Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvn0elsuppb | Structured version Visualization version GIF version |
Description: The function value for a given argument is not empty iff the argument belongs to the support of the function with the empty set as zero. (Contributed by AV, 4-Apr-2020.) |
Ref | Expression |
---|---|
fvn0elsuppb | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → ((𝐺‘𝑋) ≠ ∅ ↔ 𝑋 ∈ (𝐺 supp ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvn0elsupp 7967 | . . . 4 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) ∧ (𝐺 Fn 𝐵 ∧ (𝐺‘𝑋) ≠ ∅)) → 𝑋 ∈ (𝐺 supp ∅)) | |
2 | 1 | exp43 436 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑋 ∈ 𝐵 → (𝐺 Fn 𝐵 → ((𝐺‘𝑋) ≠ ∅ → 𝑋 ∈ (𝐺 supp ∅))))) |
3 | 2 | 3imp 1109 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → ((𝐺‘𝑋) ≠ ∅ → 𝑋 ∈ (𝐺 supp ∅))) |
4 | simp3 1136 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → 𝐺 Fn 𝐵) | |
5 | simp1 1134 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → 𝐵 ∈ 𝑉) | |
6 | 0ex 5226 | . . . . 5 ⊢ ∅ ∈ V | |
7 | 6 | a1i 11 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → ∅ ∈ V) |
8 | elsuppfn 7958 | . . . 4 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅))) | |
9 | 4, 5, 7, 8 | syl3anc 1369 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅))) |
10 | simpr 484 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝐺‘𝑋) ≠ ∅) → (𝐺‘𝑋) ≠ ∅) | |
11 | 9, 10 | syl6bi 252 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → (𝑋 ∈ (𝐺 supp ∅) → (𝐺‘𝑋) ≠ ∅)) |
12 | 3, 11 | impbid 211 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝐺 Fn 𝐵) → ((𝐺‘𝑋) ≠ ∅ ↔ 𝑋 ∈ (𝐺 supp ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∅c0 4253 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 supp csupp 7948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-supp 7949 |
This theorem is referenced by: brcic 17427 |
Copyright terms: Public domain | W3C validator |