MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  revrev Structured version   Visualization version   GIF version

Theorem revrev 14131
Description: Reversal is an involution on words. (Contributed by Mario Carneiro, 1-Oct-2015.)
Assertion
Ref Expression
revrev (𝑊 ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) = 𝑊)

Proof of Theorem revrev
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 revcl 14125 . . . 4 (𝑊 ∈ Word 𝐴 → (reverse‘𝑊) ∈ Word 𝐴)
2 revcl 14125 . . . 4 ((reverse‘𝑊) ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) ∈ Word 𝐴)
3 wrdf 13869 . . . 4 ((reverse‘(reverse‘𝑊)) ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)):(0..^(♯‘(reverse‘(reverse‘𝑊))))⟶𝐴)
4 ffn 6516 . . . 4 ((reverse‘(reverse‘𝑊)):(0..^(♯‘(reverse‘(reverse‘𝑊))))⟶𝐴 → (reverse‘(reverse‘𝑊)) Fn (0..^(♯‘(reverse‘(reverse‘𝑊)))))
51, 2, 3, 44syl 19 . . 3 (𝑊 ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) Fn (0..^(♯‘(reverse‘(reverse‘𝑊)))))
6 revlen 14126 . . . . . . 7 ((reverse‘𝑊) ∈ Word 𝐴 → (♯‘(reverse‘(reverse‘𝑊))) = (♯‘(reverse‘𝑊)))
71, 6syl 17 . . . . . 6 (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘(reverse‘𝑊))) = (♯‘(reverse‘𝑊)))
8 revlen 14126 . . . . . 6 (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘𝑊)) = (♯‘𝑊))
97, 8eqtrd 2858 . . . . 5 (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘(reverse‘𝑊))) = (♯‘𝑊))
109oveq2d 7174 . . . 4 (𝑊 ∈ Word 𝐴 → (0..^(♯‘(reverse‘(reverse‘𝑊)))) = (0..^(♯‘𝑊)))
1110fneq2d 6449 . . 3 (𝑊 ∈ Word 𝐴 → ((reverse‘(reverse‘𝑊)) Fn (0..^(♯‘(reverse‘(reverse‘𝑊)))) ↔ (reverse‘(reverse‘𝑊)) Fn (0..^(♯‘𝑊))))
125, 11mpbid 234 . 2 (𝑊 ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) Fn (0..^(♯‘𝑊)))
13 wrdfn 13879 . 2 (𝑊 ∈ Word 𝐴𝑊 Fn (0..^(♯‘𝑊)))
14 simpr 487 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0..^(♯‘𝑊)))
158adantr 483 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (♯‘(reverse‘𝑊)) = (♯‘𝑊))
1615oveq2d 7174 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (0..^(♯‘(reverse‘𝑊))) = (0..^(♯‘𝑊)))
1714, 16eleqtrrd 2918 . . . 4 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0..^(♯‘(reverse‘𝑊))))
18 revfv 14127 . . . 4 (((reverse‘𝑊) ∈ Word 𝐴𝑥 ∈ (0..^(♯‘(reverse‘𝑊)))) → ((reverse‘(reverse‘𝑊))‘𝑥) = ((reverse‘𝑊)‘(((♯‘(reverse‘𝑊)) − 1) − 𝑥)))
191, 17, 18syl2an2r 683 . . 3 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘(reverse‘𝑊))‘𝑥) = ((reverse‘𝑊)‘(((♯‘(reverse‘𝑊)) − 1) − 𝑥)))
2015oveq1d 7173 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((♯‘(reverse‘𝑊)) − 1) = ((♯‘𝑊) − 1))
2120fvoveq1d 7180 . . . 4 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘(reverse‘𝑊)) − 1) − 𝑥)) = ((reverse‘𝑊)‘(((♯‘𝑊) − 1) − 𝑥)))
22 lencl 13885 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝐴 → (♯‘𝑊) ∈ ℕ0)
2322nn0zd 12088 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐴 → (♯‘𝑊) ∈ ℤ)
24 fzoval 13042 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
2523, 24syl 17 . . . . . . . . . 10 (𝑊 ∈ Word 𝐴 → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
2625eleq2d 2900 . . . . . . . . 9 (𝑊 ∈ Word 𝐴 → (𝑥 ∈ (0..^(♯‘𝑊)) ↔ 𝑥 ∈ (0...((♯‘𝑊) − 1))))
2726biimpa 479 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0...((♯‘𝑊) − 1)))
28 fznn0sub2 13017 . . . . . . . 8 (𝑥 ∈ (0...((♯‘𝑊) − 1)) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1)))
2927, 28syl 17 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1)))
3025adantr 483 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
3129, 30eleqtrrd 2918 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0..^(♯‘𝑊)))
32 revfv 14127 . . . . . 6 ((𝑊 ∈ Word 𝐴 ∧ (((♯‘𝑊) − 1) − 𝑥) ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘𝑊) − 1) − 𝑥)) = (𝑊‘(((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥))))
3331, 32syldan 593 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘𝑊) − 1) − 𝑥)) = (𝑊‘(((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥))))
34 peano2zm 12028 . . . . . . . . 9 ((♯‘𝑊) ∈ ℤ → ((♯‘𝑊) − 1) ∈ ℤ)
3523, 34syl 17 . . . . . . . 8 (𝑊 ∈ Word 𝐴 → ((♯‘𝑊) − 1) ∈ ℤ)
3635zcnd 12091 . . . . . . 7 (𝑊 ∈ Word 𝐴 → ((♯‘𝑊) − 1) ∈ ℂ)
37 elfzoelz 13041 . . . . . . . 8 (𝑥 ∈ (0..^(♯‘𝑊)) → 𝑥 ∈ ℤ)
3837zcnd 12091 . . . . . . 7 (𝑥 ∈ (0..^(♯‘𝑊)) → 𝑥 ∈ ℂ)
39 nncan 10917 . . . . . . 7 ((((♯‘𝑊) − 1) ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥)) = 𝑥)
4036, 38, 39syl2an 597 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥)) = 𝑥)
4140fveq2d 6676 . . . . 5 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → (𝑊‘(((♯‘𝑊) − 1) − (((♯‘𝑊) − 1) − 𝑥))) = (𝑊𝑥))
4233, 41eqtrd 2858 . . . 4 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘𝑊) − 1) − 𝑥)) = (𝑊𝑥))
4321, 42eqtrd 2858 . . 3 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘(((♯‘(reverse‘𝑊)) − 1) − 𝑥)) = (𝑊𝑥))
4419, 43eqtrd 2858 . 2 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘(reverse‘𝑊))‘𝑥) = (𝑊𝑥))
4512, 13, 44eqfnfvd 6807 1 (𝑊 ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  0cc0 10539  1c1 10540  cmin 10872  cz 11984  ...cfz 12895  ..^cfzo 13036  chash 13693  Word cword 13864  reversecreverse 14122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-reverse 14123
This theorem is referenced by:  efginvrel1  18856  swrdrevpfx  32365  revwlkb  32374
  Copyright terms: Public domain W3C validator