| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rfovfvd | Structured version Visualization version GIF version | ||
| Description: Value of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, and relation 𝑅. (Contributed by RP, 25-Apr-2021.) |
| Ref | Expression |
|---|---|
| rfovd.rf | ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) |
| rfovd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| rfovd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| rfovfvd.r | ⊢ (𝜑 → 𝑅 ∈ 𝒫 (𝐴 × 𝐵)) |
| rfovfvd.f | ⊢ 𝐹 = (𝐴𝑂𝐵) |
| Ref | Expression |
|---|---|
| rfovfvd | ⊢ (𝜑 → (𝐹‘𝑅) = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rfovfvd.f | . . 3 ⊢ 𝐹 = (𝐴𝑂𝐵) | |
| 2 | rfovd.rf | . . . 4 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) | |
| 3 | rfovd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | rfovd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 5 | 2, 3, 4 | rfovd 44034 | . . 3 ⊢ (𝜑 → (𝐴𝑂𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}))) |
| 6 | 1, 5 | eqtrid 2778 | . 2 ⊢ (𝜑 → 𝐹 = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}))) |
| 7 | breq 5088 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑥𝑟𝑦 ↔ 𝑥𝑅𝑦)) | |
| 8 | 7 | rabbidv 3402 | . . . 4 ⊢ (𝑟 = 𝑅 → {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦} = {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦}) |
| 9 | 8 | mpteq2dv 5180 | . . 3 ⊢ (𝑟 = 𝑅 → (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}) = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦})) |
| 10 | 9 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑟 = 𝑅) → (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑟𝑦}) = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦})) |
| 11 | rfovfvd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝒫 (𝐴 × 𝐵)) | |
| 12 | 3 | mptexd 7153 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦}) ∈ V) |
| 13 | 6, 10, 11, 12 | fvmptd 6931 | 1 ⊢ (𝜑 → (𝐹‘𝑅) = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 𝒫 cpw 4545 class class class wbr 5086 ↦ cmpt 5167 × cxp 5609 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 |
| This theorem is referenced by: rfovfvfvd 44036 |
| Copyright terms: Public domain | W3C validator |