MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  revrev Structured version   Visualization version   GIF version

Theorem revrev 13846
Description: Reversion is an involution on words. (Contributed by Mario Carneiro, 1-Oct-2015.)
Assertion
Ref Expression
revrev (𝑊 ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) = 𝑊)

Proof of Theorem revrev
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 revcl 13840 . . . 4 (𝑊 ∈ Word 𝐴 → (reverse‘𝑊) ∈ Word 𝐴)
2 revcl 13840 . . . 4 ((reverse‘𝑊) ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) ∈ Word 𝐴)
3 wrdf 13538 . . . 4 ((reverse‘(reverse‘𝑊)) ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)):(0..^(♯‘(reverse‘(reverse‘𝑊))))⟶𝐴)
4 ffn 6257 . . . 4 ((reverse‘(reverse‘𝑊)):(0..^(♯‘(reverse‘(reverse‘𝑊))))⟶𝐴 → (reverse‘(reverse‘𝑊)) Fn (0..^(♯‘(reverse‘(reverse‘𝑊)))))
51, 2, 3, 44syl 19 . . 3 (𝑊 ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) Fn (0..^(♯‘(reverse‘(reverse‘𝑊)))))
6 revlen 13841 . . . . . . 7 ((reverse‘𝑊) ∈ Word 𝐴 → (♯‘(reverse‘(reverse‘𝑊))) = (♯‘(reverse‘𝑊)))
71, 6syl 17 . . . . . 6 (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘(reverse‘𝑊))) = (♯‘(reverse‘𝑊)))
8 revlen 13841 . . . . . 6 (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘𝑊)) = (♯‘𝑊))
97, 8eqtrd 2834 . . . . 5 (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘(reverse‘𝑊))) = (♯‘𝑊))
109oveq2d 6895 . . . 4 (𝑊 ∈ Word 𝐴 → (0..^(♯‘(reverse‘(reverse‘𝑊)))) = (0..^(♯‘𝑊)))
1110fneq2d 6194 . . 3 (𝑊 ∈ Word 𝐴 → ((reverse‘(reverse‘𝑊)) Fn (0..^(♯‘(reverse‘(reverse‘𝑊)))) ↔ (reverse‘(reverse‘𝑊)) Fn (0..^(♯‘𝑊))))
125, 11mpbid 224 . 2 (𝑊 ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) Fn (0..^(♯‘𝑊)))
13 wrdfn 13547 . 2 (𝑊 ∈ Word 𝐴𝑊 Fn (0..^(♯‘𝑊)))
141adantr 473 . . . 4 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (reverse‘𝑊) ∈ Word 𝐴)
15 simpr 478 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0..^(♯‘𝑊)))
168adantr 473 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (♯‘(reverse‘𝑊)) = (♯‘𝑊))
1716oveq2d 6895 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (0..^(♯‘(reverse‘𝑊))) = (0..^(♯‘𝑊)))
1815, 17eleqtrrd 2882 . . . 4 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0..^(♯‘(reverse‘𝑊))))
19 revfv 13842 . . . 4 (((reverse‘𝑊) ∈ Word 𝐴𝑥 ∈ (0..^(♯‘(reverse‘𝑊)))) → ((reverse‘(reverse‘𝑊))‘𝑥) = ((reverse‘𝑊)‘(((♯‘(reverse‘𝑊)) − 1) − 𝑥)))
2014, 18, 19syl2anc 580 . . 3 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘(reverse‘𝑊))‘𝑥) = ((reverse‘𝑊)‘(((♯‘(reverse‘𝑊)) − 1) − 𝑥)))
2116oveq1d 6894 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((♯‘(reverse‘𝑊)) − 1) = ((♯‘𝑊) − 1))
2221fvoveq1d 6901 . . . 4 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘(reverse‘𝑊)) − 1) − 𝑥)) = ((reverse‘𝑊)‘(((♯‘𝑊) − 1) − 𝑥)))
23 lencl 13552 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝐴 → (♯‘𝑊) ∈ ℕ0)
2423nn0zd 11769 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐴 → (♯‘𝑊) ∈ ℤ)
25 fzoval 12725 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
2624, 25syl 17 . . . . . . . . . 10 (𝑊 ∈ Word 𝐴 → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
2726eleq2d 2865 . . . . . . . . 9 (𝑊 ∈ Word 𝐴 → (𝑥 ∈ (0..^(♯‘𝑊)) ↔ 𝑥 ∈ (0...((♯‘𝑊) − 1))))
2827biimpa 469 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0...((♯‘𝑊) − 1)))
29 fznn0sub2 12700 . . . . . . . 8 (𝑥 ∈ (0...((♯‘𝑊) − 1)) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1)))
3028, 29syl 17 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1)))
3126adantr 473 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
3230, 31eleqtrrd 2882 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0..^(♯‘𝑊)))
33 revfv 13842 . . . . . 6 ((𝑊 ∈ Word 𝐴 ∧ (((♯‘𝑊) − 1) − 𝑥) ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘𝑊) − 1) − 𝑥)) = (𝑊‘(((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥))))
3432, 33syldan 586 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘𝑊) − 1) − 𝑥)) = (𝑊‘(((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥))))
35 peano2zm 11709 . . . . . . . . 9 ((♯‘𝑊) ∈ ℤ → ((♯‘𝑊) − 1) ∈ ℤ)
3624, 35syl 17 . . . . . . . 8 (𝑊 ∈ Word 𝐴 → ((♯‘𝑊) − 1) ∈ ℤ)
3736zcnd 11772 . . . . . . 7 (𝑊 ∈ Word 𝐴 → ((♯‘𝑊) − 1) ∈ ℂ)
38 elfzoelz 12724 . . . . . . . 8 (𝑥 ∈ (0..^(♯‘𝑊)) → 𝑥 ∈ ℤ)
3938zcnd 11772 . . . . . . 7 (𝑥 ∈ (0..^(♯‘𝑊)) → 𝑥 ∈ ℂ)
40 nncan 10603 . . . . . . 7 ((((♯‘𝑊) − 1) ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥)) = 𝑥)
4137, 39, 40syl2an 590 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥)) = 𝑥)
4241fveq2d 6416 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (𝑊‘(((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥))) = (𝑊𝑥))
4334, 42eqtrd 2834 . . . 4 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘𝑊) − 1) − 𝑥)) = (𝑊𝑥))
4422, 43eqtrd 2834 . . 3 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘(reverse‘𝑊)) − 1) − 𝑥)) = (𝑊𝑥))
4520, 44eqtrd 2834 . 2 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘(reverse‘𝑊))‘𝑥) = (𝑊𝑥))
4612, 13, 45eqfnfvd 6541 1 (𝑊 ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157   Fn wfn 6097  wf 6098  cfv 6102  (class class class)co 6879  cc 10223  0cc0 10225  1c1 10226  cmin 10557  cz 11665  ...cfz 12579  ..^cfzo 12719  chash 13369  Word cword 13533  reversecreverse 13837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-int 4669  df-iun 4713  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-om 7301  df-1st 7402  df-2nd 7403  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-1o 7800  df-oadd 7804  df-er 7983  df-en 8197  df-dom 8198  df-sdom 8199  df-fin 8200  df-card 9052  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-nn 11314  df-n0 11580  df-z 11666  df-uz 11930  df-fz 12580  df-fzo 12720  df-hash 13370  df-word 13534  df-reverse 13838
This theorem is referenced by:  efginvrel1  18453
  Copyright terms: Public domain W3C validator