MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvn0elsuppb Structured version   Visualization version   GIF version

Theorem fvn0elsuppb 8222
Description: The function value for a given argument is not empty iff the argument belongs to the support of the function with the empty set as zero. (Contributed by AV, 4-Apr-2020.)
Assertion
Ref Expression
fvn0elsuppb ((𝐵𝑉𝑋𝐵𝐺 Fn 𝐵) → ((𝐺𝑋) ≠ ∅ ↔ 𝑋 ∈ (𝐺 supp ∅)))

Proof of Theorem fvn0elsuppb
StepHypRef Expression
1 fvn0elsupp 8221 . . . 4 (((𝐵𝑉𝑋𝐵) ∧ (𝐺 Fn 𝐵 ∧ (𝐺𝑋) ≠ ∅)) → 𝑋 ∈ (𝐺 supp ∅))
21exp43 436 . . 3 (𝐵𝑉 → (𝑋𝐵 → (𝐺 Fn 𝐵 → ((𝐺𝑋) ≠ ∅ → 𝑋 ∈ (𝐺 supp ∅)))))
323imp 1111 . 2 ((𝐵𝑉𝑋𝐵𝐺 Fn 𝐵) → ((𝐺𝑋) ≠ ∅ → 𝑋 ∈ (𝐺 supp ∅)))
4 simp3 1138 . . . 4 ((𝐵𝑉𝑋𝐵𝐺 Fn 𝐵) → 𝐺 Fn 𝐵)
5 simp1 1136 . . . 4 ((𝐵𝑉𝑋𝐵𝐺 Fn 𝐵) → 𝐵𝑉)
6 0ex 5325 . . . . 5 ∅ ∈ V
76a1i 11 . . . 4 ((𝐵𝑉𝑋𝐵𝐺 Fn 𝐵) → ∅ ∈ V)
8 elsuppfn 8211 . . . 4 ((𝐺 Fn 𝐵𝐵𝑉 ∧ ∅ ∈ V) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅)))
94, 5, 7, 8syl3anc 1371 . . 3 ((𝐵𝑉𝑋𝐵𝐺 Fn 𝐵) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅)))
10 simpr 484 . . 3 ((𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅) → (𝐺𝑋) ≠ ∅)
119, 10biimtrdi 253 . 2 ((𝐵𝑉𝑋𝐵𝐺 Fn 𝐵) → (𝑋 ∈ (𝐺 supp ∅) → (𝐺𝑋) ≠ ∅))
123, 11impbid 212 1 ((𝐵𝑉𝑋𝐵𝐺 Fn 𝐵) → ((𝐺𝑋) ≠ ∅ ↔ 𝑋 ∈ (𝐺 supp ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wcel 2108  wne 2946  Vcvv 3488  c0 4352   Fn wfn 6568  cfv 6573  (class class class)co 7448   supp csupp 8201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-supp 8202
This theorem is referenced by:  brcic  17859
  Copyright terms: Public domain W3C validator