Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfovfvd Structured version   Visualization version   GIF version

Theorem rfovfvd 42753
Description: Value of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, and relation 𝑅. (Contributed by RP, 25-Apr-2021.)
Hypotheses
Ref Expression
rfovd.rf 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))
rfovd.a (𝜑𝐴𝑉)
rfovd.b (𝜑𝐵𝑊)
rfovfvd.r (𝜑𝑅 ∈ 𝒫 (𝐴 × 𝐵))
rfovfvd.f 𝐹 = (𝐴𝑂𝐵)
Assertion
Ref Expression
rfovfvd (𝜑 → (𝐹𝑅) = (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑅𝑦}))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑟,𝑥   𝐵,𝑎,𝑏,𝑟,𝑥   𝑦,𝐵,𝑎,𝑏,𝑟   𝑅,𝑟,𝑥   𝑦,𝑅   𝜑,𝑎,𝑏,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝑅(𝑎,𝑏)   𝐹(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑂(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑟,𝑎,𝑏)

Proof of Theorem rfovfvd
StepHypRef Expression
1 rfovfvd.f . . 3 𝐹 = (𝐴𝑂𝐵)
2 rfovd.rf . . . 4 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))
3 rfovd.a . . . 4 (𝜑𝐴𝑉)
4 rfovd.b . . . 4 (𝜑𝐵𝑊)
52, 3, 4rfovd 42752 . . 3 (𝜑 → (𝐴𝑂𝐵) = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑟𝑦})))
61, 5eqtrid 2785 . 2 (𝜑𝐹 = (𝑟 ∈ 𝒫 (𝐴 × 𝐵) ↦ (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑟𝑦})))
7 breq 5151 . . . . 5 (𝑟 = 𝑅 → (𝑥𝑟𝑦𝑥𝑅𝑦))
87rabbidv 3441 . . . 4 (𝑟 = 𝑅 → {𝑦𝐵𝑥𝑟𝑦} = {𝑦𝐵𝑥𝑅𝑦})
98mpteq2dv 5251 . . 3 (𝑟 = 𝑅 → (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑟𝑦}) = (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑅𝑦}))
109adantl 483 . 2 ((𝜑𝑟 = 𝑅) → (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑟𝑦}) = (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑅𝑦}))
11 rfovfvd.r . 2 (𝜑𝑅 ∈ 𝒫 (𝐴 × 𝐵))
123mptexd 7226 . 2 (𝜑 → (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑅𝑦}) ∈ V)
136, 10, 11, 12fvmptd 7006 1 (𝜑 → (𝐹𝑅) = (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑅𝑦}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  {crab 3433  Vcvv 3475  𝒫 cpw 4603   class class class wbr 5149  cmpt 5232   × cxp 5675  cfv 6544  (class class class)co 7409  cmpo 7411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414
This theorem is referenced by:  rfovfvfvd  42754
  Copyright terms: Public domain W3C validator