MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvn0elsuppb Structured version   Visualization version   GIF version

Theorem fvn0elsuppb 8114
Description: The function value for a given argument is not empty iff the argument belongs to the support of the function with the empty set as zero. (Contributed by AV, 4-Apr-2020.)
Assertion
Ref Expression
fvn0elsuppb ((𝐵𝑉𝑋𝐵𝐺 Fn 𝐵) → ((𝐺𝑋) ≠ ∅ ↔ 𝑋 ∈ (𝐺 supp ∅)))

Proof of Theorem fvn0elsuppb
StepHypRef Expression
1 fvn0elsupp 8113 . . . 4 (((𝐵𝑉𝑋𝐵) ∧ (𝐺 Fn 𝐵 ∧ (𝐺𝑋) ≠ ∅)) → 𝑋 ∈ (𝐺 supp ∅))
21exp43 436 . . 3 (𝐵𝑉 → (𝑋𝐵 → (𝐺 Fn 𝐵 → ((𝐺𝑋) ≠ ∅ → 𝑋 ∈ (𝐺 supp ∅)))))
323imp 1110 . 2 ((𝐵𝑉𝑋𝐵𝐺 Fn 𝐵) → ((𝐺𝑋) ≠ ∅ → 𝑋 ∈ (𝐺 supp ∅)))
4 simp3 1138 . . . 4 ((𝐵𝑉𝑋𝐵𝐺 Fn 𝐵) → 𝐺 Fn 𝐵)
5 simp1 1136 . . . 4 ((𝐵𝑉𝑋𝐵𝐺 Fn 𝐵) → 𝐵𝑉)
6 0ex 5246 . . . . 5 ∅ ∈ V
76a1i 11 . . . 4 ((𝐵𝑉𝑋𝐵𝐺 Fn 𝐵) → ∅ ∈ V)
8 elsuppfn 8103 . . . 4 ((𝐺 Fn 𝐵𝐵𝑉 ∧ ∅ ∈ V) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅)))
94, 5, 7, 8syl3anc 1373 . . 3 ((𝐵𝑉𝑋𝐵𝐺 Fn 𝐵) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅)))
10 simpr 484 . . 3 ((𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅) → (𝐺𝑋) ≠ ∅)
119, 10biimtrdi 253 . 2 ((𝐵𝑉𝑋𝐵𝐺 Fn 𝐵) → (𝑋 ∈ (𝐺 supp ∅) → (𝐺𝑋) ≠ ∅))
123, 11impbid 212 1 ((𝐵𝑉𝑋𝐵𝐺 Fn 𝐵) → ((𝐺𝑋) ≠ ∅ ↔ 𝑋 ∈ (𝐺 supp ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wne 2925  Vcvv 3436  c0 4284   Fn wfn 6477  cfv 6482  (class class class)co 7349   supp csupp 8093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-supp 8094
This theorem is referenced by:  brcic  17705
  Copyright terms: Public domain W3C validator