Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfovfvd Structured version   Visualization version   GIF version

Theorem rfovfvd 43991
Description: Value of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, and relation 𝑅. (Contributed by RP, 25-Apr-2021.)
Hypotheses
Ref Expression
rfovd.rf 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))
rfovd.a (𝜑𝐴𝑉)
rfovd.b (𝜑𝐵𝑊)
rfovfvd.r (𝜑𝑅 ∈ 𝒫 (𝐴 × 𝐵))
rfovfvd.f 𝐹 = (𝐴𝑂𝐵)
Assertion
Ref Expression
rfovfvd (𝜑 → (𝐹𝑅) = (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑅𝑦}))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑟,𝑥   𝐵,𝑎,𝑏,𝑟,𝑥   𝑦,𝐵,𝑎,𝑏,𝑟   𝑅,𝑟,𝑥   𝑦,𝑅   𝜑,𝑎,𝑏,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝑅(𝑎,𝑏)   𝐹(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑂(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑟,𝑎,𝑏)

Proof of Theorem rfovfvd
StepHypRef Expression
1 rfovfvd.f . . 3 𝐹 = (𝐴𝑂𝐵)
2 rfovd.rf . . . 4 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))
3 rfovd.a . . . 4 (𝜑𝐴𝑉)
4 rfovd.b . . . 4 (𝜑𝐵𝑊)
52, 3, 4rfovd 43990 . . 3 (𝜑 → (𝐴𝑂𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑟𝑦})))
61, 5eqtrid 2776 . 2 (𝜑𝐹 = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑟𝑦})))
7 breq 5109 . . . . 5 (𝑟 = 𝑅 → (𝑥𝑟𝑦𝑥𝑅𝑦))
87rabbidv 3413 . . . 4 (𝑟 = 𝑅 → {𝑦𝐵𝑥𝑟𝑦} = {𝑦𝐵𝑥𝑅𝑦})
98mpteq2dv 5201 . . 3 (𝑟 = 𝑅 → (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑟𝑦}) = (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑅𝑦}))
109adantl 481 . 2 ((𝜑𝑟 = 𝑅) → (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑟𝑦}) = (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑅𝑦}))
11 rfovfvd.r . 2 (𝜑𝑅 ∈ 𝒫 (𝐴 × 𝐵))
123mptexd 7198 . 2 (𝜑 → (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑅𝑦}) ∈ V)
136, 10, 11, 12fvmptd 6975 1 (𝜑 → (𝐹𝑅) = (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑅𝑦}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  𝒫 cpw 4563   class class class wbr 5107  cmpt 5188   × cxp 5636  cfv 6511  (class class class)co 7387  cmpo 7389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392
This theorem is referenced by:  rfovfvfvd  43992
  Copyright terms: Public domain W3C validator