| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvn0elsuppb | Structured version Visualization version GIF version | ||
| Description: The function value for a given argument is not empty iff the argument belongs to the support of the function with the empty set as zero. (Contributed by AV, 4-Apr-2020.) |
| Ref | Expression |
|---|---|
| fvn0elsuppb | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → ((𝐺‘𝑋) ≠ ∅ ↔ 𝑋 ∈ (𝐺 supp ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvn0elsupp 8205 | . . . 4 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) ∧ (𝐺 Fn 𝐵 ∧ (𝐺‘𝑋) ≠ ∅)) → 𝑋 ∈ (𝐺 supp ∅)) | |
| 2 | 1 | exp43 436 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑋 ∈ 𝐵 → (𝐺 Fn 𝐵 → ((𝐺‘𝑋) ≠ ∅ → 𝑋 ∈ (𝐺 supp ∅))))) |
| 3 | 2 | 3imp 1111 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → ((𝐺‘𝑋) ≠ ∅ → 𝑋 ∈ (𝐺 supp ∅))) |
| 4 | simp3 1139 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → 𝐺 Fn 𝐵) | |
| 5 | simp1 1137 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → 𝐵 ∈ 𝑉) | |
| 6 | 0ex 5307 | . . . . 5 ⊢ ∅ ∈ V | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → ∅ ∈ V) |
| 8 | elsuppfn 8195 | . . . 4 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅))) | |
| 9 | 4, 5, 7, 8 | syl3anc 1373 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅))) |
| 10 | simpr 484 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅) → (𝐺‘𝑋) ≠ ∅) | |
| 11 | 9, 10 | biimtrdi 253 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → (𝑋 ∈ (𝐺 supp ∅) → (𝐺‘𝑋) ≠ ∅)) |
| 12 | 3, 11 | impbid 212 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → ((𝐺‘𝑋) ≠ ∅ ↔ 𝑋 ∈ (𝐺 supp ∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ≠ wne 2940 Vcvv 3480 ∅c0 4333 Fn wfn 6556 ‘cfv 6561 (class class class)co 7431 supp csupp 8185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-supp 8186 |
| This theorem is referenced by: brcic 17842 |
| Copyright terms: Public domain | W3C validator |