥) = ((reverse‘𝑊)‘(((♯‘(reverse‘𝑊)) − 1) − 𝑥)))
191, 17, 18syl2an2r 685 . . 3 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘(reverse‘𝑊))‘𝑥) = ((reverse‘𝑊)‘(((♯‘(reverse‘𝑊)) − 1) − 𝑥)))
2015oveq1d 7361 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((♯‘(reverse‘𝑊)) − 1) = ((♯‘𝑊) − 1))
2120fvoveq1d 7368 . . . 4 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘(reverse‘𝑊)) − 1) − 𝑥)) = ((reverse‘𝑊)‘(((♯‘𝑊) − 1) − 𝑥)))
22 lencl 14437 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝐴 → (♯‘𝑊) ∈ ℕ0)
2322nn0zd 12491 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐴 → (♯‘𝑊) ∈ ℤ)
24 fzoval 13557 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
2523, 24syl 17 . . . . . . . . . 10 (𝑊 ∈ Word 𝐴 → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
2625eleq2d 2817 . . . . . . . . 9 (𝑊 ∈ Word 𝐴 → (𝑥 ∈ (0..^(♯‘𝑊)) ↔ 𝑥 ∈ (0...((♯‘𝑊) − 1))))
2726biimpa 476 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0...((♯‘𝑊) − 1)))
28 fznn0sub2 13532 . . . . . . . 8 (𝑥 ∈ (0...((♯‘𝑊) − 1)) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1)))
2927, 28syl 17 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1)))
3025adantr 480 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
3129, 30eleqtrrd 2834 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0..^(♯‘𝑊)))
32 revfv 14667 . . . . . 6 ((𝑊 ∈ Word 𝐴 ∧ (((♯‘𝑊) − 1) − 𝑥) ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘𝑊) − 1) − 𝑥)) = (𝑊‘(((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥))))
3331, 32syldan 591 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘𝑊) − 1) − 𝑥)) = (𝑊‘(((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥))))
34 peano2zm 12512 . . . . . . . . 9 ((♯‘𝑊) ∈ ℤ → ((♯‘𝑊) − 1) ∈ ℤ)
3523, 34syl 17 . . . . . . . 8 (𝑊 ∈ Word 𝐴 → ((♯‘𝑊) − 1) ∈ ℤ)
3635zcnd 12575 . . . . . . 7 (𝑊 ∈ Word 𝐴 → ((♯‘𝑊) − 1) ∈ ℂ)
37 elfzoelz 13556 . . . . . . . 8 (𝑥 ∈ (0..^(♯‘𝑊)) → 𝑥 ∈ ℤ)
3837zcnd 12575 . . . . . . 7 (𝑥 ∈ (0..^(♯‘𝑊)) → 𝑥 ∈ ℂ)
39 nncan 11387 . . . . . . 7 ((((♯‘𝑊) − 1) ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥)) = 𝑥)
4036, 38, 39syl2an 596 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥)) = 𝑥)
4140fveq2d 6826 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (𝑊‘(((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥))) = (𝑊𝑥))
4233, 41eqtrd 2766 . . . 4 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘𝑊) − 1) − 𝑥)) = (𝑊𝑥))
4321, 42eqtrd 2766 . . 3 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘(reverse‘𝑊)) − 1) − 𝑥)) = (𝑊𝑥))
4419, 43eqtrd 2766 . 2 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘(reverse‘𝑊))‘𝑥) = (𝑊𝑥))
4512, 13, 44eqfnfvd 6967 1 (𝑊 ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  cc 11001  0cc0 11003  1c1 11004  cmin 11341  cz 12465  ...cfz 13404  ..^cfzo 13551  chash 14234  Word cword 14417  reversecreverse 14662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-hash 14235  df-word 14418  df-reverse 14663
This theorem is referenced by:  efginvrel1  19638  swrdrevpfx  35149  revwlkb  35158
  Copyright terms: Public domain W3C validator