Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvn0elsuppb | Structured version Visualization version GIF version |
Description: The function value for a given argument is not empty iff the argument belongs to the support of the function with the empty set as zero. (Contributed by AV, 4-Apr-2020.) |
Ref | Expression |
---|---|
fvn0elsuppb | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → ((𝐺‘𝑋) ≠ ∅ ↔ 𝑋 ∈ (𝐺 supp ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvn0elsupp 7887 | . . . 4 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) ∧ (𝐺 Fn 𝐵 ∧ (𝐺‘𝑋) ≠ ∅)) → 𝑋 ∈ (𝐺 supp ∅)) | |
2 | 1 | exp43 440 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑋 ∈ 𝐵 → (𝐺 Fn 𝐵 → ((𝐺‘𝑋) ≠ ∅ → 𝑋 ∈ (𝐺 supp ∅))))) |
3 | 2 | 3imp 1112 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → ((𝐺‘𝑋) ≠ ∅ → 𝑋 ∈ (𝐺 supp ∅))) |
4 | simp3 1139 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → 𝐺 Fn 𝐵) | |
5 | simp1 1137 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → 𝐵 ∈ 𝑉) | |
6 | 0ex 5185 | . . . . 5 ⊢ ∅ ∈ V | |
7 | 6 | a1i 11 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → ∅ ∈ V) |
8 | elsuppfn 7878 | . . . 4 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅))) | |
9 | 4, 5, 7, 8 | syl3anc 1372 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅))) |
10 | simpr 488 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅) → (𝐺‘𝑋) ≠ ∅) | |
11 | 9, 10 | syl6bi 256 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → (𝑋 ∈ (𝐺 supp ∅) → (𝐺‘𝑋) ≠ ∅)) |
12 | 3, 11 | impbid 215 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → ((𝐺‘𝑋) ≠ ∅ ↔ 𝑋 ∈ (𝐺 supp ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1088 ∈ wcel 2114 ≠ wne 2935 Vcvv 3400 ∅c0 4221 Fn wfn 6344 ‘cfv 6349 (class class class)co 7182 supp csupp 7868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pr 5306 ax-un 7491 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-ov 7185 df-oprab 7186 df-mpo 7187 df-supp 7869 |
This theorem is referenced by: brcic 17185 |
Copyright terms: Public domain | W3C validator |