MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  revrev Structured version   Visualization version   GIF version

Theorem revrev 14691
Description: Reversal is an involution on words. (Contributed by Mario Carneiro, 1-Oct-2015.)
Assertion
Ref Expression
revrev (𝑊 ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) = 𝑊)

Proof of Theorem revrev
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 revcl 14685 . . . 4 (𝑊 ∈ Word 𝐴 → (reverse‘𝑊) ∈ Word 𝐴)
2 revcl 14685 . . . 4 ((reverse‘𝑊) ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) ∈ Word 𝐴)
3 wrdf 14443 . . . 4 ((reverse‘(reverse‘𝑊)) ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)):(0..^(♯‘(reverse‘(reverse‘𝑊))))⟶𝐴)
4 ffn 6656 . . . 4 ((reverse‘(reverse‘𝑊)):(0..^(♯‘(reverse‘(reverse‘𝑊))))⟶𝐴 → (reverse‘(reverse‘𝑊)) Fn (0..^(♯‘(reverse‘(reverse‘𝑊)))))
51, 2, 3, 44syl 19 . . 3 (𝑊 ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) Fn (0..^(♯‘(reverse‘(reverse‘𝑊)))))
6 revlen 14686 . . . . . . 7 ((reverse‘𝑊) ∈ Word 𝐴 → (♯‘(reverse‘(reverse‘𝑊))) = (♯‘(reverse‘𝑊)))
71, 6syl 17 . . . . . 6 (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘(reverse‘𝑊))) = (♯‘(reverse‘𝑊)))
8 revlen 14686 . . . . . 6 (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘𝑊)) = (♯‘𝑊))
97, 8eqtrd 2764 . . . . 5 (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘(reverse‘𝑊))) = (♯‘𝑊))
109oveq2d 7369 . . . 4 (𝑊 ∈ Word 𝐴 → (0..^(♯‘(reverse‘(reverse‘𝑊)))) = (0..^(♯‘𝑊)))
1110fneq2d 6580 . . 3 (𝑊 ∈ Word 𝐴 → ((reverse‘(reverse‘𝑊)) Fn (0..^(♯‘(reverse‘(reverse‘𝑊)))) ↔ (reverse‘(reverse‘𝑊)) Fn (0..^(♯‘𝑊))))
125, 11mpbid 232 . 2 (𝑊 ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) Fn (0..^(♯‘𝑊)))
13 wrdfn 14453 . 2 (𝑊 ∈ Word 𝐴𝑊 Fn (0..^(♯‘𝑊)))
14 simpr 484 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0..^(♯‘𝑊)))
158adantr 480 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (♯‘(reverse‘𝑊)) = (♯‘𝑊))
1615oveq2d 7369 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (0..^(♯‘(reverse‘𝑊))) = (0..^(♯‘𝑊)))
1714, 16eleqtrrd 2831 . . . 4 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0..^(♯‘(reverse‘𝑊))))
18 revfv 14687 . . . 4 (((reverse‘𝑊) ∈ Word 𝐴𝑥 ∈ (0..^(♯‘(reverse‘𝑊)))) → ((reverse‘(reverse‘𝑊))‘𝑥) = ((reverse‘𝑊)‘(((♯‘(reverse‘𝑊)) − 1) − 𝑥)))
191, 17, 18syl2an2r 685 . . 3 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘(reverse‘𝑊))‘𝑥) = ((reverse‘𝑊)‘(((♯‘(reverse‘𝑊)) − 1) − 𝑥)))
2015oveq1d 7368 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((♯‘(reverse‘𝑊)) − 1) = ((♯‘𝑊) − 1))
2120fvoveq1d 7375 . . . 4 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘(reverse‘𝑊)) − 1) − 𝑥)) = ((reverse‘𝑊)‘(((♯‘𝑊) − 1) − 𝑥)))
22 lencl 14458 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝐴 → (♯‘𝑊) ∈ ℕ0)
2322nn0zd 12515 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐴 → (♯‘𝑊) ∈ ℤ)
24 fzoval 13581 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
2523, 24syl 17 . . . . . . . . . 10 (𝑊 ∈ Word 𝐴 → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
2625eleq2d 2814 . . . . . . . . 9 (𝑊 ∈ Word 𝐴 → (𝑥 ∈ (0..^(♯‘𝑊)) ↔ 𝑥 ∈ (0...((♯‘𝑊) − 1))))
2726biimpa 476 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0...((♯‘𝑊) − 1)))
28 fznn0sub2 13556 . . . . . . . 8 (𝑥 ∈ (0...((♯‘𝑊) − 1)) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1)))
2927, 28syl 17 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1)))
3025adantr 480 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
3129, 30eleqtrrd 2831 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0..^(♯‘𝑊)))
32 revfv 14687 . . . . . 6 ((𝑊 ∈ Word 𝐴 ∧ (((♯‘𝑊) − 1) − 𝑥) ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘𝑊) − 1) − 𝑥)) = (𝑊‘(((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥))))
3331, 32syldan 591 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘𝑊) − 1) − 𝑥)) = (𝑊‘(((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥))))
34 peano2zm 12536 . . . . . . . . 9 ((♯‘𝑊) ∈ ℤ → ((♯‘𝑊) − 1) ∈ ℤ)
3523, 34syl 17 . . . . . . . 8 (𝑊 ∈ Word 𝐴 → ((♯‘𝑊) − 1) ∈ ℤ)
3635zcnd 12599 . . . . . . 7 (𝑊 ∈ Word 𝐴 → ((♯‘𝑊) − 1) ∈ ℂ)
37 elfzoelz 13580 . . . . . . . 8 (𝑥 ∈ (0..^(♯‘𝑊)) → 𝑥 ∈ ℤ)
3837zcnd 12599 . . . . . . 7 (𝑥 ∈ (0..^(♯‘𝑊)) → 𝑥 ∈ ℂ)
39 nncan 11411 . . . . . . 7 ((((♯‘𝑊) − 1) ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥)) = 𝑥)
4036, 38, 39syl2an 596 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥)) = 𝑥)
4140fveq2d 6830 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (𝑊‘(((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥))) = (𝑊𝑥))
4233, 41eqtrd 2764 . . . 4 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘𝑊) − 1) − 𝑥)) = (𝑊𝑥))
4321, 42eqtrd 2764 . . 3 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘(reverse‘𝑊)) − 1) − 𝑥)) = (𝑊𝑥))
4419, 43eqtrd 2764 . 2 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘(reverse‘𝑊))‘𝑥) = (𝑊𝑥))
4512, 13, 44eqfnfvd 6972 1 (𝑊 ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029  cmin 11365  cz 12489  ...cfz 13428  ..^cfzo 13575  chash 14255  Word cword 14438  reversecreverse 14682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-reverse 14683
This theorem is referenced by:  efginvrel1  19625  swrdrevpfx  35089  revwlkb  35098
  Copyright terms: Public domain W3C validator