MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  revrev Structured version   Visualization version   GIF version

Theorem revrev 14739
Description: Reversal is an involution on words. (Contributed by Mario Carneiro, 1-Oct-2015.)
Assertion
Ref Expression
revrev (𝑊 ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) = 𝑊)

Proof of Theorem revrev
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 revcl 14733 . . . 4 (𝑊 ∈ Word 𝐴 → (reverse‘𝑊) ∈ Word 𝐴)
2 revcl 14733 . . . 4 ((reverse‘𝑊) ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) ∈ Word 𝐴)
3 wrdf 14490 . . . 4 ((reverse‘(reverse‘𝑊)) ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)):(0..^(♯‘(reverse‘(reverse‘𝑊))))⟶𝐴)
4 ffn 6691 . . . 4 ((reverse‘(reverse‘𝑊)):(0..^(♯‘(reverse‘(reverse‘𝑊))))⟶𝐴 → (reverse‘(reverse‘𝑊)) Fn (0..^(♯‘(reverse‘(reverse‘𝑊)))))
51, 2, 3, 44syl 19 . . 3 (𝑊 ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) Fn (0..^(♯‘(reverse‘(reverse‘𝑊)))))
6 revlen 14734 . . . . . . 7 ((reverse‘𝑊) ∈ Word 𝐴 → (♯‘(reverse‘(reverse‘𝑊))) = (♯‘(reverse‘𝑊)))
71, 6syl 17 . . . . . 6 (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘(reverse‘𝑊))) = (♯‘(reverse‘𝑊)))
8 revlen 14734 . . . . . 6 (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘𝑊)) = (♯‘𝑊))
97, 8eqtrd 2765 . . . . 5 (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘(reverse‘𝑊))) = (♯‘𝑊))
109oveq2d 7406 . . . 4 (𝑊 ∈ Word 𝐴 → (0..^(♯‘(reverse‘(reverse‘𝑊)))) = (0..^(♯‘𝑊)))
1110fneq2d 6615 . . 3 (𝑊 ∈ Word 𝐴 → ((reverse‘(reverse‘𝑊)) Fn (0..^(♯‘(reverse‘(reverse‘𝑊)))) ↔ (reverse‘(reverse‘𝑊)) Fn (0..^(♯‘𝑊))))
125, 11mpbid 232 . 2 (𝑊 ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) Fn (0..^(♯‘𝑊)))
13 wrdfn 14500 . 2 (𝑊 ∈ Word 𝐴𝑊 Fn (0..^(♯‘𝑊)))
14 simpr 484 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0..^(♯‘𝑊)))
158adantr 480 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (♯‘(reverse‘𝑊)) = (♯‘𝑊))
1615oveq2d 7406 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (0..^(♯‘(reverse‘𝑊))) = (0..^(♯‘𝑊)))
1714, 16eleqtrrd 2832 . . . 4 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0..^(♯‘(reverse‘𝑊))))
18 revfv 14735 . . . 4 (((reverse‘𝑊) ∈ Word 𝐴𝑥 ∈ (0..^(♯‘(reverse‘𝑊)))) → ((reverse‘(reverse‘𝑊))‘𝑥) = ((reverse‘𝑊)‘(((♯‘(reverse‘𝑊)) − 1) − 𝑥)))
191, 17, 18syl2an2r 685 . . 3 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘(reverse‘𝑊))‘𝑥) = ((reverse‘𝑊)‘(((♯‘(reverse‘𝑊)) − 1) − 𝑥)))
2015oveq1d 7405 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((♯‘(reverse‘𝑊)) − 1) = ((♯‘𝑊) − 1))
2120fvoveq1d 7412 . . . 4 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘(reverse‘𝑊)) − 1) − 𝑥)) = ((reverse‘𝑊)‘(((♯‘𝑊) − 1) − 𝑥)))
22 lencl 14505 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝐴 → (♯‘𝑊) ∈ ℕ0)
2322nn0zd 12562 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐴 → (♯‘𝑊) ∈ ℤ)
24 fzoval 13628 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
2523, 24syl 17 . . . . . . . . . 10 (𝑊 ∈ Word 𝐴 → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
2625eleq2d 2815 . . . . . . . . 9 (𝑊 ∈ Word 𝐴 → (𝑥 ∈ (0..^(♯‘𝑊)) ↔ 𝑥 ∈ (0...((♯‘𝑊) − 1))))
2726biimpa 476 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0...((♯‘𝑊) − 1)))
28 fznn0sub2 13603 . . . . . . . 8 (𝑥 ∈ (0...((♯‘𝑊) − 1)) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1)))
2927, 28syl 17 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1)))
3025adantr 480 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
3129, 30eleqtrrd 2832 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0..^(♯‘𝑊)))
32 revfv 14735 . . . . . 6 ((𝑊 ∈ Word 𝐴 ∧ (((♯‘𝑊) − 1) − 𝑥) ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘𝑊) − 1) − 𝑥)) = (𝑊‘(((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥))))
3331, 32syldan 591 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘𝑊) − 1) − 𝑥)) = (𝑊‘(((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥))))
34 peano2zm 12583 . . . . . . . . 9 ((♯‘𝑊) ∈ ℤ → ((♯‘𝑊) − 1) ∈ ℤ)
3523, 34syl 17 . . . . . . . 8 (𝑊 ∈ Word 𝐴 → ((♯‘𝑊) − 1) ∈ ℤ)
3635zcnd 12646 . . . . . . 7 (𝑊 ∈ Word 𝐴 → ((♯‘𝑊) − 1) ∈ ℂ)
37 elfzoelz 13627 . . . . . . . 8 (𝑥 ∈ (0..^(♯‘𝑊)) → 𝑥 ∈ ℤ)
3837zcnd 12646 . . . . . . 7 (𝑥 ∈ (0..^(♯‘𝑊)) → 𝑥 ∈ ℂ)
39 nncan 11458 . . . . . . 7 ((((♯‘𝑊) − 1) ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥)) = 𝑥)
4036, 38, 39syl2an 596 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥)) = 𝑥)
4140fveq2d 6865 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (𝑊‘(((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥))) = (𝑊𝑥))
4233, 41eqtrd 2765 . . . 4 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘𝑊) − 1) − 𝑥)) = (𝑊𝑥))
4321, 42eqtrd 2765 . . 3 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘(reverse‘𝑊)) − 1) − 𝑥)) = (𝑊𝑥))
4419, 43eqtrd 2765 . 2 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘(reverse‘𝑊))‘𝑥) = (𝑊𝑥))
4512, 13, 44eqfnfvd 7009 1 (𝑊 ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076  cmin 11412  cz 12536  ...cfz 13475  ..^cfzo 13622  chash 14302  Word cword 14485  reversecreverse 14730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-reverse 14731
This theorem is referenced by:  efginvrel1  19665  swrdrevpfx  35111  revwlkb  35120
  Copyright terms: Public domain W3C validator