MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvn0elsuppb Structured version   Visualization version   GIF version

Theorem fvn0elsuppb 8166
Description: The function value for a given argument is not empty iff the argument belongs to the support of the function with the empty set as zero. (Contributed by AV, 4-Apr-2020.)
Assertion
Ref Expression
fvn0elsuppb ((𝐵𝑉𝑋𝐵𝐺 Fn 𝐵) → ((𝐺𝑋) ≠ ∅ ↔ 𝑋 ∈ (𝐺 supp ∅)))

Proof of Theorem fvn0elsuppb
StepHypRef Expression
1 fvn0elsupp 8165 . . . 4 (((𝐵𝑉𝑋𝐵) ∧ (𝐺 Fn 𝐵 ∧ (𝐺𝑋) ≠ ∅)) → 𝑋 ∈ (𝐺 supp ∅))
21exp43 438 . . 3 (𝐵𝑉 → (𝑋𝐵 → (𝐺 Fn 𝐵 → ((𝐺𝑋) ≠ ∅ → 𝑋 ∈ (𝐺 supp ∅)))))
323imp 1112 . 2 ((𝐵𝑉𝑋𝐵𝐺 Fn 𝐵) → ((𝐺𝑋) ≠ ∅ → 𝑋 ∈ (𝐺 supp ∅)))
4 simp3 1139 . . . 4 ((𝐵𝑉𝑋𝐵𝐺 Fn 𝐵) → 𝐺 Fn 𝐵)
5 simp1 1137 . . . 4 ((𝐵𝑉𝑋𝐵𝐺 Fn 𝐵) → 𝐵𝑉)
6 0ex 5308 . . . . 5 ∅ ∈ V
76a1i 11 . . . 4 ((𝐵𝑉𝑋𝐵𝐺 Fn 𝐵) → ∅ ∈ V)
8 elsuppfn 8156 . . . 4 ((𝐺 Fn 𝐵𝐵𝑉 ∧ ∅ ∈ V) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅)))
94, 5, 7, 8syl3anc 1372 . . 3 ((𝐵𝑉𝑋𝐵𝐺 Fn 𝐵) → (𝑋 ∈ (𝐺 supp ∅) ↔ (𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅)))
10 simpr 486 . . 3 ((𝑋𝐵 ∧ (𝐺𝑋) ≠ ∅) → (𝐺𝑋) ≠ ∅)
119, 10syl6bi 253 . 2 ((𝐵𝑉𝑋𝐵𝐺 Fn 𝐵) → (𝑋 ∈ (𝐺 supp ∅) → (𝐺𝑋) ≠ ∅))
123, 11impbid 211 1 ((𝐵𝑉𝑋𝐵𝐺 Fn 𝐵) → ((𝐺𝑋) ≠ ∅ ↔ 𝑋 ∈ (𝐺 supp ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088  wcel 2107  wne 2941  Vcvv 3475  c0 4323   Fn wfn 6539  cfv 6544  (class class class)co 7409   supp csupp 8146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-supp 8147
This theorem is referenced by:  brcic  17745
  Copyright terms: Public domain W3C validator